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Abstract The aim of the present paper is to study an
anisotropic spherically symmetric core-envelope model of
a super dense star in which core is equipped with linear
equation of state, consistent with the quark matter while the
envelope is considered to be of quadratic equation of state
by adopting the philosophy of Takisa et al. (Pramana J Phys
92:40, 2019). We demonstrate that all the physical parameters
are realistic within the core as well as envelope of the stellar
object and continuous at the junction. Our model is shown to
be physically viable and substantiate with the strange stars
SAX J1808.4-3658 and 4U1608-52. Further, We infer that if
the mass of the star increases then central density results to
higher values and core shrinks, which justifies the dominat-
ing effect of gravity for higher mass celestial objects.

1 Introduction

The composition of a super dense stellar material deter-
mines various macroscopic features including moment of
inertia, degree of compactness, approximate values of mass
and radius of a star. In order to construct a stellar model,
an equation of state (EOS); a relation between pressure and
energy-density of the stellar material is usually considered.
However, it is believed that the interior configuration of a star
has a deconfined quark core environed by an envelope con-
sisting of baryonic matter [1]. Therefore, to use a single EOS
may not be a suitable choice for realistic modelling of the
whole star. The demand of more input parameters, viz, cen-
tral density and density at the boundary suggests employing
of two different EOS to construct a realistic stellar model.
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A tentative insight of a quark phase in the interior of a com-
pact star has been suggested by Witten [2] and Farhi and
Jaffe [3] in independent works. Their works opened a new
dimension of an entirely new class of compact stars known as
strange stars. The matter compositions of these strange stars
are in the form of a quark-gluon-plasma (QGP) state with a
typical mass about 1 − 2M� and radius about 10 km.

The precise form of stellar matter distribution is unknown
if the matter density of a spherical stellar object is greater
than the nuclear density [4–6]. The dubiety in the selection
of a suitable type of EOS for stellar objects outside of the
nuclear regime, core-envelope model or hybrid model may
be a good choice in the modelling of these high dense stellar
objects [7–11].

Empirically, in order to design the core envelope model,
the Darmois-Isreali conditions should be satisfied at the junc-
tion of the core and the envelope. With this empirical aspect,
many authors [1,12–22] have developed stellar models, with
an assumption of a core and an envelope, for highly dense
relativistic objects. Eventually in most of the core-envelope
solutions so far obtained have the continuity of only metric
potentials and pressure at the junction of the core and the
envelope. Negi et al. [23,24] developed models considering
the choices of core and envelope as Tolman IV and Tolman
V solutions respectively for perfect fluid. In their solution,
apart from the continuity of metric potentials, pressure, one
more physical parameter, i.e., energy density was continu-
ous at the junction. In recent past, many attempts have been
made by various authors to find exact analytic solutions of
the Einstein field system using linear EOS with MIT bag
model [25–31] as well as quadratic EOS [32–39]. On the
other hand, various authors [40–45] have also explored new
solutions of the Einstein field equations for anisotropic fluid
under the Karmarkar condition [46].

More recently, Takisa et al. [47] considered anisotropic
fluid for core-envelope stellar model of PSR J1614-2230
with core layer having a quark matter distribution with lin-
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ear EOS and envelope layer consisting of matter distribution
with quadratic EOS. They successfully verified the continu-
ity of some of the physical parameters, viz., energy density,
pressures, anisotropy, radial sound speed and adiabatic index.

By motivation of the pioneer work of [47], we explore an
anisotropic spherically symmetric core-envelope model of a
super dense star in which core is equipped with linear EOS
consistent with the quark matter while the envelope is con-
sidered to be of quadratic EOS with Tolman VII type metric
potential (grr ) such that eλ is 1 at origin thus geometrically
non-singular. By virtue of this all physical parameters (den-
sity, pressures, red-shift, compactfication factor, anisotropic
constants, causality condition, adiabatic index, energy con-
ditions) are realistic within the core as well as the envelope of
the stellar object and regular at the junction (interface). Our
model is shown to be physically viable and substantiate with
the strange stars SAX J1808.4-3658 and 4U1608-52 [48].

2 A system of the Einstein field equations

The inside of an anisotropic fluid sphere is described
by the following spherically symmetric line element in
Schwarzschild coordinates (xi ) = (t, r, θ, φ):

ds2 = eν(r)dt2 − eλ(r)dr2 − r2(dθ2 + sin2 θdφ2), (1)

where ν(r) and λ(r) are known as the metric potentials.
Assuming the matter inside of the fluid sphere anisotropic,

the Einstein field equations (for the units G = c = 1 ) are
given as

− 8πT i
j = Ri

j − 1

2
Rgij , (2)

where

T i
j = [(pt + ρ)viv j − pt g

i
j + (pr − pt )χ

iχ j ], (3)

is the energy-momentum tensor, Ri
j is the Ricci tensor, R

denotes the scalar curvature, ρ, pr and pt are the energy den-
sity, radial pressure appraised in the direction of the spacelike
vector and transverse pressure in the orthogonal direction to

pr respectively. In comoving coordinates vi =
√

1
gtt

δit is

the 4-velocity normalized in such a way that gijv
iv j = 1

and χ j =
√

− 1
grr

δir is the unit spacelike vector in the radial

direction, i.e., gijχ
iχ j = −1.

For the geometry and matter accounted by the line element
(1) and energy momentum tensor (3), the EFEs generate the
following system of equations

8πρ = (1 − e−λ)

r2 + λ̇e−λ

r
, (4)

8πpr = ν̇e−λ

r
− (1 − e−λ)

r2 , (5)

8πpt = e−λ

4

(
2ν̈ + ν̇2 − ν̇λ̇ + 2ν̇

r
− 2λ̇

r

)
, (6)

where . denotes the derivative with respect to the radial coor-
dinate r .

Using Eqs. (5) and (6) we get the measure of anisotropy
(Δ) as

Δ = 8π(pt − pr )

= e−λ

[
ν̈

2
− λ̇ν̇

4
+ ν̇2

4
− ν̇ + λ̇

2r
+ eλ − 1

r2

]
. (7)

The force due to the pressure anisotropy is repulsive if
pt > pr , and attractive if pt < pr [49]. The existence of
outward force pt > pr , allows the building of more compact
distribution when using anisotropic fluid than when using
isotropic perfect fluid, pt = pr [50].

In view of the following transformations x = r2, z(x) =
e−λ(r) and y(x) = eν(r), the system of equations (4-7)
becomes

8πρ = 1 − z

x
− 2z′, (8)

8πpr = 2z
y′

y
− 1 − z

x
, (9)

8πpt = z
[(2y′′

y
− y′2

y2

)
x + 2y′

y

]
+ z′

(
1 + x

y′

y

)
, (10)

8πΔ = z

(
2y′′

y
− y′2

y2

)
x + z′

(
1 + x

y′

y

)
+ 1 − z

x
. (11)

where (′) and (′′) represent first and second derivatives with
respect to x .

In relativistic stellar objects, the inside matter distribution
may be compiled of two regions: an inner layer called as core
and an outer layer named as envelope with distinct pressures.
In order to make a core-envelope model for a given star, it is
mandatory to classify space-time into a number of discrete
regions. These regions comprise of the core (0 ≤ r ≤ RC ,
Region C), the envelope (Rc ≤ r ≤ RE , Region E) and
the exterior (RE > r , Region B). The corresponding line
elements for the three regions can be taken as

ds2|C = eνC (r)dt2 − eλC (r)dr2 − r2(dθ2 + sin2 θdφ2),

(12)

ds2|E = eνE (r)dt2 − eλE (r)dr2 − r2(dθ2 + sin2 θdφ2),

(13)

ds2|B =
(

1 − 2M

r

)
dt2 −

(
1 − 2M

r

)−1

dr2

−r2(dθ2 + sin2 θdφ2). (14)

The exterior of a star for the Region B is the Schwarzschild
exterior solution which is given in Eq. (14).
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3 Conditions for a physically realistic core-envelope
model

In order to make the model physically viable, one needs to
verify the following conditions in core, envelope and exte-
rior regions (conditions developed by [47] are further aug-
mented):

(i) Geometrical regularity: The metric potentials and mat-
ter variables should be defined at the center and should
be well behaved throughout within the star [47].

(ii) Density and pressures trends: The matter density ρ,
radial pressure pr and transverse pressure pt the core
and envelope of the star should be continuous at the
junction, positive and monotonically decreasing out-
ward. Further, the pressure-density ratios should be
positive and less than 1 throughout within the star (Zel-
dovich’s condition [51]) and continuous at the junc-
tion.

(iii) Mass-radius relation, Red-shift and Compactifica-
tion factor: The mass function m(r), compactification
parameter u(r) and gravitational red shift z(r) for the
core and the envelope of the star should be continuous
at the interface and increasing and decreasing respec-
tively with the radial coordinate r .

(iv) Anisotropic constant: The radial pressure should coin-
cides with the tangential pressure at the core of the star
and should be continuous at the interface besides being
asymptotic and increasing outward.

(v) Causal nature of radial sound speed: The radial sound
speed of a compact star model should satisfy the
causality condition at the center and should be mono-
tonically decreasing outward besides being continuous
at the interface.

(vi) Adiabatic index: The adiabatic index should be con-
tinuous at the interface and should satisfy the Bondi
condition.

(vii) Energy conditions: The core and the envelope for the
star should satisfy the energy conditions besides being
continuous at the interface.

(viii) TOV equation: The TOV condition should be satisfied
within the star and all the three forces should be con-
tinuous at the interface resulting the system to be in
static equilibrium.

(ix) At the stellar boundary pr (RE ) = 0 [47].
(x) The metric potentials of the core region should match

smoothly with the gravitational potentials of the enve-
lope region [47].

(xi) The gravitational potentials of the envelope layer
should connected smoothly over the boundary with
the Schwarzschild exterior metric [47].

Fig. 1 Variation of metric potentials with radial coordinate r for (i)
SAX J1808.4-3658 (above) with mass M = 0.7M� and radius RE =
6.2 km for the values of b = 0.000035/km2, B = 0.00025/km2, A =
90/km2, α = 0.1409/km2, RC = 3.393 km; (ii) 4U1608-52 (below)
with mass M = 1.85M� and radius RE = 8.2 km for the values of b =
0.00003/km2, B = 0.00005/km2, A = 155/km2, α = 0.312/km2,
RC = 2.459 km

4 The core-envelope model

For core region (0≤r ≤ RC ), we choose Tolman VII type of
g11 for the gravitational potential eλ satisfying a linear EOS

z = e−λC = 1 − ax + bx2, (15)

prC = αρ − β, (16)

where a, b, α, and β are constants. Substituting z value from
Eq. (15) in Eq. (11) and using Eqs. 8, 9, 15 and 16 , we obtain
the following differential equation:

y′(x)
y(x)

= P1 + P2x

2
(−ax + bx2 + 1

) . (17)

On integrating Eq. (17), we get

y = eνC

= P3e

⎛
⎜⎜⎜⎜⎜⎝

2(aP2+2bP1) tan−1
(

2bx−a√
4b−a2

)

√
4b−a2

+P2 log(−ax+bx2+1)
4b

⎞
⎟⎟⎟⎟⎟⎠
, (18)
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Fig. 2 Variation of density with radial coordinate r for (i) SAX
J1808.4-3658 (above) with mass M = 0.7M� and radius RE = 6.2 km
for the values ofb = 0.000035/km2, B = 0.00025/km2, A = 90/km2,
α = 0.1409/km2, RC = 3.393 km; (ii) 4U1608-52 (below) with
mass M = 1.85M� and radius RE = 8.2 km for the values of b =
0.00003/km2, B = 0.00005/km2, A = 155/km2, α = 0.312/km2,
RC = 2.459 km

where P1 = 1(1 + 3α), P2 = −b(1 + 5α) and P3 is an
integration constant. In view of Eqs. (15) and (18) and using
x = r2, the system of Eqs. (8)–(11) becomes

ρC = 3a − 5br2

8π
, (19)

prC = −a + br2 + P2r2 + P1

8π
, (20)

ptC = −d1 + d2

d3
, (21)

ΔC = − (d4 + d5)r2

d3
, (22)

where

d1 = 4(a − 2br2)(ar2 − br4 − 1) + P2
1 r

2,

d2 = P2r
2(−6ar2 + 4br4 + P2r

4 + 8)

+P1(−2ar2 + 2P2r
4 + 4),

d3 = 32π(ar2 − br4 − 1),

d4 = 4b(−ar2 + br4 + 1) + P2
1 ,

d5 = 2P1(a − 2br2 + P2r
2) + P2(−2ar2 + P2r

4 + 4).

Fig. 3 Variation of radial pressure with radial coordinate r for (i) SAX
J1808.4-3658 (above) with mass M = 0.7M� and radius RE = 6.2 km
for the values ofb = 0.000035/km2, B = 0.00025/km2, A = 90/km2,
α = 0.1409/km2, RC = 3.393 km; (ii) 4U1608-52 (below) with
mass M = 1.85M� and radius RE = 8.2 km for the values of b =
0.00003/km2, B = 0.00005/km2, A = 155/km2, α = 0.312/km2,
RC = 2.459 km

The metric potentials e−λC , eνE and matter variables are con-
tinuous and well behaved in the core region.

For envelope region (RC ≤ r ≤ RE ), we choose the same
Tolman VII type of g11 satisfying a quadratic EOS

z = e−λE = 1 − ax + bx2, (23)

prE = Aρ2 + Bρ − C, (24)

where a, b, A, B, andC are constants. Putting z value from
Eq. (23) in Eq. (11) and using Eqs. 8, 9, 23 and 24, we obtain
the following differential equation:

y′(x)
y(x)

= P4 + P5x + P6x2

2
(−ax + bx2 + 1

) , (25)

where P4 = 9a2A
8π

+ 3aB + a − 8πC , P5 = − 15(aAb)
4π

−
5bB − b and P6 = 25Ab2

8π
.

On integrating Eq. (25), we get

y = eνE

= P7

(
−ar2 + br4 + 1

)aP6+bP5
e

2bP6r
2−d6

4b2 , (26)
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Fig. 4 Variation of tangential pressure with radial coordinate r for
(i) SAX J1808.4-3658 (above) with mass M = 0.7M� and radius
RE = 6.2 km for the values of b = 0.000035/km2, B = 0.00025/km2,
A = 90/km2, α = 0.1409/km2, RC = 3.393 km; (ii) 4U1608-52
(below) with mass M = 1.85M� and radius RE = 8.2 km for the
values of b = 0.00003/km2, B = 0.00005/km2, A = 155/km2,
α = 0.312/km2, RC = 2.459 km

where P7 is an integration constant. In view of Eqs. (23) and
(26) and taking x = r2, the system of Eqs. (8)–(11) becomes,

ρE = 3a − 5br2

8π
, (27)

prE = −a + br2 + P6r4 + P5r2 + P4

8π
, (28)

ptE = −d7 + d8 + d9

d3
, (29)

ΔE = ptE − prE , (30)

where

d6 =
2(P6

(
a2 − 2b) + abP5 + 2b2P4

)
tan−1

(
a−2br2√

4b−a2

)
√

4b − a2
,

d7 = 4(a − 2br2)(ar2 − br4 − 1) + P2
4 r

2,

d8 = 2P6r
4(−5ar2 + 4br4 + P5r

4 + 6)

+P5r
2(−6ar2 + 4br4 + P5r

4 + 8),

d9 = 2P4(−ar2 + P6r
6 + P5r

4 + 2) + P2
6 r

10.

Fig. 5 Variation of pressure and density ratios with radial coordinate
r for (i) SAX J1808.4-3658 (above) with mass M = 0.7M� and radius
RE = 6.2 km for the values of b = 0.000035/km2, B = 0.00025/km2,
A = 90/km2, α = 0.1409/km2, RC = 3.393 km; (ii) 4U1608-52
(below) with mass M = 1.85M� and radius RE = 8.2 km for the
values of b = 0.00003/km2, B = 0.00005/km2, A = 155/km2,
α = 0.312/km2, RC = 2.459 km

5 Matching conditions (interface at the core-envelope
and boundary)

Gravitational potential and radial pressure must be contin-
uous at the interface and at the boundary (Darmois-Isreali
conditions). Therefore, we arrive with the following two set
of conditions:

5.1 Continuity of interface metrics

eλC (RC ) = eλE (RC ), (31)

eνC (RC ) = eνE (RC ), (32)

prC (RC ) = prE (RC ). (33)

5.2 Continuity at the boundary

The envelope metric (13) must be connected smoothly over
the boundary with the Schwarzschild exterior solution (14)
at r = RE i.e.,
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Fig. 6 Variation of mass with radial coordinate r for (i) SAX J1808.4-
3658 (above) with mass M = 0.7M� and radius RE = 6.2 km for the
values of b = 0.000035/km2, B = 0.00025/km2, A = 90/km2, α =
0.1409/km2, RC = 3.393 km; (ii) 4U1608-52 (below) with mass M =
1.85M� and radius RE = 8.2 km for the values of b = 0.00003/km2,
B = 0.00005/km2, A = 155/km2, α = 0.312/km2, RC = 2.459 km

eλE (RE ) =
(

1 − 2M

RE

)−1
, (34)

eνE (RE ) =
(

1 − 2M

RE

)
, (35)

prE (RE ) = 0, (36)

where RE is the radius of the star.
The six matching conditions (31)–(36) along with the

twelve constants, namely a, b, P7, P3, A, B, C, RC , RE ,

M, α, β form an undetermined system of equations. Solving
the above system of equations, the mass M and radius RE of
the star are obtained as

M = 1

2
R2
E (a − bR2

E ), (37)

RE =

√
3aAb+4π

(√
b2(4AC+B2)+bB

)

Ab2√
5

, (38)

and the remaining constants P7, P3, C, β are of the form

P7 = σ2e
σ1−bP6R

2
E

2b2

RE
, (39)

Fig. 7 Variation of red-shift with radial coordinate r for (i) SAX
J1808.4-3658 (above) with mass M = 0.7M� and radius RE = 6.2 km
for the values ofb = 0.000035/km2, B = 0.00025/km2, A = 90/km2,
α = 0.1409/km2, RC = 3.393 km; (ii) 4U1608-52 (below) with
mass M = 1.85M� and radius RE = 8.2 km for the values of b =
0.00003/km2, B = 0.00005/km2, A = 155/km2, α = 0.312/km2,
RC = 2.459 km

P3 = σ5e
σ1−σ3+σ4

2b2 (−aR2
E + bR4

E + 1)
− aP6+bP5

4b2

RE
, (40)

C = (3a − 5bR2
E )(3aA − 5AbR2

E + 8πB)

64π2 , (41)

β = (3a − 5bR2
C )(8πα + 5Ab(R2

C − R2
E ))

64π2 + σ6, (42)

where

σ1 =
(P6(a2 − 2b) + abP5 + 2b2P4) tan−1

(
a−2bR2

E√
4b−a2

)

√
4b − a2

,

σ2 = (RE − 2M)(−aR2
E + bR4

E + 1)
− aP6+bP5

4b2 ,

σ3 =
(P6(a2 − 2b) + abP5 + 2b2P4) tan−1

(
a−2bR2

C√
4b−a2

)

√
4b − a2

,

σ4 =
b(aP2+2bP1) tan−1

(
a−2bR2

C√
4b−a2

)

√
4b − a2

+bP6R
2
C−bP6R

2
E ,
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Fig. 8 Variation of compactification factor with radial coordinate r
for (i) SAX J1808.4-3658 (above) with mass M = 0.7M� and radius
RE = 6.2 km for the values of b = 0.000035/km2, B = 0.00025/km2,
A = 90/km2, α = 0.1409/km2, RC = 3.393 km; (ii) 4U1608-52
(below) with mass M = 1.85M� and radius RE = 8.2 km for the
values of b = 0.00003/km2, B = 0.00005/km2, A = 155/km2,
α = 0.312/km2, RC = 2.459 km

σ5 = (RE − 2M)(−aR2
C + bR4

C + 1)
aP6+bP5−bP2

4b2 ,

σ6 = 5bC(R2
C − R2

E )

3a − 5bR2
E

.

The remaining seven constants a, b, c, α, A, B and RI

are free parameters. These constants are selected in such a
way that all the physical properties of the considered stellar
objects are well-behaved.

6 Discussion and conclusion of physical features for
core-envelope model

6.1 Geometrical regularity

The values of metric potentials for the stars SAX J1808.4-
3658 and 4U1608-52 at the center (r=0) are specified as
eν=positive constant and eλ = 1. This shows that the metric
potentials are regular and free from geometric singularities
at the center of the star. Further, both metric potentials eν

Fig. 9 Variation of anisotropy with radial coordinate r for (i) SAX
J1808.4-3658 (above) with mass M = 0.7M� and radius RE = 6.2 km
for the values ofb = 0.000035/km2, B = 0.00025/km2, A = 90/km2,
α = 0.1409/km2, RC = 3.393 km; (ii) 4U1608-52 (below) with
mass M = 1.85M� and radius RE = 8.2 km for the values of b =
0.00003/km2, B = 0.00005/km2, A = 155/km2, α = 0.312/km2,
RC = 2.459 km

and e−λ are continuous at the interface and monotonically
increasing and decreasing respectively with the radial coor-
dinate r as well (Fig. 1).

6.2 Viable trends of physical parameters

6.2.1 Density and pressures trends

The matter density ρ, radial pressure pr and transverse pres-
sure pt for the core and envelope of stars are continuous at
the interface, positive and monotonically decreasing outward
[53] (Figs. 2, 3 and 4). Further, the stars satisfy Zeldovich’s
condition [51] i.e. the pressure-density ratios are positive and
less than 1 throughout within the stars and continuous at the
junction (Fig. 5).

6.2.2 Mass-radius relation, red-shift and compactification
factor

The mass function m(r) and gravitational red-shift z(r)
for the core and envelope of stars SAX J1808.4-3658 and
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Fig. 10 Variation of radial velocity with radial coordinate r for (i)
SAX J1808.4-3658 (left) with mass M = 0.7M� and radius RE =
6.2 km for the values of b = 0.000035/km2, B = 0.00025/km2, A =
90/km2, α = 0.1409/km2, RC = 3.393 km; (ii) 4U160852 (right)
with mass M = 1.85M� and radius RE = 8.2 km for the values of b =
0.00003/km2, B = 0.00005/km2, A = 155/km2, α = 0.312/km2,
RC = 2.459 km

4U1608-52 are continuous at the interface and increasing
and decreasing respectively with radial coordinate r (Figs. 6,
7). Also, compactification parameter u(r) for the above stars
is continuous at the interface and increasing in nature with r
(Fig. 8) and lies within the Buchdahl limit [52].

6.2.3 Anisotropic constant

In Fig. 9, the radial pressure coincides with the tangential
pressure at the core of stars and continuous at the interface
and increasing outward [53].

6.2.4 Causal nature of radial sound speed

The radial sound speed of a compact star model satisfies the
causality condition at the center and monotonically decreas-
ing outward with the continuity at the interface. The profile of
v2
r of both core and envelope of the stars are given in Fig. 10.

Fig. 11 Variation of adiabatic index with radial coordinate r for (i)
SAX J1808.4-3658 (above) with mass M = 0.7M� and radius RE =
6.2 km for the values of b = 0.000035/km2, B = 0.00025/km2, A =
90/km2, α = 0.1409/km2, RC = 3.393 km; (ii) 4U160852 (below)
with mass M = 1.85M� and radius RE = 8.2 km for the values of b =
0.00003/km2, B = 0.00005/km2, A = 155/km2, α = 0.312/km2,
RC = 2.459 km

6.2.5 Adiabatic index

For a relativistic anisotropic sphere the stability counts on the
adiabatic index Γr , the ratio of two specific heats, defined by
[54],

Γr = ρ + pr
pr

∂pr
∂ρ

.

Bondi [55] suggested that for a stable Newtonian sphere,
the Γ value should be greater than 4

3 . The profiles of adiabatic
indexes of the core and envelope of both stars are plotted in
Fig. 11, which shows the adiabatic indexes are continuous at
the interface and satisfy the Bondi condition [55].

6.2.6 Energy conditions

For a physically stable configuration, the core and envelope
of the stars should satisfy the following inequalities simul-
taneously (which are known as energy conditions [29]): (i)
null energy condition ρ + pr ≥ 0 (NEC) (ii) weak energy
conditions ρ+ pr ≥ 0, ρ ≥ 0 (WECr ) and ρ+ pt ≥ 0, ρ ≥ 0
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Fig. 12 Variation of energy conditions with radial coordinate r for
(i) SAX J1808.4-3658 (above) with mass M = 0.7M� and radius
RE = 6.2 km for the values of b = 0.000035/km2, B = 0.00025/km2,
A = 90/km2, α = 0.1409/km2, RC = 3.393 km; (ii) 4U1608-52
(below) with mass M = 1.85M� and radius RE = 8.2 km for the
values of b = 0.00003/km2, B = 0.00005/km2, A = 155/km2,
α = 0.312/km2, RC = 2.459 km

(WECt ) and (iii) strong energy condition ρ + pr + 2pt ≥ 0
(SEC). From Fig. 12, it is clearly visible that the variation
of energy conditions with r of the core and the envelope of
both the stars are continuous at the interface and satisfying
realistic conditions.

6.3 TOV equation of core-envelope model

Equilibrium state under three forces, i.e., the resulting forces;
gravitational (Fg), hydrostatic (Fh) and anisotropic (Fa)
should be zero throughout within the star and continuous
at the interface. The TOV equation [56] is given as

− Mg(r)(ρ + pr )

r2 e(λ−ν)/2 − dpr
dr

+ 2Δ(r)

r
= 0, (43)

where Mg(r) is the gravitational mass within radius r and
can be calculated as

Mg(r) = 1

2
r2ν′e(ν−λ)/2, (44)

from the Tolman–Whittaker formula and EFEs.

Fig. 13 Variation of balancing forces with radial coordinate r for (i)
SAX J1808.4-3658 (above) with mass M = 0.7M� and radius RE =
6.2 km for the values of b = 0.000035/km2, B = 0.00025/km2, A =
90/km2, α = 0.1409/km2, RC = 3.393 km; (ii) 4U1608-52 (below)
with mass M = 1.85M� and radius RE = 8.2km for the values of b =
0.00003/km2, B = 0.00005/km2, A = 155/km2, α = 0.312/km2,
RC = 2.459 km

Equation (43) is equivalent to the following balanced force
equation

Fg + Fh + Fa = 0, (45)

where Fg , Fh and Fa respectively are components of Eq. (43)
above.

From Fig. 13, we can visualize that the TOV condition is
satisfied within the stars and all the three forces are continu-
ous at the interface, thereby, concluding that the system is in
static equilibrium.

7 Conclusion

In this paper, we have explored an anisotropic spherically
symmetric core-envelope model of stars SAX J1808.4-3658
and 4U1608-52 in which core and envelope are considered
with the linear and quadratic equation of states respectively.
Our core-envelope model is physically viable and substan-
tiate with the substantially strange stars (i) SAX J1808.4-
3658 with mass M = 0.7M� and radius RE = 6.2 km
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Table 1 Values of constants that generate masses, core and envelope radii (RC , RE ) for two strange stars

b (km)−2 A (km)−2 B (km)−2 α (km)−2 β (km)−2 RC (km) RE (km) M (M�) Star

Model I 0.000035 90 0.00025 0.1409 0.00008689 3.393 6.2 0.7 SAX J1808.4-3658

Model II 0.00003 155 0.00005 0.312 0.0002205 2.459 8.2 1.85 4U1608-52

Table 2 The variation of physical parameters, i.e., adiabatic index,
density, red-shift for (i) Model I with mass M = 0.7M� and radius
RE = 6.2 km for the values of b = 0.000035/km2, B = 0.00025/km2,
A = 90/km2, α = 0.1409/km2, RC = 3.393 km; (ii) model II with

mass M = 1.85M� and radius RE = 8.2 km for the values of b =
0.00003/km2, B = 0.00005/km2, A = 155/km2, α = 0.312/km2,
RC = 2.459 km; andG = 6.67×10−11m3 kg−1 s−2, M� = 2×1030kg
and C = 3 × 108 ms−1

Model I (SAX J1808.4-3658) Model II (4U160852)

Center Interface Boundary Center Interface Boundary

Adiabatic index (Γ ) 3.65467 3.96587 ∞ 3.4234 3.67634 ∞
Density (ρ g/cm3 × 1015) 0.391638 0.355208 0.27 0.439172 0.423959 0.27

Red-shift (z) 0.2263 0.198158 0.136515 0.649541 0.621312 0.349897

for the values of b = 0.000035/km2, B = 0.00025/km2,
A = 90/km2, α = 0.1409/km2, RC = 3.393 km; (ii)
4U160852 with mass M = 1.85M� and radius RE = 8.2 km
for the values of b = 0.00003/km2, B = 0.00005/km2,
A = 155/km2, α = 0.312/km2, RC = 2.459 km.

In [47], some of the physical properties like anisotropy is
not increasing throughout the region of stars and the radial
pressure and anisotropy both are not differentiable at the
interface due to a sharp jerk at the junction region. How-
ever, in this paper we have verified that all the physical and
geometrical parameters, including anisotropic, radial pres-
sure, compactfication factor, energy conditions,and stability
conditions using TOV equation balancing forces are with
the viable trend and continuous with the smooth variations
throughout inside the stars. Further, from Tables 1 and 2, we
infer that if the mass of the star increases then central density
results to higher values and core shrinks, which justifies the
dominating effect of gravity for higher mass celestial objects.
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