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Abstract We argue that the existence of an inhomogeneous
external magnetic field can lead to radial flow in transverse
plane. Our aim is to show how the introduction of a mag-
netic field generalizes the Bjorken flow. We investigate the
effect of an inhomogeneous weak external magnetic field on
the transverse expansion of in-viscid fluid created in high
energy nuclear collisions. In order to simplify our calcula-
tion and compare with Gubser model, we consider the fluid
under investigation to be produced in central collisions, at
small impact parameter; azimuthal symmetry has been con-
sidered. In our model, we assume an inhomogeneous external
magnetic field following the power-law decay in proper time
and having radial inhomogeneity perpendicular to the radial
velocity of the in-viscid fluid in the transverse plane; then the
space time evolution of the transverse expansion of the fluid
is obtained. We also show how the existence of an inhomo-
geneous external magnetic field modifies the energy density.
Finally we use the solutions for the transverse velocity and
energy density in the presence of a weak magnetic field, to
estimate the transverse momentum spectrum of protons and
pions emerging from the Magneto-hydrodynamic solutions.

1 Introduction

Collisions of two heavy nuclei at high energy produce a
hot and dense fireball. Quarks and gluons could reach the
deconfined state, called quark gluon plasma (QGP), in a very
short time (∼1 fm/c) after the initial hard parton collisions
of nuclei. A very handy model which describes the typical
motion of partons after collision is the Bjorken flow model
[1]. Based on some assumptions such as boost invariance
along beam line, translation and rotation invariance in the
transverse plane, one can show that all quantities of inter-
est only depend on the proper time τ and not on the trans-
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verse (x⊥, φ) coordinates, nor on the rapidity η. Using the
above assumptions, together with invariance under reflec-
tion η → −η, one can determine the four-velocity profile.
The four-velocity is uμ = (1, 0, 0, 0) in the (τ, x⊥, φ, η)

coordinate system. Besides, it is straightforward to show that
the energy density decays as τ−4/3 in the local rest frame if
the medium is equilibrated and the equation of state of the
medium is p = ε/3.

Based on the size of the colliding nuclei, one realizes that
assuming translational invariance in the transverse plane is
not realistic [2]. Using the Bjorken model one often assumes
that in medium the radial flow (u⊥) is zero. However, this
assumption is not correct even for central collisions, and
it might mislead the subsequent hydrodynamical flow, on
which much of heavy-ions phenomenology depends.

The aim of our work is to generalize the Bjorken model by
considering an inhomogeneous external magnetic field acting
on the medium. We show that the presence of the magnetic
field leads to non-zero radial flow. In order to simplify our
calculation, we consider central heavy ions collisions. We
still consider rotational symmetry around beam line, as well
as boost invariance along the beam line. However, we assume
that translational invariance in the transverse plane is broken
by the magnetic field. Then we obtain a four-velocity profile
which has a non zero radial component. In the present study
for central collisions (small impact parameter), we provide
an analytical solution for the transverse expansion of a hot
magnetized plasma, based on perturbation theory.

We concentrate on the special case of a (1 + 2) dimen-
sional, longitudinally boost-invariant fluid expansion as the
Bjorken flow; the fluid also radially expands in the transverse
plane, under the influence of an inhomogeneous external
magnetic field which is transverse to the radial fluid velocity
(this proceeds according to the so called transverse MHD).

We consider an inviscid fluid coupled to an external mag-
netic field. As one expects in central collisions, we assume
that the external magnetic fields is small compared to the
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fluid energy density [3]. Therefore, we can neglect the cou-
pling to the Maxwell’s equations and solve the conservation
equations perturbatively and analytically [4].

Moreover the presence of external magnetic field may
induce internal electromagnetic fields of the fluid. The inter-
nal magnetic fields are dictated by Maxwell’s equations and
one should solve the conservation equations and Maxwell’s
equations coupled to each other by numerical methods [25].
In this work we neglect the effects of such internal mag-
netic field. Hence we will consider the system with an inho-
mogeneous external magnetic field and will investigate the
anisotropic transverse flow and the modified energy density
of the fluid induced by the external magnetic fields. As in
Gubser flow, the finite size of the colliding nuclei leads to
non-zero radial velocity (u⊥); we show that the inhomoge-
neous weak external magnetic field also leads to nonzero
radial velocity and can produce modifications on the radial
expansion of the plasma in central collisions.

We remind the reader that recently a wide range of studies
has shown that relativistic heavy-ion collisions create also
huge magnetic field due to the relativistic motion of the col-
liding heavy ions carrying large positive electric charge [5–
16]. The interplay of magnetic field and QGP matter has been
predicted to lead to a number of interesting phenomena. One
can see recent reviews on this topic in Refs. [17–20] for more
details.

Previous theoretical studies show that the strength of
the produced magnetic field depends on the center of mass
energy (

√
sNN ) of the colliding nuclei, on the impact param-

eter (b) of the collision, on the electrical and chiral conduc-
tivities (σel , σχ ) of the medium [6,10,11,15]. Moreover, the
magnetic field in central collisions becomes non-zero due to
the fluctuating proton position from event to event [3,13].
It has been found that the ratio of magnetic field energy to
the fluid energy density (σ = eB2/2ε) in central collisions is
much smaller than in peripheral collisions [3]. The authors of
Ref. [3] computed the fluid energy density and electromag-
netic field by using the Monte Carlo Glauber model. The
initial energy density for the fluid at proper time τi = 0.5 fm
was fixed to ∼40 GeV/fm3. They found σ � 1 for most of
the events, at the center of the collision zone and for impact
parameter b = 0, while for large b as compared to cen-
tral collisions, σ becomes larger as a result of the increase
in magnetic field and decrease in fluid energy density. In a
plasma σ = 1 indicates that the effect of magnetic field in
the plasma evolution can not be neglected, but it is worth
observing that in some situations, even σ ∼ 0.01 may affect
the hydrodynamical evolution [3].

Recently, some efforts in numerical and analytical works
have been made, based on the relativistic magneto-
hydrodynamic (RMHD) setup, to describe high energy heavy
ion collisions (see, for example, [4] and [21–30]). In [4] the
goal was to obtain an analytical solution in (1 + 1) dimen-

sional Bjorken flow for ideal transverse RMHD, and the con-
servation equations were solved perturbatively and analyti-
cally. In our previous work [25], we developed a simple code
for transverse expansion in (1+1D) RMHD setup in order to
solve coupled conservation equations and Maxwell’s equa-
tions numerically.

We found that this coupling can indeed affect the solutions
with respect to the ones of Ref. [4]. In the present work, we
show that the perturbative approach of Ref. [4] can be applied
to the case of central collision, in order to find analytical
solution for the transverse expansion of QGP matter in the
presence of an external magnetic field.

The paper is organized as follows. In Sect. 2, we intro-
duce the ideal relativistic magnetohydrodynamic equations
in their most general form, considering them in the case of
a plasma with infinite electrical conductivity. In Sect. 3 we
present our perturbative approach and the analytical solu-
tions we found. Section 4 illustrates and discusses the gen-
eral results obtained. Section 5 contains a calculation of the
transverse momentum spectrum together with a comparison
of this quantity with experimental results obtained at RHIC.
Conclusions and subsequent outlook can be found in the last
section.

2 Ideal relativistic magneto-hydrodynamic

We deal with the case of an ideal non-resistive plasma, with
vanishing electric field in the local rest-frame (eμ = 0),
which is embedded in an external magnetic field (bμ) [31,32].
The energy momentum conservation equations read:

dμ(Tμν
pl + Tμν

em ) = 0, (1)

where

Tμν
pl = (ε + P)uμuν + Pgμν (2)

Tμν
em = b2uμuν + 1

2
b2gμν − bμbν . (3)

In the above gμν is the metric tensor, ε and P are the energy
density and pressure, respectively. Moreover dμ is the covari-
ant derivative, defined later in Eq. (9).

The four velocity is defined as

uμ = γ (1, �v), γ = 1√
1 − v2

satisfying the condition uμuμ = −1.
Canonically one takes projections of the equation

dμ(Tμν
pl + Tμν

em ) = 0 along the parallel and perpendicu-
lar directions to uν . The parallel projection is obtained via
uνdμ(Tμν

pl + Tμν
em ), which gives:

D(ε + b2/2) + (ε + P + b2)
 + uνb
μ(dμb

ν) = 0, (4)
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Fig. 1 Transverse MHD u · B = 0

For the transverse projection we use the definition �μν =
gμν + uμuν ; then �α

ν dμ(Tμν
pl + Tμν

em ) = 0 gives:

(ε + P + b2)Duα = −∇α

(
P + 1

2
b2

)
+ dμ(bμbα)

+uαuνdμ(bμbν). (5)

Notice that α should be a spacelike index. Moreover

D = uμdμ, ,
 = dμu
μ, ,∇α = �α

νd
ν . (6)

3 Ideal transverse MHD setup in the transverse
expansion

We assume that the medium has a finite transverse size and
expands both radially and along the beam axis, the only
nonzero components of uμ = (uτ , u⊥, 0, 0) being uτ , which
describes the boost invariant longitudinal expansion, and u⊥,
which describes the transverse expansion. For the sake of
simplicity we suppose that uφ = 0 because we claimed that
the system is rotationally symmetric.

It is more convenient to work in Milne coordinates, xm =
(τ, x⊥, φ, η), such that:

x = x⊥ cos φ, y = x⊥ sin φ,

z = τ sinh η, t = τ cosh η,

τ =
√
t2 − z2, η = 1

2
ln

t + z

t − z
,

φ = tan−1(y/x), x2⊥ = x2 + y2 (7)

Moreover we suppose that the external magnetic field is
located in the transverse plane as bμ = (0, 0, bφ, 0) where
bμbμ ≡ b2 is defined. Our setup is depicted in Fig. 1.
The metric for the coordinates (τ, x⊥, φ, η) is parameter-
ized as follows: gμν = diag(−1, 1, x2⊥, τ 2) and gμν =
diag(−1, 1, 1/x2⊥, 1/τ 2). Correspondingly

ds2 = −dτ 2 + dx2⊥ + x2⊥dφ2 + τ 2dη2. (8)

In this configuration it is found that uτ = −uτ = −u0 and
∂τ = −∂τ .

We have to take care of the following covariant derivative
(instead of the usual one):

dμA
μ = ∂μA

μ + �μ
μρ A

ρ, (9)

where the Cristoffel symbols are defined as follows:

�i
jk = 1

2
gim

(∂gmj

∂xk
+ ∂gmk

∂x j
− ∂g jk

∂xm

)
. (10)

Here we frequently take advantage of the following formula:

�i
jk = 0, f or i 
= j 
= k (11)

�i
j j = − 1

2gii

∂g j j

∂xi
, f or i 
= j (12)

�i
i j = �i

j i = 1

2gii

∂gii
∂x j

= 1

2

∂ ln gii
∂x j

. (13)

Hence the only non-zero Christoffel symbols, here, are�τ
ηη =

τ, �
x⊥
φφ = −x⊥, �

φ
x⊥φ = 1

x⊥ , �
η
τη = 1

τ
. Now D and 
 are

given by:

D=−u0∂τ+u⊥∂⊥, 
= − ∂τu0+u⊥
x⊥

+ ∂u⊥
∂x⊥

− u0

τ
. (14)

The constraint u2 = uτuτ +u⊥u⊥ = −u2
0 +u2⊥ = −1 must

be satisfied as well.
We now look for the perturbative solution of the conser-

vation equations in the presence of a weak external inhomo-
geneous magnetic field pointing along the φ direction in an
inviscid fluid with infinite electrical conductivity and obey-
ing Bjorken flow in z - direction. Our setup is given by:

bμ = (0, 0, λbφ, 0), uμ = (1, λ2u⊥, 0, 0), (15)

ε = ε0(τ ) + λ2ε1(τ, x⊥), ε0(τ ) = εc

τ 4/3 , (16)

where εc is the energy density at proper time τ0. Then
the energy conservation and Euler equations [Eqs. (4), (5)]
reduce to two coupled differential equations. Up to O(λ2),
they are:

∂τ ε1 − 4εc

3τ 4/3

(
u⊥
x⊥

+ ∂u⊥
∂x⊥

)
+ 4ε1

3τ
+ bφ∂τbφ + b2

φ

τ
= 0

(17)

∂⊥ε1 − 4εc

τ 4/3 ∂τu⊥ + 4εc

3τ 7/3 u⊥ + 3bφ∂⊥bφ + 3b2
φ

x⊥
= 0.

(18)

The combination of the two above equations yields a partial
differential equation depending on u⊥ and bφ :
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u⊥ − τ 2∂⊥
(
u⊥
x⊥

)
− τ 2∂2⊥u⊥ − τ∂τu⊥ + 3τ 2∂2

τ u⊥

−3τ 7/3

x⊥εc
b2
φ − 3τ 7/3

4εc
∂⊥b2

φ − 9τ 10/3

4x⊥εc
∂τb

2
φ

−3τ 10/3

4εc
∂⊥∂τb

2
φ = 0. (19)

For bφ = 0, Eq. (19) is a homogeneous partial differential
equation, which can be solved by separation of variables. The
general solution is

uh⊥(τ, x⊥) =
∑
k

(ck1 J1(kx⊥) + ck2Y1(kx⊥))

× (c′k
1 τ 2/3 J1/3(kτ/

√
3)

+ c′k
2 τ 2/3Y1/3(kτ/

√
3)

)
, (20)

where k can be real or imaginary numbers, ck1,2 and c′k
1,2 are

integration constants.
For non-vanishing bφ we assume a space-time profile of

the magnetic field in central collisions in the form:

b2
φ(τ, x⊥) = B2

c τ
n√αx⊥e−αx2⊥ . (21)

We see that the magnitude of bφ is zero at x⊥ = 0. In order to
find solutions for transverse velocity u⊥ and energy density
ε consistently with the assumed magnetic field, we found it
convenient to first expand the magnetic field, Eq. (21) into a
series of x⊥-dependent functions:

b2
φ(τ, x⊥) =

∑
k

τ n B2
k f (kx⊥), (22)

where k ≥ 1 are now real integers and B2
k are constants.

For simplicity, we have assumed the time dependence of the
magnetic field square as τ n with n < 0, which approximately
characterizes the decay of the magnetic field in heavy ion
collisions. This is our key to convert the solution of the partial
differential Eq. (19) into a summation of solutions of ordinary
differential equations.

Moreover we replace the solution (20) for the radial veloc-
ity u⊥(τ, x⊥), which is valid for bφ = 0, with the following
Ansatz [4]:

u⊥(τ, x⊥) =
∑
k

(
ak(τ )J1(kx⊥) + bk(τ )Y1(kx⊥)

)
. (23)

It mantains the x⊥ dependence of Eq. (20), but embodies the
τ dependence in the coefficients of the Bessel functions. Note
that from the initial condition u⊥(τ, x⊥ = 0) = 0 it follows
that bk(τ ) = 0.

Now we can substitute the Eqs. (22) and (23) into Eq. (19)
and end up with the equation (at fixed k):

J1(kx⊥)(1 + τ 2k2 − τ∂τ + 3τ 2∂2
τ )ak(τ )

−3τ 7/3+n

4εc
B2
k

(
f (x⊥)

x⊥
(4+3n)+∂⊥( f (x⊥))k(1+n)

)
=0.

(24)

Here we can apply separation of variables, thus obtaining
the following ordinary differential equation for the function
f (kx⊥):

(1 + n)kx⊥∂⊥ f (kx⊥) + (4 + 3n) f (kx⊥) = kx⊥ J1(kx⊥).

(25)

Its general solution is given by

f (kx⊥)

=
k2x2⊥�

(
2nk+2k+3n+4

2nk+2k

)
1F2

(
2nk+2k+3n+4

2nk+2k ; 2, 4nk+4k+3n+4
2nk+2k ; − 1

4 k
2x2⊥

)

4(n + 1)�
(

4kn+4k+3n+4
2kn+2k

)

+ d1(k
2(n + 1)x⊥)−

3n+4
kn+k , (26)

where 1F2 is the hypergeometric function. The first term is a
well-defined function, but the second one diverges in x⊥ =
0 for any n except n = −4/3 which will be considered
in details; hence, d1 must be zero. For two values of the
parameter n, n = −1 and n = −4/3, the solution of Eq. (25)
takes a simple form:

f (kx⊥) = kx⊥ J1(kx⊥) (for n = −1) (27)

and

f (kx⊥) = d2 + 3J0(kx⊥) (for n = −4/3). (28)

In order to implement the orthogonal properties of the
Bessel functions, for the case n = −4/3 we set d2 = 0 in
Eq. (28). Then we can easily describe the external magnetic
field as a series of Bessel functions, by restricting ourselves
to the cases n = −1 and n = −4/3.

We write the solution for n = −1 as

b2
φ(τ, x⊥) =

∑
k

τ−1 B2
k β1k

x⊥
a

J1

(
β1k

x⊥
a

)
(29)

where the coefficients B2
k are given by

B2
k = 2a

a2β1k[J2(β1k)]2

∫ a

0
J1

(
β1k

x⊥
a

)
b2
φ dx⊥, (30)

β1k being the kth zero of J1.
For n = −4/3 the solution for the magnetic field can be

written as

b2
φ(τ, x⊥) =

∑
k

τ−4/3 B2
k 3 J0

(
β0k

x⊥
a

)
(31)

where the coefficients B2
k are given by

B2
k = 2

3 a2[J1(β0k)]2

∫ a

0
x⊥ J0

(
β0k

x⊥
a

)
b2
φ dx⊥ (32)
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β0k being the kth zero of J0; in the above k = βik/a (i =
0, 1).

Finally the coefficients ak(τ ) in Eq. (23) can be obtained
by solving the following ordinary differential equation:

(
k2τ 2+1

)
ak(τ )+τ

(
3τa′′

k (τ )−a′
k(τ )

)−3kB2
k τ

n+ 7
3

4εc
= 0.

(33)

The analytical solution for n = −1 is

ak(τ ) = ck1τ
2/3 J 1

3

(
kτ√

3

)
+ ck2τ

2/3Y 1
3

(
kτ√

3

)

+ πkB2
k

48�
( 2

3

)
�

( 7
6

)
�

( 4
3

)
εc

3
√
kτ

×
(

−22/3 3
√

3τ 4/3�

(
2

3

)
�

(
7

6

)
(kτ)2/3 J 1

3

×
(
kτ√

3

)
1F2

(
1

2
; 4

3
,

3

2
;− 1

12
k2τ 2

)

+ 2 3
√

232/3τ 4/3�

(
4

3

)
�

(
1

6

)
J 1

3

×
(
kτ√

3

)
1F2

(
1

6
; 2

3
,

7

6
;− 1

12
k2τ 2

)

+22/335/6τ 4/3�

(
2

3

)
�

(
7

6

)
(kτ)2/3Y 1

3

×
(
kτ√

3

)
1F2

(
1

2
; 4

3
,

3

2
;− 1

12
k2τ 2

))
(34)

while for n = −4/3 the solution is

ak(τ ) = ck1τ
2/3 J 1

3

(
kτ√

3

)
+ ck2τ

2/3Y 1
3

(
kτ√

3

)

+ πkτ B2
k

96�2
( 4

3

)
εc

3
√
kτ

×
(

−22/3 3
√

3�

(
1

3

)
(kτ)2/3 J 1

3

×
(
kτ√

3

)
1F2

(
1

3
; 4

3
,

4

3
; − 1

12
k2τ 2

)

+22/335/6�

(
1

3

)
(kτ)2/3Y 1

3

×
(
kτ√

3

)
1F2

(
1

3
; 4

3
,

4

3
; − 1

12
k2τ 2

)

× −4 3
√

232/3�2
(

4

3

)
J 1

3

(
kτ√

3

)
G2,0

1,3

(
k2τ 2

12

∣∣∣∣ 1
0, 0, 1

3

))
.

(35)

In the above Gpq
mn is the Meijer function.

The transverse velocity then takes the form

u⊥(τ, x⊥) =
∑
k

ak(τ )J1(kx⊥). (36)

In order to completely determine the function u⊥(τ, x⊥) we
must fix the integration constants ck1 and ck2. It is conve-

nient to consider the boundary conditions at τ → ∞. Since
b2
φ(∞, x⊥) → 0 we expect u⊥(∞, x⊥) → 0. By making

late-time expansion of u⊥, one finds that u⊥ takes the asymp-
totic form f (τ )τ 1/6 where f (τ ) is an oscillatory function. In
order to prevent divergencies of the transverse velocity one
has to impose that the coefficient of τ 1/6 is equal to zero. The
solutions satisfying these boundary condition at τ → ∞ are
shown in the following.

For n = −1,

ck1 =
3
√
k

(
3π3/2�

( 7
6

) − √
π�2

( 1
6

)
�

(
5
6

))
B2
k

24 3
√

2 6
√

3�
(

5
6

)
�

( 7
6

)
εc

,

ck2 = −
3
√

3
2π3/2 3

√
kB2

k

8�
(

5
6

)
εc

. (37)

For n = −4/3,

ck1 = πk2/3�
( 1

3

)2
B2
k

24 22/3 3
√

3�
( 4

3

)
εc

, ck2 = − πk2/3�
( 1

3

)2
B2
k

8 22/335/6�
( 4

3

)
εc

. (38)

After obtaining u⊥(τ, x⊥) we can get, correspondingly, the
modified energy density from Eq. (18). For n = −1, it reads:

ε1(τ, x⊥) =
∑
k

hk(τ ) +
∑
k

1

24kτ 7/3

(
32εc[J0(kx⊥) − 1][ak(τ ) − 3ta′

k(τ )]

− 9B2
k kτ

4/3
[
k2x2⊥ 0F1

(
2;−1

4
k2x2⊥

)

+2kx⊥ J1(kx⊥) − 8J0(kx⊥) + 8]

)
, (39)

where h(τ ) is the constant of integration and can be obtained
form Eq. (17). We find,

hk(τ ) =
∫ τ

1
4
3kεcak(s) ds

τ 4/3 . (40)

For n = −4/3, instead,

ε1(τ, x⊥)=
∑
k

hk(τ )+
∑
k

1

6kτ 7/3 (8εc[J0(kx⊥) − 1](ak(τ )

−3ta′
k(τ ))−27B2

k kτ

[
− G2,0

1,3

(
k2x2⊥

4

∣∣∣∣ 1
0, 0, 0

)

+J0(kx⊥) − 1

])
, (41)

where

hk(τ ) =
∫ τ

1

(
4
3kεcak(s) − B2

k
s

)
ds

τ 4/3 . (42)

Note that, the integrals (40) and (42) should be calculated
numerically.
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4 Results and discussion

In this section we will present the transverse velocity and
energy density numerically obtained from our perturbation
approach: this two quantities will help in understanding the
space time evolution of the quark-gluon plasma in heavy ion
collisions. The typical magnetic field produced in Au–Au
peripheral collisions at

√
sNN = 200 GeV reaches |eB| ∼

10m2
π . The estimate ε ∼ 5.4 GeV/fm3 at a proper time of

about τ = 1 fm is taken from [2]. By taking mπ ≈ 150
MeV and e2 = 4π/137, one finds B2/εc ∼ 0.6. This value
in central collisions is much smaller than in peripheral col-
lisions; therefore, in our calculations we assumed the even
smaller value B2

c /εc = 0.1, which correspond to σ ∼ 0.015.
Note that in our calculations any change in the ratio B2

c /εc
will only scale the solutions. We will use cylindrical coordi-
nates whose longitudinal component is chosen to be the third
component of Cartesian coordinate, e.g., �x = (x⊥, φ, z).

4.1 Numerical solution for the case n = −1

The external magnetic field profile Eq. (21) can be repro-
duced by expressing b2

φ via a series of Bessel func-
tions as shown in Eq. (29). The first ten coefficients of
series and on the B2

k calculated according to Eq. (30)
for α = 0.1 are: B2

c {0.112499, 0.111212, 0.0707575,
0.0391739, 0.0231679, 0.0153799, 0.0110821, 0.0084056,
0.00661182, 0.00534074}. In order to reproduce the assumed
external magnetic profile Eq. (21) we had to take in the calcu-
lation the first 100 terms of the series. Figure 2 shows a com-
parison between the approximated magnetic field in Bessel
series and the assumed magnetic profile Eq. (21). Note that
the Fourier expansion matches the assumed magnetic profile
in the whole region of x⊥, hence the solutions for the radial
velocity and the energy density are valid in the entire region
x⊥ ∈ (0,∞).

Fig. 2 A comparison between the approximated b2
φ in Bessel series

(dotted curve) and the assumed external magnetic field (solid curve)
with n = −1

Fig. 3 vx⊥ as a function of x⊥ for different values of τ

Fig. 4 vx⊥ as a function of τ for different values of x⊥

Next we show plots of the fluid velocity (vx⊥ ≡ u⊥/uτ )
and of the energy density modified by the magnetic field
with B2

c /εc = 0.1. In Figs.3 and 4 vx⊥(τ, x⊥) is displayed,
at either fixed τ or fixed x⊥, respectively. From Fig.3, one
finds that vx⊥(τ, 0) = 0 and the radial velocity vx⊥ first
increases from x⊥ = 0, has a maximum at intermediate x⊥
and then gradually decreases with x⊥. As shown in Fig.4, vx⊥
at fixed x⊥ becomes smaller at late times, due to the decay
of the magnetic field, in agreement with the curves displayed
in Fig.3.

Figure 5 shows the correction energy density ε1(τ, x⊥)

as a function of x⊥ for different values of τ ; we remind the
reader that the total energy density is ε = ε0(τ ) + ε1(τ, x⊥)

and the latter is the component which is truly affected by the
magnetic field. Figure 6 shows the correction energy density
as a function of τ for different values of x⊥. Here we find
that for x⊥ = 0 the correction energy density is positive,
starting from zero at proper time τ = 1 fm and showing a
shallow maximum; for x⊥ = 0.5 fm the correction energy
density is negative at τ = 1 fm and increases with τ reaching
zero at approximately τ = 4.5 fm, becoming then slightly
positive. For the other values of x⊥ the correction energy
density is negative at any time and monotonically increases
toward zero.
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Fig. 5 ε1 as a function of x⊥ for different values of τ

Fig. 6 ε1 as a function of τ for different values of x⊥

This behavior can also be seen in Figs.7 and 8 which
show the normal and Log-Log plots of the total energy den-
sity ε(τ, x⊥) as a function of τ for several values of x⊥,
respectively. The time evolution of the energy density for
different values of x⊥ in the work of Gubser [2] has nearly
the same behavior as in Fig. 8, stemming from a similar
trend of the correction energy density as a function of τ ,
like the one illustrated in our Fig. 6. In the Gubser work for
τ < 4.6 fm the energy density is positive for x⊥ ≤ 3 fm
and negative for x⊥ ≥ 4 fm and it is negative for any x⊥ for
τ > 4.6 fm.

It is interesting to investigate variations of the spatial width
of the external magnetic field: this affects the Fourier series
which reproduces the assumed distribution for the magnetic
field; moreover we find that vx⊥(τ, x⊥) and ε1(τ, x⊥) have
an important dependence on the parameter α (with dimen-
sion square of inverse length), which characterizes the spa-
tial width of the magnetic field. In Fig. 9, we plot the
external magnetic profile at τ = 1 fm for several differ-
ent values of α. In Figs. 10 and 11, we plot vx⊥ and ε1 at
τ = 1 fm for references. The vx⊥ gets smaller when α is
increased. It seems that the parameter α plays the role of

Fig. 7 ε(τ, x⊥) as a function of τ for several values of x⊥

Fig. 8 Log–Log plot of ε(τ, x⊥) as a function of τ for several values
of x⊥. The bold blue line shows the dependence ε/τ 4/3, where ε is in
GeV/fm3 and τ in fm. We have chosen ε = 5.4 GeV/fm3 at τ = 1 fm
from [2]

Fig. 9 b2
φ(τ, x⊥) as a function of x⊥ for different values of α at τ0 =

1 fm

the parameter 1/q2 in Ref. [2]: indeed the radial flow veloc-
ity (versus x⊥ at τ = 0.6 fm) becomes smaller when 1/q
increases.
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Fig. 10 vx⊥ (τ, x⊥) as a function of x⊥ for different values of α at
τ0 = 1 fm

Fig. 11 ε1(τ, x⊥) as a function of x⊥ for different values of α at τ0 =
1 fm

4.2 Numerical solution for the case n = −4/3

For the case n = −4/3, the external magnetic field pro-
file Eq. (21) can be reproduced as a series of Bessel func-
tions as shown in Eq. (31). The first 10 coefficients B2

k
calculated according to of Eq. (32) for α = 0.1 are:
B2
c {0.04745, 0.0371507,−0.00832931,−0.0215885,

−0.0146208,−0.00825935,−0.00515007,−0.00362071,
−0.00269932,−0.00212629}. In order to reproduce the
assumed external magnetic profile Eq. (21), one may take the
first 100 terms of the series in the calculation. Fig. 12 shows
a comparison between the approximated magnetic field by
the Bessel series and the assumed magnetic profile Eq. (21).
Figures 13 and 14 show vx⊥(τ, x⊥) at either fixed τ or fixed
x⊥, respectively. The qualitative behaviors of vx⊥(τ, x⊥) in
both figures are different from the case n = −1 and the
amplitude is smaller. While for n = −1, the direction of the
fluid velocity is always positive, for n = −4/3 the direction
of fluid velocity changes during the expansion of the fluid.

Figure 15 shows the correction energy density as a func-
tion of x⊥ for different values of τ . Figure 16 shows the
correction energy density as a function of τ for different val-

Fig. 12 A comparison between the approximated b2
φ in Bessel series

(dotted curve) and the assumed external magnetic field (solid curve)
with n = −4/3

Fig. 13 vx⊥ as a function of x⊥ for different values of τ

Fig. 14 vx⊥ as a function of τ for different values of x⊥

ues of x⊥. Figures 17 and 18 show the normal and Log-Log
plots of the total ε(τ, x⊥) as a function of τ for several val-
ues of x⊥, respectively. In Fig. 15, we find that for x⊥ = 0
the correction energy density is always positive and then it
decreases from the value at x⊥ = 0 with increasing x⊥. From
Fig. 16 one also finds that for the case n = −4/3 the correc-
tion energy density is always positive, at variance with the
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Fig. 15 ε1 as a function of x⊥ for different values of τ

Fig. 16 ε1 as a function of τ for different values of x⊥

Fig. 17 ε(τ, x⊥) as a function of τ for several values of x⊥

case n = −1. The same feature can be obviously extracted
from Figs. 17 and 18.

Also for the case n = −4/3, we plot the external magnetic
profile at τ = 1 fm for several different values of α in Fig.
19. In Figs. 20 and 21, we plot vx⊥ and ε1 at τ = 1 fm.
The qualitative behavior of vx⊥ and ε1 are similar to the case
n = −1.

Fig. 18 Log-Log plot of ε(τ, x⊥) as a function of τ for several values
of x⊥. The bold blue line shows the dependence ε/τ 4/3, where ε is in
GeV/fm3 and τ in fm. We have chosen ε = 5.4 GeV/fm3 at τ = 1 fm
from [2]

Fig. 19 b2
φ(τ, x⊥) as a function of x⊥ for different values of α at τ0 =

1 fm

Fig. 20 vx⊥ (τ, x⊥) as a function of x⊥ for different values of α at
τ0 = 1 fm

5 Transverse momentum spectrum in the presence of a
weak external magnetic field

In the previous sections we have obtained as analytical solu-
tion the transverse velocity and energy density in the presence
of a weak magnetic field. Now we can use these results to
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Fig. 21 ε1(τ, x⊥) as a function of x⊥ for different values of α at τ0 =
1 fm

estimate the transverse momentum spectrum emerging from
the Magneto-hydrodynamic solutions.

From the local equilibrium hadron distribution the trans-
verse spectrum is calculated at the freeze out surface via the
Cooper–Frye (CF) formula:

S=E
d3N

dp3 = dN

pT dpT dydϕ
=

∫
d�μ p

μ exp

(−pμuμ

T f

)

(43)

We note that T f is the temperature at the freeze out surface.
The latter is the isothermal surface in space-time at which the
temperature of inviscid fluid is related to the energy density
as T ∝ ε1/4. It must satisfy T (τ, x⊥) = T f .

In our convention,

d�μ = (−1, R f , 0, 0)τ f x⊥dx⊥dϕdη, (44)

pμ = (mT cosh(Y − η), PT cos(ϕp − ϕ),

rpT cos(ϕp − ϕ), τ f mT sinh(Y − η)),

d�μ p
μ = [−mT cosh(Y − η)

+pT R f cos(ϕp − ϕ)]τ f x⊥dx⊥dϕdη, (45)

pμuμ = −mT cosh(Y − η)uτ + pT cos(ϕp − ϕ)u⊥,

(46)

where R f ≡ − ∂τ
∂x⊥ = ∂⊥T

∂τ T
|T f . Here τ = √

t2 − z2 is
the longitudinal proper time, x⊥ the transverse (cylindrical)
radius, η = 1

2 log t+z
t−z the longitudinal rapidity (hyperbolic

arc angle), the azimuthal angle ϕp belonging to the spacetime
point xμ . Similarly u⊥ is the transverse flow velocity and ϕ

is its asimuthal angle. Finally pT is the detected transverse

momentum, mT =
√
m2 + p2

T the corresponding transverse
mass, while Y is the observed longitudinal rapidity, which
gives our final expression for the CF formula

S = gi
2π2

∫ x f

0
x⊥ τ f (x⊥) dx⊥

×
[
mT K1

(
mT uτ

T f

)
I0

(
mT u⊥
T f

)

+ pT R f K0

(
mT uτ

T f

)
I1

(
mT u⊥
T f

) ]
(47)

Where τ f (x⊥) is the solution of the T (τ f , x⊥) = T f and the
degeneracy is gi = 2 for both the pions and the protons. The
above integral over x⊥ on the freeze-out surface is evaluated
numerically.

The spectrum Eq. (47) is illustrated in Figs. 22 and 23
for three different values of the freeze out temperature (140,
150 and 160 MeV) and compared with experimental results
obtained at PHENIX [33] in central collisions. Our pro-
ton spectrum appear to underestimate the experimental data,
except at low pT , but their behavior with pT has the cor-
rect trend of a monotonical decrease. The pion spectrum,
instead, appears in fair agreement with the experimental
results, which are very close to the theoretical curves. This
is an indication that hadrons with different masses have dif-

Fig. 22 Proton transverse
spectrum from central Au-Au
collisions: black, purple and red
lines correspond to a freeze out
temperature of 140, 150 and 160
MeV, respectively. Circles:
PHENIX data [33]
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Fig. 23 Pion transverse spectrum from central Au-Au collisions:
black, purple and red lines correspond to a freeze out temperature of
140, 150 and 160 MeV, respectively. Circles: PHENIX data [33]

ferent sensitivities to the underlying hydrodynamic flow and
to the electromagnetic fields. Indeed, the difference between
the charge-dependent flow of light pions and heavy protons
might arise because the former are more affected by the weak
magnetic field than the heavy protons [34].

For comparison, we also show the results obtained by Gub-
ser, which appear to be more flat and typically overestimate
the experiment. We also notice that, for the proton case, the
highest value of the freeze out temperature we employed (as
suggested, e.g. in Ref. [35]) slightly brings (for protons) the
calculation closer to the experimental data; however it also
shows a kind of saturation phenomenon and points to the
need of including other effects not considered in the present
work.

6 Conclusions

In the present work, we investigated central heavy ion colli-
sions in the presence of a transverse external magnetic field.
Making use of Milne coordinates, in our setup the medium is
boost-invariant along the z direction and the magnetic field,
which is a function of τ and x⊥, points along the φ direc-
tion. The energy conservation and Euler equations reduced to
two coupled differential equations, which we solved analyt-
ically in the weak-field approximation. We showed in detail
how the fluid velocity and energy density are modified by
the magnetic field. The solutions obtained by our numerical
calculations assume an initial energy density of the fluid at
time τ = 1 fm fixed to ∼ 5.4 GeV/fm3 and a ratio of the
magnetic field energy to the fluid energy density, σ , fixed to
∼ 0.015. We consider two different decays with time of the
magnetic field: τ n , with n = −1 or n = −4/3. A visual
presentation of the flow for n = −1 can be find in Figs. 3
and 4 and for n = −4/3 in Figs. 13 and 14.

We remark that in Ref. [4] the external magnetic field
was approximated by a Fourier cosine series and, due to the

oscillatory behavior of the cosine function, the magnetic field
reduces to zero in the fringes for |x | = π . Consequently,
these authors had to focus on the valid region −π < x < π

and the behavior of the transverse velocity and of the correc-
tion energy density was difficult to analyze near the fringes.
In the present work the magnetic field is approximated by a
series of Bessel functions and the solutions are valid for the
entire region of x⊥, i.e., (0,∞).

Another point concerning the choice of the τ dependence
of the magnetic field is related to the ratio σ between mag-
netic and fluid energy densities: in Ref. [3], it was found
that in central collisions, at the center of the collision region,
σ � 1 for most of the events; nevertheless, large values of
σ were observed in the outer regions of the collision zone.
Therefore, our assumption for the spatial distribution of the
external magnetic field for the case n = −1 may be more
realistic at face of the physical conditions.

In general, our study in a simple setup, which includes an
azimuthal magnetic field in the matter distribution, is worth-
while to check the possible effect of this change on the trans-
verse expansion of the fluid. We showed that by combining
the azimuthal magnetic field with the boost symmetry along
the beam direction, a radial flow perpendicular to the beam
axis is created and the energy density of the fluid is altered.
We stress that the present work presents an approximated
calculation which can be useful for cross checking current
and future numerical calculations in some limiting region.
Indeed, the effect of such a scenario on hadronic flow in
heavy ion collisions requires more pragmatic debates.

Our study can be generalized in many directions: breaking
of rotational symmetry can be introduced, the conservation
equation can be coupled to Maxwell’s equations and solved
consistently. Of course in this case only numerical solutions
can be found, while in the present paper we were able to
obtain analytical solutions.
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