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Abstract Quasinormal modes in the high frequency
(eikonal) regime can be obtained analytically as the
Mashhoon–Will–Schiutz WKB formula is exact in this case.
This regime is interesting because of the correspondence
between eikonal quasinormal modes and null geodesics, as
well as due to existence of potential eikonal instabilities in
some theories of gravity. At the same time in a number of
studies devoted to quasinormal modes of spherically sym-
metric black holes this opportunity was omitted. Here we
find analytical quasinormal modes of black holes in various
alternative and extended theories of gravity in the form of the
Schwarzschld eikonal quasinormal modes and added correc-
tions due to deviations from Einstein theory. We also deduce
a generic formula for analytical calculations of the eikonal
quasinormal modes for the class of asymptotically flat met-
rics in terms of small deviations from the Schwarzschild
geometry.

1 Introduction

There exist a number of alternative gravitational theories rep-
resenting attempts to solve fundamental problems, such as
the nature of the gravitational singularity, dark matter and
dark energy problems, quantum gravitational theory, hierar-
chy problem. Recent measurements, either gravitational or
electromagnetic, do not identify geometry of black holes or,
possibly, other compact objects with sufficient accuracy [1–
10].

That is why we consider different black-hole solutions of
modified or extended Einstein equations. All these metrics
have one thing in common: they have a small parameter or a
number of parameters such that when they vanish, the metric
tends to the Schwarzschild one. Therefore we can expand the
metric in terms of these small parameters and do the same to
find the quasinormal modes.
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Quasinormal modes [11–13] being the source of informa-
tion about the black holes have been studied in the numer-
ous researches, but an overwhelming part of these studies is
concerned with only numerical calculation of QNMs. Never-
theless in geometrical optics approximation (with high mul-
tipole number �) an elegant analytical formula was obtained
by B. Mashhoon in his seminal work [14]:
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where n is the overtone number. A recent review on further
extensions and accuracy of the WKB approach can be found
in [15].

This formula (1) was extended to the Reissner–Nordstrom
case in [16], to non-extremal Schwarzschild-de Sitter in [17]
and to the near extremal Schwarzschild-de Sitter case in
[18]. Further extensions to the case of Kerr black hole were
done in a number of papers for fields of various spin [19–
21]. A number of extensions of the formula (1) to higher
dimensional spacetimes were suggested in [22–25]. Recently
eikonal regime has been studied in Einstein–dilaton–Gauss–
Bonnet [26] and Einstein–Weyl [27] gravities as well as for
the case of non-linear (derivative) coupling between scalar
and electromagnetic fields [28]. The eikonal regime for black
holes in non-linear electrodynamics and regular black holes
have been recently studied in [29]. However the final analyt-
ical formulae presented there are not expressed in terms of
the parameters of the black holes only (such as mass, charge
etc.). They also contain the maximum of the effective poten-
tial as a parameter. The summary of analytical results for the
quasinormal modes emitted by the black hole in the eikonal
regime are reviewed in Table 1.

The eikonal regime of quasinormal frequencies have been
recently discussed because of the correspondence between
eikonal quasinormal modes and null geodesics [30]. The cor-
respondence states that the real and imaginary parts of the
quasinormal mode are multiples of the frequency and insta-
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Table 1 Analytical results for the eikonal quasinormal modes

Theory Publication

Schwarzschild [14]

Schwarzschild-de Sitter [17,18]

Reissner–Nordstrom [16]

Dilatonic black hole [35]

Kerr black hole [3,19,20]

Extremal Kerr [21]

Higher dimensional Schwarzschild [23]

Higher dimensional, extremal Schwarzschild-de Sitter [24]

Higher dimensional charged Einstein–Gauss–Bonnet [25]

Einstein–dilaton–Gauss–Bonnet [26]

Einstein–Weyl [27]

Reissner–Nordstrom with derivative coupling to a scalar
field

[28]

Brane-world black holes [36,37]

bility timescale of the circular null geodesics respectively.
In [31] it was shown that the correspondence is guaranteed
for any stationary, spherically symmetric, asymptotically flat
black hole provided that (a) effective potential has the form
of the potential barrier with a single extremum, implying two
turning points and decaying at the event horizon and infinity
and (b) one is limited by perturbations of the test fields only,
and not of the gravitational field itself or other fields, which
are non-minimally coupled to gravity.

Another reason to study quasinormal modes in the eikonal
regime is possibility of the so-called eikonal instability which
may happen either for black branes [32] and holes [33]
or even for wormholes [34]. Eikonal instability means the
breakdown of the linear approximation as such.

Here we will consider a bunch of theories in which the
analytical eikonal formula has not been deduced. In particu-
lar, we shall consider two different kinds of Lorentz-violating
Einstein–Aether theory, Horava–Lifshitz and Horndeski the-
ories and regular BH theories: Bardeen and Ayon–Beato–
Garcia black holes in theories coupled to a non-linear electro-
dynamics and Hayward regular black hole solution. Finally,
we develop a general formula for finding eikonal quasinor-
mal modes of asymptotically flat black holes whose geometry
slightly deviates from the Schwarzschild one.

2 Spherically symmetric black holes spacetimes

A static, spherically symmetric metric in the spacetimes
under consideration has the form:

ds2= − f (r)dt2+ 1

f (r)
dr2+r2

(
sin2 θdφ2+dθ2

)
. (2)

The metric function is given by:

1. for the first kind Einstein aether BH

f (r) = 1 − 2M

r
− I

(
2M

r

)4

, I = 27c

256(1 − c)
, (3)

2. and for the second kind Einstein aether BH

f (r) = 1 − 2M

r
− J

(
M

r

)2

, J = c − d/2

1 − c
, (4)

where c, d are the combinations of the coupling con-
stants of the theory, 0 ≤ c < 1, 0 ≤ d < 2, c ≥ d/2
[38,39]. Einstein aether theory is a Lorentz-violating
theory endowing a spacetime with both a metric and a
unit timelike vector field (aether) having a preferred time
direction;

3. for the Horava–Lifshitz BH

f (r) = 1 + wr2 −
√
r
(
w2r3 + 4wM

)
, (5)

where M is an integration constant, w is a theory parame-
ter, wM2 ≥ 1/2 [40]. Quasinormal modes were analyzed
in [41,42];

4. for the Hayward BH [43]

f (r) = 1 − 2Mr2

r3 + Q3 , (6)

where Q is some real positive constant;
5. for the Bardeen BH [44]

f (r) = 1 − 2Mr2

(
r2 + Q2

)3/2 , (7)

where Q is a magnetic charge;
6. for the Ayon–Beato–Garcia (ABG) BH [45]

f (r) = 1 − 2Mr2

(
r2 + Q2

)3/2 + Q2r2

(
r2 + Q2

)2 , (8)

where Q is an electric (or magnetic) charge.

3 Eikonal expansion

The perturbations of the black hole can be represented in the
general form of the wave like equation

d2�

dr2∗
+

(
ω2 − V (r)

)
� = 0, (9)
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Fig. 1 An example of an effective potential: the Hayward BH in the
eikonal regime (� = 100, α = 0.1)

where r∗ is the “tortoise coordinate”, mapping the event hori-
zon to −∞,

dr∗ = dr

f (r)
. (10)

The boundary conditions for this equation are only incoming
waves at the horizon (r∗ → −∞) and only outgoing waves at
the infinity(r∗ → +∞). Solving the wave equation we obtain
a discrete set of complex values for the frequencies ω with the
real part representing the oscillation frequency and imaginary
part representing the damping rate of the oscillations in terms
of the black hole parameters.

To find a solution of Eq. (9) we use the WKB approxima-
tion [46]:

ω2 = V0 +
√

−2V ′′
0

(
n + 1

2

)
i, (11)

which is accurate in the eikonal limit and therefore produces
analytical results.

The effective potential has the form of the potential barrier
(see, for example Fig.1) and its maximum position can be
expanded in terms of a small parameter α:

rmax = r0 + r1α + r2α
2 + r3α

3 + O(α4), (12)

where r0 = 3M corresponds to the Schwarzschild solution.

In the eikonal limit the effective potential usually does
not depend on spin of the field, though there are a number
of exceptions, connected either to existence of the eikonal
instability or non-linear couplings. Here we will not consider
such cases. Thus, the effective potential has the form:

V (r) = f (r)

(
� (� + 1)

r2 + O(1)

)
, (13)

which implies applicability of the obtained analytical for-
mulae for the quasinormal modes to all kinds of perturba-
tions, such as gravitational, scalar, Dirac, etc. for the con-
sidered above spacetimes, but except perturbations of non-
linear electromagnetic fields in the background of charged
black holes [47–49]. The eikonal form of the effective
potential for gravitational perturbations in some theories
with higher curvature corrections, such as Einstein–Gauss–
Bonnet, Einstein–Lovelock, Einstein–dilaton–Gauss–Bonnet
[32–34], or for a scalar field non-minimally coupled to the
Einstein tensor [50] has the form

V (r) = H(r)

(
� (� + 1)

r2 + O(1)

)
, (14)

where H(r) 	= f (r). Therefore, these cases cannot be con-
sidered within our approach. However, the dynamics of test
fields follows the same asymptotic (13) even in those theo-
ries.

For each metric under consideration there is a number
of reasons to consider additional parameters as small: these
are either requirements of good post-Newtonian behavior or
other astrophysical constraints. Therefore we find the eikonal
quasinormal modes in the form

ω = 1
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)
, (15)

where �ωR and �ωI are the corrections for the real and
imaginary part of the quasinormal modes with regard to the
Schwarzschild case. The parameters and corrections are pre-
sented in Table 2.

Table 2 Corrections for eikonal
quasinormal modes in terms of
the small parameters of the
metrics

Metric α �ωR �ωI

Einstein–Aether I I − 8
27 α + 352

729 α2 + O(α3) − 16
27 α + 1664

729 α2 + O(α3)

Einstein–Aether II J − 1
6 α + 13

216 α2 + O(α3) 1
18 α + 1

72 α2 + O(α3)

Horava–Lifshitz 1
wM2

1
27 α + O (

α2
) 2

27 α + O (
α2

)
Hayward Q

M
1

27 α3 + O (
α4

) 2
27 α3 + O (

α4
)

Bardeen Q
M

1
6 α2 + 17

216 α4 + O (
α5

) 1
9 α2 + 149

648 α4 + O (
α5

)
ABG Q

M
1
3 α2 + O (

α3
) 1

18 α2 + O (
α3

)
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Unlike all the cases studied above the Horndeski theory
[51] is characterized by the metric

ds2 = −
(

1 − 2M

r
+ c

r
4+ 1

α2

)
dt2

+
(

1 − 2M

r
+ c

r
4+ 1

α2

)−1

dr2

+ r2(
1 + 4α2

) (
sin2 θdφ2 + dθ2

)
, (16)

which is not asymptotically flat. The effective potential for
electromagnetic perturbations has the form [51]

V (r) =
(

1 − 2M

r
+ c

r
4+ 1

α2

)
� (� + 1)

(
1 + 4α2

)
r2 (17)

and the formula for the eikonal quasinormal modes in this
theory reads
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1

3
√
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+O
(

1

� + 1
2

)
, (18)

where

K = 4 + 1

α2 ,

c is a theory constant and α is a small parameter, such
that when it tends to zero the metric approaches that of
the Schwarzschild spacetime. Then, K becomes infinitely
large, and (3M)K is large too, while K 2/(3M)K is small
again. Thus when the theory parameter α tends to zero, the
corrections in Eq. (18) vanish and we come to the same
Schwarzschild case.

4 General approach for asymptotically flat metrics

The idea of expanding the position of the peak of the effective
potential in terms of a small parameter in order to present it
in the form of the Schwarzschild peak with added relatively
small corrections can be extended onto the metric function
itself. Having an asymptotically flat metric we can expand it
in terms of the negative powers of r :

f (r)=1−2M

r
+α2

r2 +α3

r3 +α4

r4 + α5

r5
+ O

(
1

r6

)
, (19)

where parameters αi describe deviations of a given metric
from the Schwarzschild one. A similar expansion, but for the

effective potential, was considered in [52]. The maximum of
the effective potential can be expanded as follows:

rmax = r0 + r1α2 + r2α3 + r3α4 + r4α5 + O(αiαk). (20)

Using the first order WKB formula and expanding the results
for ω into powers of αi , we find that

ω =
(
� + 1

2

)
3
√

3M

(
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3
√
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(
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18M2 − α3

27M3 − α4

27M4 − 11α5

486M5

)

+ O
(

1

� + 1
2

)
. (21)

The eikonal formulas, presented in Table 2, can then be
immediately found from the above general formula by using
the coefficients αi obtained via expansion of the metric in
terms of the corresponding small parameters of the system.

5 Conclusions

We filled the gap in the current literature devoted to analyti-
cal calculations of quasinormal modes in the high frequency
regime. For the set of the spherically symmetric metrics we
obtained corrections for the real and imaginary part of the
eikonal quasinormal modes in terms of the small parameters
of the theories. We also deduced a general formula for eikonal
quasinormal modes for the class of the asymptotically flat
spacetimes in terms of small deviations from Schwarzschild
geometry. In addition we reviewed publications where ana-
lytical eikonal formula was derived for various black hole
spacetimes and fields. We believe that this compendium of
analytical formulae for high frequency regime of black hole
perturbations might be of further usage in analytic and semi-
analytic treatments of black hole perturbations [21,53–55].
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