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Abstract In the paper, we study the ϒ(1S) leptonic decay
width �(ϒ(1S) → �+�−) by using the principle of maxi-
mum conformality (PMC) scale-setting approach. The PMC
adopts the renormalization group equation to set the correct
momentum flow of the process, whose value is independent
to the choice of the renormalization scale and its prediction
thus avoids the conventional renormalization scale ambigui-
ties. Using the known next-to-next-to-next-to-leading order
perturbative series together with the PMC single scale-setting
approach, we do obtain a renormalization scale independent
decay width, �ϒ(1S)→e+e− = 1.262+0.195

−0.175 keV, where the
error is squared average of those from αs(MZ ) = 0.1181 ±
0.0011, mb = 4.93±0.03 GeV and the choices of factoriza-
tion scales within ±10% of their central values. To compare
with the result under conventional scale-setting approach,
this decay width agrees with the experimental value within
errors, indicating the importance of a proper scale-setting
approach.

Since the b-quark mass is much larger than the QCD
asymptotic scale, mb >> �QCD, the leptonic decay of the
heavy quarkonium ϒ(1S) is one of the important channel
for testing the non-relativistic QCD theories. At present,
the decay width �(ϒ(1S) → e+e−) has been calculated
up to next-to-next-to-next-to-leading order (N3LO) level [1–
12]. At the N3LO level, the conventional renormalization
scale uncertainty is still very large, which is usually esti-
mated by varying the renormalization scale (μr ) within the
assumed range of [3, 10] GeV. However, at this perturbative
order, the predicted decay width is still lower than the PDG
averaged experimental value [5], i.e. �ϒ(1S)→e+e−|Exp. =
1.340(18) keV [13]. It has been pointed out that the conven-
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tional scale-setting approach, in which the renormalization
scale is guessed and usually chosen as the one to eliminate
the large logs, will meet serious theoretical problems due to
the mismatching of αs and the coefficients at each perturba-
tive order, and its accuracy depends heavily on the how many
terms of the pQCD series are known and the convergence of
the pQCD series [14]. It is thus important to adopt a proper
scale-setting approach so as to achieve a more accurate fixed-
order pQCD prediction.

In year 2015, the authors of Ref. [15] used the principle
of maximum conformality (PMC) [16–19] to eliminate such
scale ambiguity and predicted, �ϒ(1S)→e+e− ∼ 1.27 keV.
This value agrees with experimental value within errors by
further considering the factorization scale uncertainty. How-
ever, the analysis there was done by using the PMC multi-
scale approach (PMC-m) [18,19], in which the PMC scales
at each order are different and are of perturbative nature
whose values for higher-order terms are of less accuracy due
to more of its perturbative terms are unknown, leading to a
somewhat larger residual scale dependence. More explicitly,
for a N3LO-level pQCD series of �ϒ(1S)→e+e− , the PMC-m
approach shows that there are three PMC scales for its LO,
NLO and NNLO terms accordingly [15]: the LO PMC scale
is at the N2LL accuracy, the NLO PMC scale is at the NLL
accuracy and the NNLO PMC scale is at the LL accuracy,
respectively.

Recently, a single-scale PMC scale-setting approach
(PMC-s) has been suggested by Ref. [20], which fixes the
scale by using all the β-terms of the process as a whole
and can achieve a scale independent and scheme indepen-
dent prediction at any fixed order, satisfying the renormal-
ization group invariance [21]. Since such scale is determined
by using the renormalization group equation, it determines an
effective value of the strong coupling constantαs(Q∗), whose
argument Q∗ corresponds to an overall effective momentum
flow of the process. In this paper, as an attempt, we adopt
the PMC-s approach with the purpose of achieving a more
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accurate pQCD prediction free of renormalization scale error
on the ϒ(1S) leptonic decay width.

Up to N3LO-level, the decay width �ϒ(1S)→�+�− can be
written in the following form by using the degeneracy rela-
tions among different orders [18,19]

�3 = r1,0a
3
s (μr ) + (r2,0 + 3β0r2,1)a

4
s (μr )

+(r3,0 + 3β1r2,1 + 4β0r3,1 + 6β2
0r3,2)a

5
s (μr )

+(r4,0 + 3β2r2,1 + 4β1r3,1 + 5β0r4,1 +
27

2
β1β0r3,2 + 10β2

0r4,2 + 10β3
0r4,3)a

6
s (μr ), (1)

where as = αs/4π , and the coefficients ri, j can be derived
from Refs. [6–10,12], whose explicit expressions have been
given in the Appendix of Ref. [15]. The conformal coeffi-
cients ri,0 = r̂i,0 are independent of the initial choice of
renormalization scale μr , and the non-conformal coefficients
ri, j ( j �= 0) are functions of μr , which can be written as

ri, j =
j∑

k=0

Ck
j r̂i−k, j−k lnk(μ2

r /m
2
b), (2)

where r̂i, j = ri, j |μr=mb ,Ck
j is defined as j !/(k!( j−k)!), and

i, j, k are the polynomial coefficients. By substituting Eq. (2)
into Eq. (1), the decay width �ϒ(1S)→�+�− can be written as

�3 = r̂1,0a
3
s (μr ) + [r̂2,0 + 3β0(r̂2,1 + r̂1,0 ln

μ2
r

m2
b

)]a4
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μ2
r

m2
b
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r

m2
b
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ln
μ2
r

m2
b

+ r̂1,0 ln2 μ2
r

m2
b

)]a5
s (μr )

+[r̂4,0 + 3β2(r̂2,1 + r̂1,0 ln
μ2
r

m2
b

)

+4β1(r̂3,1 + r̂2,0 ln
μ2
r

m2
b

) + 5β0(r̂4,1 + r̂3,0 ln
μ2
r

m2
b

)

+27
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μ2
r

m2
b

+ r̂1,0 ln2 μ2
r

m2
b

)

+10β2
0 (r̂4,2 + 2r̂3,1 ln

μ2
r

m2
b

+ r̂2,0 ln2 μ2
r

m2
b

)

+10β3
0 (r̂4,3 + 3r̂3,2 ln

μ2
r

m2
b

+ 3r̂2,1 ln2 μ2
r

m2
b

+r̂1,0 ln3 μ2
r

m2
b

)]a6
s (μr ). (3)

Applying the standard PMC-s procedures [20], all the non-
conformal terms should be resummed into the running cou-
pling. The N3LO-level leptonic decay width �3 changes to

the following conformal series,

�3|PMC−s = r̂1,0a
3
s (Q∗) + r̂2,0a

4
s (Q∗) + r̂3,0a

5
s (Q∗)

+r̂4,0a
6
s (Q∗), (4)

where Q∗ is the PMC scale that determines the effective
momentum flow and hence the effective running coupling
αs(Q∗) of the process. More explicitly, the PMC scale Q∗ is
obtained by first shifting the scale μr in as to Q∗ in Eq. (3)
by using scale displacement relation of the strong coupling
constant, i.e.

aks (μr ) = aks (Q∗) − kβ0 ln
μ2
r

Q2∗
ak+1
s (Q∗) + O[ak+2

s (Q∗)].

Then the PMC scale Q∗ is obtained by requiring all the non-
conformal terms vanish, e.g.
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Due to its perturbative nature, we expand the solution of ln Q2∗
m2
b

as a power series over as(Q∗), i.e.

ln
Q2∗
m2

b

=
2∑

i=0

Sia
i
s(Q∗), (6)

where Si are perturbative coefficients that can be determined
up to next-to-next-to-leading-log (N2LL) accuracy by using
the known N3LO-level series �3. By further using the scale
displacement relation between the coupling as(Q∗) at the
kth-order and as(mb) as

aks (Q∗) = aks (mb) − kβ0 ln
Q2∗
m2

b

ak+1
s (mb) + O[ak+2

s (mb)],

we finally obtain

ln
Q2∗
m2

b

= T0 + T1as(mb) + T2a
2
s (mb) + O[a3

s (mb)], (7)

where the coefficients Ti (i = 0, 1, 2) are

T0 = − r̂2,1

r̂1,0
, (8)

T1 = 2β0(r̂2
2,1 − r̂1,0r̂3,2)

r̂2
1,0

+ 4(r̂2,0r̂2,1 − r̂1,0r̂3,1)

3r̂2
1,0

, (9)

and

T2 = 5β1(r̂2
2,1 − r̂1,0r̂3,2)

2r̂2
1,0

+16(r̂1,0r̂2,0r̂3,1 − r̂2
2,0r̂2,1) + 15(r̂1,0r̂2,1r̂3,0 − r̂2

1,0r̂4,1)

9r̂3
1,0

−2β0(8r̂2,1r̂3,1r̂1,0 − 5r̂4,2r̂2
1,0 + 4r̂2,0r̂3,2r̂1,0 − 7r̂2,0r̂2

2,1)

3r̂3
1,0

+2β2
0 (12r̂1,0r̂3,2r̂2,1 − 7r̂3

2,1 − 5r̂2
1,0r̂4,3)

3r̂3
1,0

. (10)

It is found that Q∗ is exactly free of μr at any fixed-order,
indicating that the conventional ambiguity of setting μr is
eliminated. Such exactly cancellation of μr -dependence is
due to the fact that, as shown by Eq. (5), the coefficients
of ln μ2

r /m
2
b are exactly the same as those of ln Q2∗/μ2

r . This
shows that one can choose any perturbative value as the renor-
malization scale to finish the perturbative calculations, and
the resultant scale Q∗ shall be independent to such choice.
Thus, together with the μr -independent conformal coeffi-
cients, the PMC decay width �3|PMC−s shall be independent
to the initial choice of the renormalization scale.

As a subtle point, because the N3LL-order and higher-
order terms of the perturbative series (7), e.g. O(a3

s )-terms,
are unknown, the scale Q∗ shall have a residual scale depen-
dence. Such residual scale dependence is different from
the arbitrary conventional μr -dependence, since it is gen-
erally negligible due to a faster pQCD convergence [24]. As
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Fig. 1 The ϒ(1S) leptonic decay width �n up to nth-order QCD cor-
rections as a function of the renormalization scale μr under the conven-
tional sale-setting, where n = (0, 1, 2, 3)

shall be shown below, the residual scale dependence for a
N3LO decay width �ϒ(1S)→e+e− is negligible due to both
αs-suppression and exponential suppression.

To do the numerical calculation, we take the four-loop
αs-running behavior, and use αs(MZ ) = 0.1181 ± 0.0011
[13] to fix the QCD asymptotic scale �QCD. We adopt the fine
structure constant α(2mb) = 1/132.3 [25]. The b-quark MS-
mass m̄b(m̄b) = 4.18±0.03 GeV [13], and by using the four-
loop relation between the MS quark mass and the pole quark
mass [26], we obtain the b-quark pole massmb = 4.93±0.03
GeV.

Using Eq. (7), we obtain

ln
Q2∗
m2

b

= −2.61 − 72.52as(mb) + 6089.58a2
s (mb)

±|6089.58a3
s (μ)|MAX

μ∈[mb/2,2mb]
= −2.61 − 1.24 + 1.77 ± 0.065, (11)

which leads to Q∗ = 1.75±0.06 GeV. Here as an estimation
of those contributions from unknown higher-order terms, as
suggested by Refs. [22,23], we take the maximum value of
|T2a3

s (μ)| with μ ∈ [mb/2, 2mb] as a conservative prediction
of the magnitude of the uncalculated a3

s -terms, which causes
a scale shift 	Q∗ = ±0.06 GeV. Such a small scale shift (∼
±3%) is reasonable, since the value of Q∗ suffers from both
αs-suppression and exponential-suppression. Thus, Eq. (11)
indicates that the typical momentum flow of the decay, ϒ →
e+e−, is about 1.75 GeV, which is only half of the usually
guessed choice of 3.50 GeV. Thus by using the present known
N3LO pQCD series, the accurate typical momentum flow for
ϒ → e+e− can be achieved.

We present the decay width �n up to nth-order QCD
corrections under conventional scale-setting in Fig. 1. As
expected, if the renormalization scale μr is large enough, e.g.
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Fig. 2 The N3LO decay width for the ϒ(1S) leptonic decay versus the
renormalization scale μr under the PMC-s, PMC-m and conventional
scale-setting approaches

μr > 3 GeV, the renormalization scale dependence becomes
smaller with the increment of loop corrections. On the other
hand, it is found that the PMC prediction on �n under the
PMC-s approach is independent to the choice of μr at any
fixed nth-order.

To show the scale dependence more explicitly, we present
the N3LO decay width �3 in Fig. 2, where the results under
conventional and PMC-m scale-setting approaches are pre-
sented as a comparison. Firstly, the conventional scale-setting
approach leads to the largest renormalization scale depen-
dence, e.g. �3|Conv. = [0.665, 0.824] keV for μr ∈ [3, 10]
GeV, which are only about 50% − 60% of the experimen-
tal value �exp. � 1.340 keV. Secondly, such conventional
renormalization scale dependence is suppressed by using
the PMC-m approach, and a more larger decay width can
be achieved. But as has been observed in Ref. [15], there
is still large residual scale dependence due to a somewhat
larger μr -dependence for its NLO and NNLO PMC scales,
e.g. �3|PMC−m = [1.049, 1.353] keV for μr ∈ [3, 10] GeV.
Such large residual scale dependence for PMC-m approach
is reasonable, since the �3 perturbative series starts at α3

s -
order, slight change of its arguments shall result in large scale
uncertainty for the decay width. This fact make the process
inversely provides a good platform for testing the correct run-
ning behavior of the strong coupling constant. Finally, Fig. 2
shows that, by using the PMC-s approach, the ϒ(1S) lep-
tonic decay width is unchanged for any choice of μr , e.g.
�3|PMC−s ≡ 1.262 keV.

We present the contributions from each order for �3 in
Table 1. Under conventional scale-setting, the magnitude of
the NLO, N2LO and N3LO term is about 5%, 95%, and 50%
of the LO term, respectively. It shows that even at the present
known N3LO level, the conventional pQCD convergence is
not as good as required. After applying the PMC, the pQCD

Table 1 Contribution from each order for the N3LO decay width �3
(in unit: keV) under the PMC-s and conventional (μr = 3.5 GeV)
scale-setting approaches

LO NLO N2LO N3LO Total

PMC-s 1.282 − 1.507 1.583 −0.096 1.262

Conv. 0.518 0.028 0.491 −0.258 0.779

convergence is improved, the magnitude of N3LO term is
only ∼ 8% of the LO term. More over, as a conservative
estimation of the magnitude of the unknown N4LO-terms of
the PMC series, we set its value as 	4 = ±|r4,0a7

s (Q∗)|. It
is negligibly small, e.g. 	4 ∼ ±0.002 keV.

Moreover, after eliminating the renormalization scale
uncertainties via using PMC-s approach, there are still uncer-
tainty sources, such as the αs fixed-point error 	αs(MZ ), the
choices of b-quark pole mass mb, the choices of the factor-
ization scale, and etc.

As for the αs fixed-point error, by using 	αs(MZ ) =
0.0011 [13] to fix the αs value at the required scales, we have
�QCD,n f =4 = 296 ± 16 MeV, which lead to

�ϒ(1S)→�+�−|PMC−s = 1.262+0.161
−0.138 keV (12)

and

�ϒ(1S)→�+�−|Conv. = 0.779+0.054
−0.050 keV. (13)

As shall show below, such fixed-point error 	αs(MZ ) dom-
inates the error for ϒ(1S) leptonic decay width. This indi-
cates that after applying the PMC-s approach, even if we
have achieved a renormalization scale-independent confor-
mal coefficients for each perturbative order and have deter-
mined the correct momentum flow of the process (being the
argument of αs), we still need an accurate referenced fixed-
point value αs(MZ ) so as to a determine an accurate αs

at any scales and hence to achieve a more accurate pQCD
prediction. Here, the conventional error of 	�|Conv. =(+0.054

−0.050

)
keV is predicted by fixing μr = 3.5 GeV. Equations

(12) and (13) shows that the conventional error is smaller than
the PMC-s one, this is because that the determined effective
scale Q∗ = 1.75 GeV is smaller than 3.50 GeV, and then the
value of αs(Q∗) is more sensitive to the variation of �QCD.

The N3LO leptonic decay width �ϒ(1S)→�+�− versus the
choice of b-quark pole massmb is presented in Fig. 3. If using
mb = 4.93 ± 0.03 GeV, the error 	� shall be negligibly
small for both the PMC-s and conventional results under a
fixed choice of μr .

At present, we have no strict way to set the factorization
scale of the process, which is usually chosen as the renor-
malization scale. For the ϒ(1S) leptonic decay, the question
is much more involved, since it involves three typical fac-
torization scales, i.e. the hard one μh ∼ mb, the soft one
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Fig. 3 The N3LO decay width for ϒ(1S) leptonic decay versus mb
under the PMC-s and conventional approaches. The solid line is for
PMC-s, which is independent to the choice of μr . The error band is for
conventional result for μr ∈ [3, 10] GeV, where the dashed line is for
μr = 3.50 GeV, the lower edge is for μr = 10 GeV and the upper edge
is for μr = 4.45 GeV, respectively

Table 2 The factorization scale errors 	�3 which are calculated by
separately varying μh , μs and μus by ±10% of their center values

μh μs μus

	�3|PMC−s(keV) + 0.057 + 0.091 + 0.027

− 0.066 − 0.078 − 0.030

	�3|Conv.(keV) + 0.041 + 0.053 + 0.004

− 0.039 − 0.043 − 0.005

μs ∼ mbvb, and the ultra-soft one μus ∼ mbv
2
b , where

vb ∼ αs(mbvb) [27] represents the relative velocity between
the constituent b and b̄ quarks in ϒ . For definiteness of
discussing the factorization scale dependence, we vary the
scales μh , μs and μus within the range of ±10% of their cen-
ter values, and the results are presented in Table 2. Table 2
indicates that there is still factorization scale uncertainties
after applying the PMC-s approach. The conventional fac-
torization scale uncertainties sound relatively smaller, which
are due to accidentally cancellation among different terms
involving different scales. In fact, if the process involves only
one single energy scale, its factorization scale dependence
shall be greatly suppressed if we can set the correct momen-
tum flow of the process by applying the PMC, such kind
of examples have been found in Top-pair and Higgs boson
production processes [28,29].

Using the known N3LO terms together with the PMC-s
approach, we obtain a more accurate renormalization scale
independent prediction

�ϒ(1S)→�+�−|PMC−s = 1.262+0.195
−0.175 keV, (14)

Fig. 4 The N3LO-level ϒ leptonic decay width (�3) under the PMC-
s and conventional scale-setting approaches, respectively. The errors
are squared averages of the mentioned theoretical uncertainties. The
experimental value [13] is also given as a comparison

where the errors are squared average of those from 	αs(MZ ),
mb, and the choices of the factorization scales. This
decay width agrees with the experimental measurement,
�ϒ(1S)→e+e−|Exp. = 1.340(18) keV [13].

More explicitly, we present our result of the ϒ(1S) lep-
tonic decay width up to N3LO level in Fig. 4, where both the
results for PMC-s and conventional scale-setting approaches
are presented. Figure 4 shows that the PMC-s prediction
agrees with the experimental measurement within errors,
while the conventional prediction is well below the data, e.g.

�ϒ(1S)→�+�−|Conv. = 0.779+0.097
−0.137 keV, (15)

where the errors are squared average of those from 	αs(MZ ),
mb, and the choices of the factorization scales and by varying
the renormalization scale within the range of [3, 10] GeV.

As a summary, in the paper, we have studied the ϒ(1S)

leptonic decay width �(ϒ(1S) → �+�−) by using the PMC-
s scale-setting approach. By using the PMC-s approach, we
have found that the overall typical momentum flow of the
ϒ(1S) leptonic decay is ∼ 1.75 GeV, and then a more accu-
rate fixed-order pQCD prediction for �(ϒ(1S) → �+�−)

can be achieved, which agrees with the data and is inde-
pendent to any choice of renormalization scale. Our present
analysis provides another good example for emphasizing the
importance of a proper scale-setting approach. Before we
draw conclusion of whether there is new physics beyond the
standard model for a high-energy process, we need first to
get the pQCD prediction as accuracy as possible, especially,
we need to set a proper scale, corresponding to the correct
momentum flow of the process, for perturbative predictions.
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