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Abstract We study relativistic solutions of anisotropic
compact stars with Finch-Skea (FS) metric in f(T) grav-
ity framework. The modified FS geometry is considered to
obtain the equation of state (EoS) for different known stellar
objects with given mass and radius. The modified Chaplygin
gas (MCG) EoS is also considered to obtain stellar objects as
the EoS inside the star is not yet known. The results obtained
here is important in the two cases to understand properties
of known stars, which are however not known observation-
ally. The physical features of known stars are analyzed here
and found that compact star formation may be possible with
repulsive core. In the case of MCG in f(T") gravity compact
stars may be obtained with anisotropic fluid (p; > p,), with
maximum anisotropy at the center of the star, which however
is not found when MCQG is absent.

1 Introduction

It is known that General theory of Relativity (GR) is a geo-
metric theory of gravitation based on the assumption that
gravity manifests itself as the curvature of spacetime. In GR
the spacetime structure may be determined using Lorentzian
metric (g) and a linear Levi-Civita connection (I"). Although
GR s afairly successful theory it presents some serious issues
at ultraviolet and infrared limits. Recent observational evi-
dences of Galactic, extra Galactic and cosmic dynamics can
not be understood by GR unless one considers some exotic
forms of matter energy viz. dark matter and dark energy
[1,2]. Alternatively, one can modify the gravitational sector
to fit the missing matter-energy of the observed universe. In
recent times there is a huge effort to modify gravity [3-6] to
describe the evolution of the observed universe as well as to
solve the issues of non-renormalizability [7,8] in GR.
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The spacetime connections considered by Einstein are tor-
sionless. However apart from simplicity there is no reason to
consider that spacetime is torsionless. Torsion in the theory
may arise from the consideration of spin or from a gradient
of scalar field. The issues to modify GR with torsion [9-
11] arises whether the spacetime connection is a symmet-
ric or not. Essentially GR is a classical theory which does
not accounted quantum effects, a situation which deals with
gravity at a fundamental level. The paradigm is that the mass-
energy is the source of curvature and in general, spin is the
source of torsion.

The consideration of a spacetime with torsion is an alter-
nate approach equivalent to GR, was first introduced by Ein-
stein himself known as Teleparallel Equivalent of General
Relativity (TEGR) [12-14]. The most significant difference
between GR and TEGR is that in the later case tetrad fields
are present [15,16]. In this case the tetrad fields are used
to define a linear anti-symmetric Weitzenbock connection
related to torsion without curvature [17,18]. Although both
GR and TEGR provides similar results there are some funda-
mental differences between the two theories. According to
GR, curvature represents the geometrical picture of space-
time which describes gravity. In contrast TEGR represents
the same gravitational interactions in terms of torsion which
acts as a force. This implies that in TEGR the geodesic equa-
tions are analogous to the Lorentz force equations of elec-
trodynamics [19].

The need of constructing a modified gravitational theory
arose from the observational evidences that our universe is
passing through an accelerating phase of expansion [20].
Most of the works in the literature addressed curvature-based
formulation, and modify the Einstein—Hilbert action with
f(R) paradigm in which the Lagrangian is considered to
be a non-linear function of the curvature scalar. However,
one can reasonably think to start from TEGR, and use it as
a basis to build a gravitational modification. The simplest
class of these torsion-based modifications is the paradigm of
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f(T) gravity [21-24], in which the Lagrangian is taken to
be a non-linear function of the TEGR Lagrangian 7. TEGR
coincides completely with general relativity at the level of
equations, f(7T) gravity may be simple compared to f(R)
gravity as they give rise to second order differential equations
whereas it is fourth order in case of f(R) theories.

In recent times, TEGR formalism and f(7) gravity are
found successful to study cosmological and astrophysical
phenomena. Ferraro and Fiorini [21] solved the particle hori-
zon problem in a spatially flat FRW universe considering a
modified version of TEGR in Born-Infeld approach. The
solution of the equations of motion for the extended BTZ
black hole with a cosmological constant has been studied
in this model [22]. Li et al. [25] showed that in f(7T') grav-
ity the action and the field equations are not invariant under
local Lorentz transformations, however, the usual teleparallel
Lagrangian (TEGR) is an exception. The first law of black-
hole thermodynamics is violated in f(7") framework which is
aresult of the lack of local Lorentz invariance [26]. Recently
Wang et al. [27] studied spherically symmetric static solu-
tionin f(7') models with Maxwell terms in a particular frame
based on the conformally Cartesian coordinates. It is found
that only a limited class of f(7") models can be solved in
this frame. Momeni et al. [28] obtained a new exact solu-
tion of anisotropic star in f(7) gravity considering Krori
and Barua metric. Deliduman et al. [29] investigated neutron
stars under modified f(T') gravity framework and found that,
the relativistic neutron star solution in f(7') gravity models
is possible only if f(7T) is a linear function of the torsion
scalar T, that is in the case of TEGR.

The motivation of the present paper is to obtain relativis-
tic solution for an anisotropic compact object whose inte-
rior spacetime is described by the modified Finch—Skea (FS)
geometry, for linear form of f(7) gravity. The metric pro-
posed by Dourah and Ray [30] was modified by Finch and
Skea [31] for investigating compact objects under various
situations. Recently, FS geometry was modified to accom-
modate isotropic charged star [32] and it was also modi-
fied further incorporating anisotropic stars [33]. A number
of research work in relativistic astrophysics using FS metric
in 4- dimensions [34—40] and higher dimensions [41,42] also
came up.

In order to study the physical properties of a stellar system,
itis important to predict a proper equation of state (EoS), i.e.,
p = p(p). In the absence of a reliable information about the
EoS at very high densities, assumption of the metric poten-
tials, based on the geometry has been found to be areasonable
approach to construct a stellar model. In our paper, we obtain
EoS of a compact object with FS geometry in a linear f(7)
gravity which corresponds to TEGR.

With the introduction of the existence of dark energy,
Lobo [43] and coworkers considered stellar models which
are called dark stars where the equation of state was taken
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in the linear form given by p = wp with —1 < o < 1/3.
Chaplygin gas was considered to obtain acceleration of the
universe and structure formation. Later a modification to the
Chaplygin EoS with a more generalized form of equation
of state [44,45]. Dark energy provides sufficient repulsive
force to counteract the continued gravitational collapse of
the dark stars. The process reaches a stable configuration
which is free from horizons and singularities. Recently Saha
et al. [46] studied anisotropic stellar models with interior
space-time geometry described by Krori-Barua metric with
modified Chaplygin gas in f(7') gravity. Motivated by the
above works, we also analyzed anisotropic compact stellar
models with Finch—Skea geometry in f(7) framework with
modified Chaplygin gas (MCG).

The paper is organized as follows: In Sect. 2, fundamen-
tals of f(T') gravity is presented. The general form of the
field equation is obtained by varying the action with respect
to the tetrad field. In Sect. 3, the field equations are pre-
sented for a spherically symmetric static spacetime in terms
of the torsion scalar, 7 and it’s derivative, and we have dis-
cussed that for a neutron star model only the linear form of
f(T) (TEGR) is permitted. In Sect. 4, the exterior region
of the stellar model is described by Schwarzschild metric
and the junction conditions joining the interior modified FS
metric and exterior region have been obtained. In Sect. 5,
the field equations are solved and determine the unknown
parameters from matching conditions and studied the vari-
ous physical features of compact object e.g. energy-density,
pressure, anisotropy etc. We analyzed the stability condition
also and obtained a mass—radius relation. The probable EoS
for the matter are determined. In Sect. 6, we compare the
results obtained from the f(7") model to the results obtained
previously in GR. In Sect. 7, for a compact object the EoS
described by the modified Chaplygin gas in a f(7T) grav-
ity is considered to describe the physical features. Finally in
Sect. 8, we summarize the results obtained.

2 Field equations of f(T') gravity for anisotropic
sources

The line element of a manifold is,

ds? = guudxtdx’ = n;;60" 07 ,dx"dx”, (D
dx" = e“iei, Bi = eiﬂdxu, (2)
where n;; = diag[l, -1, -1, —1], ef‘e;’ = 8! or efLe‘; =

8ij , the indices i, j are related to the tetrad field QL and the
greek letters ., v corresponds to the space time coordinates.
The root of the metric determinant is ,/—g = det[eiL] =e.
The Weitzenbock’s anti-symmetric connections for the van-
ishing Riemann tensor with non vanishing torsion is defined
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The torsion and con-torsion tensors are:

7o, = T8, = Th, = e (ue = dhel, ). )

1
Kg'=—5 (13" =T = 13"). &)

The above two tensors given by Eqgs. (3) and (4) are used to
construct a new tensor given by,

1
sit =3 (k& +suTf” —8y1f"). ©)

The torsion scalar now can be expressed as:

T =T% SH. 7

nva

Analogous to modified gravitational action in f(R) theory
one can obtain another modified gravity f(7T) replacing R
by T, as,

S = fd4x [%f(T) + Lmatter:| e (8)
T

where, G = ¢ = 1 and L4y, is the matter Lagrangian. Vari-
ation of Eq. (8) with respect to tetrad field yield the following
set of equations of motion:

et SO, T frr + e el SI) fr + el T SY¥ fr
1
—Zel‘-’f = —dnelTy), ©)

where T}, is the energy—momentum tensor of a particular
matter, whereas fr and frr represent first and second deriva-
tives of f(T) with respect to the torsion scalar T respec-
tively. For an anisotropic fluid the energy—momentum tensor
is described by,

T, = (p+ poupu” — pi8, + (pr — pvuv” (10)

where u* and v* are the four velocity and radial four vec-
tors, p, and p; represents pressures in radial and transverse
directions.

In covariant derivative formalism, f(7") field equations
can be recasted as,
T

1
(L~ )+ Guofr = =T ()

Yo fTT + o

where, Y, = Sﬂlu VoT, while G, is the Einstein tensor. In
the stream of GR as well as f(R) field equations, Eq. (9) can
be rewritten as,

_ )
G = 17 (1.0 + 1 ) (12)

where,

1 1
() _
TMV = 16_JT< — Y frr — Z(T - Yfrr + RfT)g;w)
(13)

is a tensor incorporating corrections coming from torsion
scalar. It is evident that for a linear f(T) i.e., f(T) = T,
Eq.(11) leads to GR equations.

3 Model of anisotropic compact stars in f(7') gravity
with Finch—-Skea geometry

We consider a spherically symmetric static space-time metric
given by,

dS2 — _eZV(r)dtZ + 6,Z)L(r)er + rde% (14)

where, v(r) and A(r) are the two unknown metric poten-
tials, and dQ3 = d6? + sin*0d¢?* represents the metric on
the 2-sphere in polar co-ordinates. We consider the energy
momentum tensor for an anisotropic compact object in 4-
dimensions as,

Tap = diag(—p, pr, Pt Pr) (15)

where, p is the energy density, p, is the radial pressure and p;
is the tangential pressure.The pressure anisotropy is defined
by A = p; — p,. The value of the anisotropy depends on
the metric potentials A(r) and v(r). The tetrad matrix for the
metric in Eq. (10) is given by,

le},] = diagle”(r). " (r). r, rsin(0)]. (16)

The determinant of the tetrad matrix is given by e =
d et[eL] = eV hp2gj n(0), the torsion scalar and its derivative
in terms of r is given by,

;n <2v/ n %) 17)

- [2\/’ - rl2 _ (2v’ + %) (2/\’ + %)} (18)

where the prime ()’ denotes the derivative with respect to the
radial coordinates.

Now substituting the above tetrad field (16) and inserting
the values of torsion scalar and its derivative in Eq. (9), one
can find out the Einstein field equations explicitly in f(T)
gravity for an anisotropic fluid as,

T(@r) =

T'(r) =

1 -2\
4np=———[T——2—Ze (v/—i-)»’)], (19)

r

. (20)
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21

NI

T _ Vo1 T
drp, = |:E+e 2*(1/’+(5+Z)(2v’ - 2,\’))}% -

Itis evident from Eqgs. (19)—(21) that the above field equations
lead to the corresponding field equations in GR for f(7T) =
T.In f(T) gravity one gets an extra non-diagonal Eq.(22)
which is different from the case of GR.

cotf

—T =0. 22
2 Lfrr (22)
One obtains the following cases corresponding to Eq. (22),
(1) T’ = 0 and (ii) frr = 0 in the second case one obtains

a linear form of f(T') function as,

f(T) =BT + B (23)

where, 8 and B are integration constants. Equation (22) puts
astrict constraint on the possible f(7") functions. Since f(T)
may be alinear function only in the case of teleparallel equiv-
alent of general relativity (TEGR) the corresponding solu-
tions permits a relativistic neutron star. If one sets 7" = 0
it may not require to set frr = 0, in which case it corre-
sponds to a general f(7') gravity theory with constant torsion
scaler (Tp) everywhere. However in the later case (T’ = 0),
it make no sense as relativistic star solution which is evident
from Eq. (20) [29]. For a constant torsion the rhs of Eq. (20)
blows up as r goes to zero. This is not acceptable as inte-
rior pressure in this case also blows up. Thus this solution
can not be considered to accommodate a neutron star. There-
fore, if the torsion scaler is set to a constant value it leads
to some ill consequences. Therefore, plausible choice is to
set frr = 0, in which case no f(7") gravity theory other
than the TEGR would be possible. However, the claim made
above is concerned solely with the neutron star case in f(T)
gravity where it is expected that both the energy-density and
pressure have non-zero finite values only up to the surface of
the neutron star. It may be possible in the framework of f(T)
gravity accommodating a solution where either pressure or
energy-density have everywhere non-zero values or one or
both take infinite values at some points, but such solutions
are not permitted in the context of TOV equation.

We consider the interior space-time of the star described
by the modified Finch—Skea metric which is given by,

) = (14 Cr?), (24)

2V = p? [(B—A,/(1—a)(1+cr2))c()s,/(1—a)(1+cr2)

2
+ (A+B\/(1—oz)(1+Cr2))Sin\/(1—oz)(1+Cr2)]
(25)
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where A, B, C, D and « are arbitrary constants. The metric
parameters are to be determined from the boundary condi-
tions for a physical viable stellar model. In the above the
parameter « is taken to satisfy (0 < o < 1) for a modified
Finch—Skea space-time, as for « = 0 the metric becomes the
original Finch—Skea metric [31].

4 Conditions for physically realistic stellar model
To begin with we consider following conditions:
(i) At the boundary of a star (i.e. at » = b), the interior
space-time solution should be matched with the exte-

rior Schwarzschild solution. For the continuity of the
metric functions at the surface. One obtains,

D? [(B—A\/(l—a)(H—Cbz))Cos\/(l—a)(l—i-Cbz)

+(A+B\/(1—a)(1+Cb2))Sin\/(1—oc)(l—i—Cbz)]z

—(1 M 26
=(1-%) 20

= (-5
14+Ch) = 1—7 (27)

(i1) The radial pressure drops from its maximum value ( at
center ) to zero at the boundary, i.e.

prle=p) =0 (28)

(iii) The density and pressure are positive inside a star, and
at the center p(0) = po, pr(0) = po, these are finite.
For density this coincides with the null energy condi-
tion (NEC).

(iv) The model must satisfy the dominant energy condition
(DEC) at the center, i.e. pg >| po |.

(v) Inside the star the square of the sound velocity v? =

d . .
ﬁ < 1, to satisfy causality.

(vi) The gradient of the pressure and energy-density should
be negative inside the stellar configuration, i.e., dpr =
0,9 <0and % <.

<

In our model there are seven unknowns A, B, C, D, «, 8 and
B for a given mass (M) and radius (b) of a star which are to
be determined from four equations viz. Egs. (22), (26), (27)
and (28). Thus to solve the relativistic equations we consider
possible values of «, 8 and S to obtain stellar models.
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5 Physical analysis

5.1 Density and pressure of a compact object in f(7)
gravity

We now solve Eq. (19) using the expressions of T'(r), u(r),
v(r) and f(T) as described in the previous section to obtain
the energy-density as (takingc = 1 and G = 1),

B H+2C BB+ +CP2 B+ B
p= 167(1 + C r2)?
whichis a function of r, determined by 8, §1 and C. Similarly,
Egs. (20) and (21) can be solved for finding the expression
of p, and p,. The radial pressure (p,) can be given by,
_ (AK1Z — BY1)CosK| — (BK1Z + AY1)SinK,
B 16w K2X,

(29)

.
(30)

where Y| = B1 + C(=28 +4aB +r?B1), K =1+ Cr2,
Z =2CB+ B1 + Cr?B; and X; = (B — AK|)CosK| +
(A4 BK)SinK{, K1 = K /(1 — ).

The expression for p; is given by,

_ (AK(Z — BY))CosK\ — (BK\Z + AY))SinK|
pr= 167 K*X,

€1y

where, Z' = Z + Cr2[Bi(1 + Cr?) + 28C(1 — )] and
Y, = Y1+ Cr2[Bi(1 + Cr?) —28C(1 — a)]. It is noted that
both the radial- pressure and transverse pressure depend on
o, though density is independent of «.

Now, in the absence of anisotropy (i.e. « = 0), then the
expression for radial pressure becomes,

_ (BY + AKZ)CosK + (AY — BKZ)SinK
o 167 K2X

where Y = 2CB — 1 —Cr?Byand X = (B— AK)CosK +
(A + BK)SinK.

In our model we choose 81 = 0. In Fig. 1, we plot the
variation of energy-density with different 8 values taking
B1 = 0, for a known compact object. Here, we have seen that
for different B, at the center the density of compact object in
f(T) gravity is maximum and it decreases radially outward.
Therefore, in this case 8 plays role of a scale factor which is
evident from Fig. 1. So we can say that for a star of particular
radius higher § values allows the star to accommodate more
mass. It is evident from Eq.(28) that p is independent of
the anisotropy parameter «. Thus the modified Finch—Skea
geometry doesn’t change with the density of stellar matter.

The radial pressure is plotted in Fig. 2, it is observed that
the radial pressure is a monotonically decreasing function of
r with its maximum value at the center of the star. The radial
pressure increases when f increases for same . We plot p,
with r for a particular 8 and found that for « = 0 pressure

(32)

r
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‘B 0.0015

Densny(km_z)
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0.0005

00000 . o oo

r(km)

Fig. 1 Radial variation of energy-density of PSR J0348+0432 for 8 =
1 (red), B = 2 (black) and B = 3 (blue)

— 77T
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0.0002 f

Radial Pressure(km_z)

0.0001 f

0.0000 |

r(km)

Fig. 2 Variation of radial pressure with r of PSR J0348+0432 for 8
1 (red), B = 2 (black) and B = 3 (blue) (considering o = 0.4)

0.00030 Fr="2" "7 v v v —

~ 0.00025

T
/

0.00020 [ ~. ]
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Radial Pressure(km‘2

0.00005
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Fig. 3 Variation of radial pressure with r of PSR J0348+0432 for @ =
0 (dot dashed) and o # O (red)

is greater than that for o # 0 in Fig.3. For both ¢ = 0 and
a # 0, we found that the radial pressure reaches a maximum
value at the center of the star. The plot of transverse pressure is
shown in Fig. 4, and it is evident that transverse pressure also
follows the same profile as the radial pressure with increasing
B. In Fig.5 the radial variation of p, and p; are plotted for a
particular 8 value. From the plot it is clear that both p, and
pr are equal at the center of the star, however at the boundary

@ Springer
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Fig. 4 Variation of transverse pressure with r of PSR J0348+0432 for
B =1 (red), B =2 (black) and B = 3 (blue) (considering « = 0.4)
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Fig. 5 Variation of p, (solid line) and p; (dot dashed) with r of PSR
J0348+0432 for B = 1 (considering o = 0.4)
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Fig. 6 Radial variation of the energy-density gradient of PSR
J0348+0432 for § = 1 (red), 8 = 2 (black) and B = 3 (blue) (consid-
ering o = 0.4)

of the compact object p; # p, which implies the presence
of anisotropic stress and it becomes more prominent near the
boundary of the star.

The radial variation of the gradients of energy-density and
radial pressure for o # 0 is shown in Figs. 6 and 7 for differ-
ent B values, which are negative.

@ Springer
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Fig. 7 Variation of the radial pressure gradient of PSR J0348+0432
for = 1 (red), B = 2 (black) and 8 = 3 (blue) (considering @ = 0.4)

5.2 Anisotropic behaviour

The anisotropic pressure behaviour is studied by several
authors for a spherically symmetric stellar model. Ruder-
man [47] showed that a high density (> 10'5 g/cm?) nuclear
matter object can be treated relativistically and exhibits
anisotropy as an intrinsic property. The reason for incorpo-
rating anisotropy is due to the fact that in the high-density
regime of compact stars the radial pressure (p,) and the trans-
verse pressure (p;) need not be equal which was invented by
Canuto [48]. Anisotropy might occur in astrophysical objects
for various reasons namely, viscosity, phase transition, pion
condensation, the presence of strong electromagnetic field
[49], the existence of a solid core or type 3A super fluid [50],
the slow rotation of fluids [51] etc. We define the anisotropic
stress parameter as,

A=p;— pr (33)

In modified Finch—Skea geometry the measure of anisotropy
in f(T) gravity is obtained using Egs. (20) and (21), which
is given by,

aCzrz/B

= 8x(+ CA2 G

It is evident that « = O and 8 = 0 leads to A = 0. Thus
o = 0 may be considered for a star with isotropic pressure in
4-dimension and « # 0 corresponds to anisotropic pressure
situation which also can be obtained in Finch—Skea geom-
etry in higher dimension [42]. In Fig.8 we plot the radial
variation of A for different 8 values and it is found that for
B > 0, A is positive i.e, p; > p, which in turn implies
that the anisotropic stress is directed outwards, hence there
exists a repulsive gravitational force that allows the forma-
tion of super massive stars. However for negative 8 values
the energy-density turns out to be negative inside the star and
also the causality condition is violated which is not physically
acceptable.
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Fig. 10 Variation of v, with r of PSR J0348+0432

5.3 Stability

The stability of a stellar model is studied by plotting the
radial speed of sound (v2,) and the transverse speed of sound
(v2, ) with r which lie between 0 and 1. The radial variation
of the radial and transverse speed of sound are plotted in
Figs.9 and 10 respectively. It is also noted that the value of
[v2, — v2.| must be less than 1 [52,53] for a stable model of
an anisotropic compact object found to exist in our model
and plotted in Fig. 11.

r(km)

Fig. 11 Variation of [v, — v | with r of PSR J0348+0432

25F ]

~> 2.0F

1.0F

05¢L

0ok

r(km)

Fig. 12 Variation of the mass function at the interior of a stellar object
with r for PSR J0348+0432 with § = 1 and 81 =0

5.4 Mass-radius relation

The compactification factor () for a spherically symmetric
object is defined as the ratio between its mass and radius and
it plays a significant role to understand the physical properties
of a compact object. According to Buchdahl, the maximum
allowable ratio of mass to radius for a compact object can be
than % (% < %) [54]. In our model the gravitational mass
in terms of p is given by,

r3(6CB + B1 + Cr2py)
12(1 + Cr?)

,
m= 471/ o(rHr?dr’ = (35)
0
From the above equation it is observed that the mass function
is regular inside the star and it vanishes at the center. The
variation of the mass function with radius is shown in Fig. 12.
The observed mass of PSR J0348+0432 is also plotted in the
mass radius curve.
In our model the compactification factor is given by,

_m(r) _ r*(6CB+ B+ Crip)
o 12(1 + Cr?)

(36)
For different stellar objects it is evident that  will depends

on the model parameters C, 8 and B;. In Table 2, we have
obtained the values of radius for a fixed mass object consid-
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Fig. 13 Variation of p, with p for PSR J0348+0432 with 8 = 1 (the
solid line (red) denotes quadratic fit and the dashed line (blue) denotes
linear fit)

ering different 8 values with 81 = 0. We have also deter-
mined the central density (pg), radial pressure at the center
(pro) and density at the boundary (pp) of the star. From the
table it is evident that the radius obtained from our model
agrees well with the observational value when we consider
B =1, B1 = 0 case. We note that for a given mass object the
value of f lies between 0 and 3 (0 < 8 < 3), as 8 can not
be negative for physically realizable models and also 8 > 3
leads to 2TM > g, which is not acceptable.

5.5 Equation of state

The variation of the energy-density and radial pressure are
plotted in Figs.1 and 2 from which one can predict possi-
ble EoS. Because of the complex form of the expressions
of p and p, it is not possible to obtain a known analytic
relation between them. However a numerical analysis can be

performed to predict the EoS. Here we obtain the best fit-
ted relation between p and p,, the expressions so obtained
for different compact objects have been listed in Table 1.
In Fig. 13 both the linear and quadratic variation of p, with
p have been found to satisfy for PSR J0348+0432. It is pre-
dicted that the model permits both linear and quadratic fitting
however the goodness of fit for the quadratic fit is better than
the linear one as is evident from the figure also. Also it is
noted that MIT bag model is not permitted here.

6 Comparative study of Finch—Skea star under f(7)
and GR framework

In this section the results obtained in our model using
f(T) gravity are compared with that obtained in GR model.
In Sect.5.2 we have studied the anisotropic behaviour of
compact star with FS geometry in f(7") gravity. In GR,
anisotropic stellar models with a modified FS geometry is
studied [33] and an expression for A is obtained. In f(7")
gravity model, it is noted that for non-zero value of a param-
eter o the anisotropy is found as a function of parameter S,
a coupling parameter in linear f(7") gravity. The anisotropy
parameter in f(7') gravity is found more compared to GR
model as 8 > 0. Itis noted thatin f(7T') gravity, A > O corre-
sponds to a repulsive gravity which is found to be more than
the GR model. It is evident from Table 2, that the radius for
a given star estimated from our model satisfies the observed
Neutron star radius, which is in good agreement with the GR
model for § = 1 and B; = 0. For a given mass of a compact
object, as § increases the radius is found to decrease, lead-
ing to a more compact object for higher § values, which is
displayed in Table 2.

Table 1 Parameter values for different known compact objects with = 0.4 and 8 = 1

Name of the star Mass (M) Radius (km) A B C EoS
PSR J0348+0432 2.01 11 04729 03259  0.0096  p, = —44.876p% +0.262p — 0.8 x 10~*
HER X-1 0.88 7.7 04696  0.5100  0.0085 pr=—25.128p2 +0.1570 — 0.8 x 10~*
SAX J1808.4—3658 (SS1) 1.435 7.07 0.4667  0.2611 0.0238  p, = —23.989p% +0.328p —2.2 x 10~
SAX J1808.4—3658 (SS2) 1.323 6.55 04672 02664  0.0343 pr=—16.12902 +0.321p — 3.1 x 1074
gl?}l/)sliecZI ;;T;ii; fr:::f:)cir;g;ring B Observed Observed Radius from 00 b Pro 27"” < g
different values of the model mass (Mo) radius (km) our model
%‘g‘i‘g‘iﬁ}g for PSR 05 2014004 = 16.32 0.00058  0.00008 0.00015 0.363

1 = 11 11.02 0.00115  0.00034 0.00029 0.538

15 = = 9.00 0.00173  0.00067 0.00045 0.659

2 = = 7.875 0.0023 0.00108 0.00059 0.753

25 = = 7.1425 0.00288  0.0015 0.00075 0.830

3 = = 6.634 0.00346  0.00195 0.00089 0.893
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Table 3 Parameter values for

different known compact objects Compact star A B ¢ 5 ¢

for matter distribution following - pop 1034840432 1113 0.135 0.009 03 7.44 x 108

Chaplygin EoS for o # 0

(B=1,p=0andy = 1) SAX J1808.4—3658 (SS2) 0.883 0.119 0.034 0.3 5.5 %1077
HER X-1 2.661 0.086 0.008 0.3 3.24 x 1077

Table 4 Parameter values for

different known compact objects Compact star A B ¢ 5 ¢

for matter distribution following  pqp 5034840432 0.670 0.072 0.010 03 7.44 x 1078

Chaplygin EoS for o =0

B=1,p=0andy = 1) SAX J1808.4—3658 (SS2) 0.522 0.071 0.034 0.3 5.5 x 1077
HER X-1 1.394 0.0511 0.008 0.3 3.24 x 1077

7 Anisotropic Finch—Skea stars with modified
Chaplygin gas in f(T) gravity

In this section, stellar models are obtained when the EoS
is known. We consider modified Chaplygin gas (MCG) to
determine the physical properties of compact objectsin f(7)
gravity. The equation of state for the modified Chaplygin gas
is,

Prec = E Pc — ;_y

c

37)

where, &, y and ¢ are free parameters and subscript ¢ stands
for Chaplygin gas. The energy-density for modified Chap-
lygin gas (p.), is determined using Egs. (17)—(25) which
depends on v and X as a function of r and is given by,

2(Bpl)

/ )\4/ — O
Far o TR

8r(1+ &) T —8m¢ — (38)
For simplicity we choose y = 1, 8 = 1 and 81 = 0, and
it leads to a quadratic equation in p.. Solving the equation

the energy-density is given by,

CI’P]
Pec=X|—

s c2p}
XX, + [r2(64n2c(1 + &) + (39)

K8X?2
where, P = —AK| —B(1+K}), Q = —BK| — A(1+K?})
and P = PCosK; + 0SinK; and x = m The
negative sign is not considered here as it leads to negative
energy-density which is a unphysical result.

The radial pressure in this case will be of the form,

CrP
K4X,

2 p2
+\/r2(64n2§(1 8+ o ]

Prc = ‘i:X |:_ KSX%

¢

- C2Pp}

(40)

The transverse pressure (p;.) in this case is found to be same
as Eq.(21). In case of @« = 0, the modified Finch—Skea geom-

etry leads to the original Finch—Skea geometry. We have stud-
ied both cases (¢ = 0 and o # 0) in the following sections.

7.1 Physical analysis of stellar model with Chaplygin gas

To study the physical behaviour of the energy density, pres-
sure, anisotropy etc. inside the star the values of the model
parameters A, B, C and & are obtained using the matching
condition at the boundary together with the condition that
the radial pressure vanishes as r = b for both « # 0 and
a = 0 cases. The value of the parameter ¢ is then obtained
for different stars of known mass—radius values for a physi-
cally viable stellar model which are tabulated in Tables 3 and
Table 4 respectively.

We plot the radial variation of p., pye, v2. and v2. for
PSR-J0348+0432 in Figs. 14, 15, 16, 17 choosing £ = 0.3
and ¢ = 7.44 x 1078 for both o # 0 and o« = 0. From the
plots, it is evident that the values of energy density and radial
pressure both at the center of the star will be less in case of
modified Finch—Skea geometry than the original Finch—Skea
geometry. All the physical conditions as mentioned in Sect. 4,
are tested and found working satisfactorily for a stellar model.
From Figs. 16, 17, 18, we have observed that v, , v2 and
lv2. — v2.| always lies between O and 1. Finally, we have
ensured that our model is potentially stable.

7.2 Pressure anisotropy

The anisotropic stress parameter is defined as, A = p;.— prec.
In Sect. 5.2, it is observed that for the stellar systems with
interior space-time described by modified Finch—Skea geom-
etry, the anisotropy depends on the parameter «. However
when o = 0 it leads to an isotropic star as can be seen from
Eq.(34). In this section we obtain the anisotropic stress for
modified Chaplygin gas for « = 0 and o # 0 and it is also
found that the anisotropy does not vanish even when o = 0,
this is a new result and it may be due to the introduction
of modified Chaplygin gas in the stellar system under f(7)
framework. The radial variation of anisotropic parameter,
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Fig. 14 Variation of energy-density (p.) with r for PSR J0348+0432
considering f = 1 and matter distribution following Chaplygin EoS
[( = 0 (blue) and @ # 0 (red)]
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Fig. 15 Variation of radial pressure (p,.) with r for PSR J0348+0432
considering f = 1 and matter distribution following Chaplygin EoS
[( = 0 (blue) and @ # 0 (red)]
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Fig. 16 Variation of va with r for PSR J0348+0432 considering § = 1
and matter distribution following Chaplygin EoS [« = 0 (blue) and
o # 0 (red)]

A is plotted in Fig. 19 for « = 0 (blue) and o # 0 (red)
considering the modified Chaplygin gas. It is evident from
Figs.8 and 19 that the behaviour of anisotropic stress fac-
tor with modified Chaplygin gas is different from that with-
out MCG i.e., A is maximum at the center and decreases
outward. It is interesting to note that there exists a criti-

@ Springer

Fig. 17 Variation of v,zc with r for PSR J0348+0432 considering 8 = 1
and matter distribution following Chaplygin EoS [« = 0 (blue) and
o # 0 (red)]
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Fig. 18 Variation of |v2. —v?,.| with r for PSR J0348+0432 considering
B = 1 and matter distribution following Chaplygin EoS [« = 0 (blue)
and o # 0 (red)]
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Fig. 19 Variation of the anisotropic parameter of PSR J0348+0432
with matter distribution following Chaplygin EoS [« = 0 (blue) and
a # 0 (red)]

cal value of radius (r = 8.02 km for PSR J0348+0432)
at which the value of A for ¢« = 0 and o # 0 coin-
cide.
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8 Discussion

In this paper we consider a modified gravity described by
f(T) = BT + Bi1, which is recently considered in describ-
ing issues in cosmology and astrophysics. Two different cases
are considered, (1) considering only f(7') gravity with mod-
ified Finch—-Skea geometry we predict the possible EoS of
compact objects and (2) considering EoS described by the
modified Chaplygin gas we determine the physical proper-
ties of compact objects. In the first case we found compact
objects with quadratic EoS determined by fitting the model
values of pressure and density numerically.
We note the following observations,

®

(i)

(iii)
(iv)

In Fig. 1, we plot the variation of energy-density with
different B values for a known compact object. It is
found that for different 8, at the center the density of
compact object in f(7T) gravity is maximum and it
monotonically decreases radially outward. In this case
B plays the role of a scale and for a star of particular
radius higher g values allows a star with more mass. It
is also evident that p is independent of «, the modified
Finch—Skea parameter.

In Fig.2, we plot the variation of radial pressure for a
known star. It is seen that the radial pressure is a mono-
tonically decreasing function of r with its maximum
value at the center of the stellar system. The value of
the pressure increases with increasing g at a particular
distance from the center of the star. The radial pres-
sures for the isotropic (¢« = 0) and anisotropic cases
(¢ # 0 ) with a fixed value of the parameter S has
been shown in Fig. 3 and it is seen that for the isotropic
case the radial pressure for any value of r is greater
than that of the anisotropic case except at the bound-
ary, reaching a maximum value at the center of the star.
In Fig.4 we have plotted the radial variation of trans-
verse pressure p; and it is evident from the figure that
the transverse pressure follows the same profile as the
radial pressure. Figure 5 shows a variation of p, and p;
for a particular value of 8. From the figure we see that
both the pressures are equal at the center of the star and
the difference between them increases with increasing
r, reaching maximum at the surface of the star. This in
turn implies a presence of anisotropy.

From Figs. 6 and 7, itis evident that energy-density and
pressure gradient are negative for different 8 values.
From Eq. (33) we found that for non-zero values of «
the anisotropy depends on the parameter 8 which is a
multiplicative constant in the torsional term of f(7)
gravity. In Fig. 8 we have shown the radial variation of
A for B > 0. It is evident that for B > 0, A is pos-
itive i.e, p; > p, which implies that the anisotropic
stress is directed outwards, hence there exists a repul-

)

(vi)

(vii)

(viii)

(ix)

(x)

(xi)

sive gravitational force that allows the formation of
super massive stars. However for § < 0, the energy-
density inside the star turns out to be negative also the
causality of the speed of sound is violated which is not
physically acceptable. If « = 0, i.e for the Finch—Skea
metric, the anisotropy vanishes in 4 dimensions, which
corresponds to the isotropic case, although o # 0leads
to anisotropic compact star.

We have shown the variation of the radial and trans-
verse speed of sound in Figs.9 and 10 respectively. It
is also noted that the value of [v?, — v2,| is less than
1 complying the condition for a stable model of an
anisotropic compact object, which is shown in Fig. 11.
Thus the stability condition in the model described is
satisfied.

From Fig. 12 it can be seen that the variation of mass
function is regular inside the star and vanishes at the
center. The compactification factor is also obtained in
Eq. (35), which depends on C and f(T) model param-
eters for different stellar objects.

For a physically acceptable stellar model we have
obtained the range of 8 value considering g; = 0 for
a given mass object. The range of allowed values is
found to be 0 < B < 3 as can be seen from Table 2.
If B > 3 then the value of ZTM exceeds g which is not
acceptable.

In Sect. 5.5, it is found that the EoS satisfies a non-
linear relation between p, and p. In Fig. 11 we plot the
variation of p, with p which s fitted with linear as well
as quadratic equations. It is evident from the Fig. 13
that the quadratic fitting gives better acceptability for
the model.

In Table 1, we tabulated the values of A, B, C and
probable EoS for different known stellar objects con-
sidering their mass and radius from observations.

In Sect. 7, we have considered the modified Finch—
Skea metric and solved the field equations considering
Chaplygin gas as matter distribution. The radial varia-
tions of p¢, pre, vtzc and vrzc are shown in Figs. 14, 15,
16, 17. It is evident from the curves that they are all
well behaved inside the star.

In Sect. 5.2, it is seen that, stellar systems whose inte-
rior space-time is described by the modified Finch—
Skea geometry, the anisotropy depends on the modi-
fication parameter, «. If « = 0O then anisotropy van-
ishes which is evident from Eq.(34). For Chaplygin
gas model, the anisotropy is non-zero even in the case
of generalized Finch—Skea metric (i.e. « = 0). The
variation of anisotropic parameter, A inside the star
is shown in Fig. 19 considering 8 > 0. It is evident
that for positive 8 values anisotropy is positive and has
a maximum value at the center of the star, which is
opposite to that noted without Chaplygin gas which is
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an interesting result. It may be due to the introduction
of modified Chaplygin gas in the stellar system under
f(T) framework.

(xii) In Tables 3 and 4, the values of A, B, C are tabu-
lated along with the parameters & and ¢ for different
stellar objects considering modified Chaplygin Gas for
both @ # 0 and @ = O respectively . It is noted that
the modified Chaplygin gas plays an important role to
understand the physical behaviour of a compact stellar
object. We see that Finch- Skea geometry with modi-
fied Chaplygin gas (MCG) permits an anisotropic star
which is not possible in 4—dimensions without MCG.
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