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Abstract In the present work, we discus the four dimen-
sional spherically symmetric stellar system in the framework
of modified f (T ) gravity theory with electromagnetic field.
The field equations are written for two cases, either T ′ = 0
or fT T = 0. Next we discuss the charged gravastar model
which has three regions: an interior region, a shell region and
an exterior region. In the interior region, we find the solu-
tions of all physical quantities like density, pressure, elec-
tromagnetic field and the metric coefficients for both cases.
For T ′ = 0, a gravastar cannot form, but it forms only for
the case fT T = 0. In the exterior region, we obtain the exte-
rior solution for the vacuum model. In the shell region, we
assume that the interior and exterior regions join together
at a certain place, so the intermediate region must be thin
shell with the approximation h(≡ e−b) � 1. In this approx-
imation, we find the analytical solutions. The proper length
of the thin shell, the entropy and the energy content inside
the thin shell are found and they are directly proportional to
the proper thickness of the shell ε under the approximation
(ε � 1). According to the Darmois–Israel formalism, we
study the matching between the surfaces of interior and exte-
rior regions of the gravastar. The energy density, pressure,
equation of state parameter for the surface and mass of the
thin shell are obtained.

1 Introduction

In 2001, Mazur and Mottola [1,2] have found a solution
for the gravitationally collapsing neutral system in the con-
cept of Bose–Einstein condensation to gravitational systems.
These describe as super compact, spherically symmetric and
singularity-free objects that can be considered to be virtually
as compact as the black holes. These gravitationally dark
cold vacuum compact star is known as gravastar (“gravita-
tional vacuum condensate stars”). The gravastar is a substi-
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tute of a black hole, i.e., there exist compact stars minus event
horizons; this compresses the matter within the gravitational
radius R = 2GM

c2 , that is, very close to the Schwarzschild
radius. In this sense, the existence of quantum vacuum fluc-
tuations are predicted near the event horizon. The gravastar
consists of (i) an interior de Sitter condensate phase and (ii)
an exterior Schwarzschild geometry. The gravastar consists
of five layers with two infinitely thin shells, apparently, on the
regions r = r1 and r = r2 where r1 and r2 are the inner and
the outer radii (r1 < r2). Also other important regions are (i)
the interior region: 0 ≤ r < r1 with equation of state (EOS)
p = −ρ, which is defined by the de Sitter spacetime, (ii) the
shell region: r1 < r < r2 with EOS p = ρ, i.e., an inter-
mediary thin layer made of an ultra-stiff perfect fluid, (iii)
an exterior region: r2 < r with EOS p = ρ = 0 (vacuum),
which is described by the Schwarzschild solution. Thus the
interior region of the gravastar is surrounded by a thin shell of
ultra-relativistic matter, whereas the exterior region is com-
pletely vacuum. Also, if we replace two infinitely thin stiff
shells and the intermediary region with just one infinitely thin
shell core [3], then the five layer models can be simplified to
three layer models.

There is a lot of work on the gravastar models available in
the literature in the framework of Einstein’s general relativ-
ity. DeBenedictis et al. [4] have found gravastar solutions
with continuous pressures and equation of state. Cattoen
et al. [5] have taken an anisotropic pressure in the forma-
tion of gravastar. Born–Infeld phantom gravastars have been
discussed by Bilic et al. [6]. A gravastar model in higher
dimensional spacetime has been discussed in Refs. [7–10].
The gravastar in the frame of conformal motion has also
been analyzed by some authors [8,11,12]. Physical features
of charged gravastar have been investigated [8,9,11,13–17].
The stable gravastar is discussed by several authors [18–22].

One important family of modifications of the Einstein–
Hilbert action is the f (R) theories of gravity [23–26]. In
such theories, one uses a function of the curvature scalar
as the Lagrangian density. Along similar lines, one can also
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modify the theory to find a teleparallel equivalent of general
relativity where the Lagrangian density is equivalent to the
torsion scalar T and the field equations of teleparallel grav-
ity [27–31] are identical to the Einsteins field equations in
any background metric. Subsequently teleparallel gravity has
been modified by having a Lagrangian density equivalent to
a function of torsion scalar i.e., f (T ) gravity [32]. In theo-
retical astrophysics, an f (T ) version of three dimensions of
the BTZ black hole solutions has been calculated as f (T )

gravity theory was supported for examining the effects of
f (T ) gravity models [33]. Recently, static solutions in the
spherically symmetric case with a charged source in f (T )

gravity have been found [34].
Deliduman et al. [35] have investigated the structure of

neutron stars in modified f (T ) gravity models. Boehmer
et al. [36] have analyzed the existence of relativistic stars
in f (T ) modified gravity and explicitly constructed several
classes of a static perfect fluid solution. Anisotropic strange
quintessence stars in f (T ) gravity models have been stud-
ied in Refs. [37,38]. Compact stars of emending class one in
f (T ) gravity have been studied in [39]. Strong magnetic field
effects on neutron stars within f (T ) theory of gravity have
been discussed in [40]. Tolman–Oppenheimer–Volkoff equa-
tions and their implications for the structures of relativistic
stars in f (T ) gravity have been found [41]. Abbas and col-
laborators [42–45] have discussed the anisotropic compact
star models in GR, f (R), f (G) and f (T ) theories in a diag-
onal tetrad case with Krori and Barua (KB) metric [46]. The
gravastar model in f (G, T ) gravity has been discussed by
Shamir et al. [47]. Das et al. [48] have studied the gravastar
model in modified f (R, T ) gravity.

The main motivation of the work is to study the gravastar
in the framework of f (T ) gravity with the electromagnetic
source and examine the nature of the physical parameters
in the thin shell region. The organization of the work is as
follows: In Sect. 2, we present some brief reviews of f (T )

gravity with electromagnetic field. In Sect. 3, we write the
Einstein–Maxwell field equations for a spherically symmet-
ric stellar metric in the framework of f (T ) gravity theory. In
Sect. 4, we address the three regions of the gravastar model
and find the metric coefficients and other physical quantities.
In Sect. 5, the physical features of gravastar parameters are
analyzed. The junction conditions between interior and exte-
rior regions are studied in Sect. 6. Some physical analysis
and conclusions of the work are presented in Sect. 7.

2 f (T )Modified gravity and electromagnetic field

We consider the torsion and the con-torsion tensor as follows
[37]:

T α
μν = �α

νμ − �α
μν = eα

i (∂μe
i
ν − ∂νe

i
μ), (1)

Kμν
α = −1

2
(Tμν

α − T νμ
α − Tμν

α ), (2)

and the components of the tensor Sμν
α are defined as

Sμν
α = 1

2
(Kμν

α + δμ
α T

βν
β − δν

αT
βμ
β ). (3)

So one can write the torsion scalar as in the following form:

T = T α
μνS

μν
α ; (4)

the importance of this will become clear in a moment. Now,
define the modified teleparallel action by replacing T with a
function f (T ) [49,50] as follows:

S =
∫

d4x
√−g

[
1

16π
f (T ) + Lmatter

]
(5)

where we choose G = c = 1 and Lmatter is the matter
Lagrangian.

The ordinary matter is an anisotropic fluid so that the
energy-momentum tensor is given by

Tmatter
μν = (ρ + p)uμuν + pgμν (6)

whereuμ is the fluid four-velocity satisfyinguμuν = −1,ρ is
the energy density of fluid and p is the fluid pressure. Further,
the energy-momentum tensor for the electromagnetic field is
given by

T EM
μν = − 1

4π

(
gδωFμδFων − 1

4
gμνFδωF

δω

)
(7)

where Fμν is the Maxwell field tensor defined as

Fμν = �ν,μ − �μ,ν (8)

and �μ is the four-potential. The corresponding Maxwell
electromagnetic field equations are

(
√−g Fμν),ν = 4π Jμ√−g , F[μν,δ] = 0 (9)

where Jμ is the current four-vector satisfying Jμ = σuμ,
the parameter σ is the charge density.

3 Einstein–Maxwell field equations

We consider the spherically symmetric metric describing the
interior spacetime as [46]

ds2 = −ea(r)dt2 + eb(r)dr2 + r2(dθ2 + sin2 θdφ2) (10)
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where a(r) and b(r) are functions of r . For this metric, we
get the torsion scalar T and its derivative T ′ in the following
forms [38]:

T (r) = 2e−b

r

(
a′ + 1

r

)
, (11)

T ′(r) = 2e−b

r

[
a′′ − 1

r2 −
(
a′ + 1

r

)(
b′ + 1

r

)]
, (12)

where the prime ′ denotes the derivative with respect to the
radial coordinate r .

For the charged fluid source with density ρ(r), pressure
p(r) and electromagnetic field E(r), the Einstein–Maxwell
(EM) equations reduce to the form (G = c = 1) [36,37]

−2
e−b

r
T ′ fT T + f

2
−

(
T − 1

r2 − e−b

r
(a′ + b′)

)
fT

= 8πρ + E2, (13)(
T − 1

r2

)
fT − f

2
= 8πp − E2, (14)

e−b
(
a′

2
+ 1

r

)
T ′ fT T +

[
T

2
+ e−b

{
a′′

2
+

(
a′

4
+ 1

2r

)

×(a′ − b′)
}]

fT − f

2
= 8πp + E2, (15)

e− b
2 cot θ

2r2 T ′ fT T = 0. (16)

Adding Eqs. (13) and (14), we obtain

ρ + p = e−b

8πr
(a′ + b′) fT . (17)

Taking the derivative of Eq. (14) and using Eqs. (11) and
(17), we obtain the energy conservation equation [9]

p′ + 1

2
(ρ + p)a′ = 1

8πr4 (r4E2)′, (18)

and the electric field E is as follows:

E(r) = 1

r2

∫ r

0
4πr2σ(r)e

b
2 dr = q(r)

r2 (19)

where q(r) is the total charge within a sphere of radius r . The

term σe
b
2 inside the above integral is known as the volume

charge density. The gravitational mass can be written as [9]

M(r) =
∫ r

0
4πr2

(
ρ + E2

8π

)
dr. (20)

From Eq. (16), we get either T ′ = 0 or fT T = 0.
Case I: T ′ = 0 ⇒ T = constant (for all r ) = T0,

i.e., the torsion scalar T is independent of r and hence

f (T ), fT , fT T , . . . are always constant. Assume f (T0) =
f0 and fT (T0) = f1. So Eqs. (13), (14) and (15) reduce to

f0
2

−
(
T0 − 1

r2 − e−b

r
(a′ + b′)

)
f1 = 8πρ + E2, (21)

(
T0 − 1

r2

)
f1 − f0

2
= 8πp − E2, (22)

[
T0

2
+ e−b

{
a′′

2
+

(
a′

4
+ 1

2r

)
(a′ − b′)

}]
f1 − f0

2

= 8πp + E2. (23)

Case II: fT T = 0 ⇒ f (T ) = αT +β, where α and β are
constants. So f (T ) is a linear function of the torsion scalar
T . If α = 1 and β = 0, we get back the usual T model and
in this case the field equations will be the same as te usual
Ricci scalar R model. Equations (13), (14) and (15) reduce
to

αe−b

r

(
b′ − 1

r

)
+ α

r2 + β

2
= 8πρ + E2, (24)

αe−b

r

(
a′ + 1

r

)
− α

r2 − β

2
= 8πp − E2, (25)

αe−b
[
a′′

2
+

(
a′

4
+ 1

2r

)
(a′ − b′)

]
− β

2
= 8πp + E2.

(26)

4 Geometry of gravastars

In this section we will derive the solutions of the field equa-
tions for a gravastar and discuss its physical and geometrical
interpretations. For the geometrical regions of the gravastar,
it is supposed to be extremely thin having a finite width within
the regions D = r1 < r < r2 = D+ε where r1 and r2 are the
radii of the interior and exterior regions of the gravastar and
ε is a positive small quantity. In these regions, the equation
of state (EOS) parameter is structured as follows: (i) interior
region R1: 0 ≤ r < r1 with EOS p = −ρ, (ii) shell region
R2: r1 < r < r2 with EOS p = ρ, (iii) exterior region R3:
r2 < r with EOS p = ρ = 0.

4.1 Interior region

The equation of state for interior region R1 (0 ≤ r < r1 = D)
of the gravastar is p = −ρ. From Eq. (17), we obtain

eb(r) = k e−a(r) (27)

where k is a constant > 0.

Case I: T ′ = 0.
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For T ′ = 0, we obtain the solutions

ea(r) = kT0r3 + C

6r
(28)

and

eb(r) = 6kr

kT0r3 + C
(29)

where C is constant. So in this case, the metric becomes

ds2 = −kT0r3 + C

6r
dt2+ 6kr

kT0r3 + C
dr2

+r2(dθ2 + sin2 θdφ2). (30)

Now we find the expressions of the density, pressure and
electric field:

ρ = 1

16π

[
f0 +

(
1

r2 − 2T0

)
f1

]
, (31)

p = 1

16π

[(
2T0 − 1

r2

)
f1 − f0

]
, (32)

and

E(r) =
√

f1√
2 r

. (33)

So the charge density for the electric field can be expressed
as

σ = σ0r
m

(
kT0r3 + C

6r

) 1
2

. (34)

Also the gravitational mass of the interior region can be
found:

M(D) =
∫ r1=D

0
4πr2

(
ρ + E2

8π

)
dr

= 1

12
( f0 − 2 f1T0)D

3 + 1

2
f1D. (35)

The gravastar is a singularity-free object, but we observe that
a central singularity always occurs at r = 0. So a gravastar
cannot form in the case of T ′ = 0.

Case II: fT T = 0.
For fT T = 0, there are four equations and five unknown

functions a, b, ρ, p, E . So one function is free. Here we can
assume E is a free function of r . From Eq. (19), we observe
that the expression of E is described by two functions σ and
b. Since b can be determined from the other equations, σ

is a free function of r . In Eq. (19), the functions σ and b
arise together, so for simplicity of calculation let us assume

σe
b
2 = σ0rm [9] where σ0 and m are constants, so from Eq.

(18) we have

E(r) = E0r
m+1 (36)

where E0 = 4πσ0
m+3 . Using Eq. (17), we obtain

p = −ρ = k1r
2m+2 + k2 (37)

where k1 = (m+3)E2
0

8π(m+1)
and k2 is constant. From Eq. (24), we

obtain

ea = ke−b = k

[
1 − k3

2αr
+ (β + 16πk2)

6α
r2

+ (8πk1 − E2
0)

α(2m + 5)
r2m+4

]
(38)

where k3 is an integration constant. We see that, for k3 �= 0,
the central singularity occurs at r = 0. Since the gravastar is
a singularity-free object, the metric will be non-singular at
the center r = 0. Hence we can choose k3 = 0. So the metric
becomes (choose k = 1)

ds2 = −
[

1 + (β + 16πk2)

6α
r2 + (8πk1 − E2

0)

α(2m + 5)
r2m+4

]
dt2

+
[

1+ (β + 16πk2)

6α
r2 + (8πk1−E2

0)

α(2m+5)
r2m+4

]−1

dr2

+r2(dθ2+ sin2 θdφ2). (39)

The charge density for the electric field will be

σ = σ0r
m

[
1 + (β + 16πk2)

6α
r2+ (8πk1−E2

0)

α(2m + 5)
r2m+4

] 1
2

.

(40)

Also the gravitational mass of the interior region of the
gravastar can be found as

M(D) =
∫ r1=D

0
4πr2

(
ρ + E2

8π

)
dr

= (E2
0 − 8πk1)

2(2m + 5)
r2m+5 − 4πk2

3
r3. (41)

Thus a gravastar forms in the case of fT T = 0. In the next
subsections, we shall consider only the case fT T = 0.

4.2 Shell region

In this region at R2 (D = r1 < r < r2 = D+ ε), we assume
that the thin shell contains a stiff perfect fluid which obeys
the EoS p = ρ. For this non-vacuum region, it is very diffi-
cult to obtain the general solutions from the field equations.
When two regions join together at a place, the intermediate
region must be thin shell. So we shall try to find the analytical
solution within the thin shell with limit 0 < e−b ≡ h � 1.
This thin shell structure suggests that, as r approaches zero,
the corresponding radial parameter generally becomes � 1.
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For fT T = 0 and in the above approximation (we set h to
zero to the leading order), the field equations (24–26) reduce
to the following forms [9]:

−αh′

r
+ 2α

r2 + β = 2E2 (42)

and

αh
′
(
a′

4
+ 1

2r

)
+ α

r2 = 2E2. (43)

We see that there are two equations but three unknowns, a, h
and E . Similar to Eq. (36), let us assume the solution of E
in the form E(r) = E0rm+1. Solving Eqs. (42) and (43), we
obtain

e−b(r) ≡ h(r) = h2 + 2r + βr2

2α
− E2

0

α(m + 2)
r2m+4 (44)

and

ea(r) = h3

r2 Exp

[∫
8E2

0r
2m+4 − 4α

2αr + βr3 − 2E2
0r

2m+5
dr

]
(45)

where h2 and h3 are integration constants and the radius r
corresponds to the shell structure in the region R2. In this
shell region, the range of r is D < r < D + ε. Under this
assumption (h � 1), ε � 1, so we must have h2 � 1. From
Eq. (25) we obtain

8πp = 8πρ = E2
0r

2m+2 − α

r2 − β

2
. (46)

Also the charge density for electric field is given by

σ = σ0r
m

[
h2 + 2r + βr2

2α
− E2

0

α(m + 2)
r2m+4

] 1
2

. (47)

4.3 Exterior region

For the exterior region R3 (r > r2 = D + ε), the vacuum
EoS is given by p = ρ = 0. In this region, from Eq. (18),
we obtain

E(r) = Q

r2 (48)

where Q is constant electric charge. From Eq. (17), we obtain

eb(r) = ke−a(r) (49)

where k is a constant > 0.

For fT T = 0, we obtain the solutions

ea = ke−b = k

(
1 − 2M

r
+ β

6α
r2 + Q2

αr2

)
(50)

where M is the mass of the gravastar. Also the charge density
for the electric field may be written as

σ = σ0r
m

(
1 − 2M

r
+ β

6α
r2 + Q2

αr2

) 1
2

. (51)

So in the exterior region the metric becomes (choose k =
1)

ds2 = −
(

1 − 2M

r
+ β

6α
r2 + Q2

αr2

)
dt2

+
(

1 − 2M

r
+ β

6α
r2 + Q2

αr2

)−1

dr2

+r2(dθ2 + sin2 θdφ2). (52)

For α = 1 and β = 0, we get the usual Reissner–Nordstrom
spacetime metric and, for α = 1, β = 0 and Q = 0, we get
back the static Schwarzschild metric.

5 Physical features

Now we shall discuss the physical features of the parameters
of the gravastar shell region, like the proper length of the
shell, the energy and the entropy within the shell.

5.1 Proper length

Since the stiff perfect fluid propagates between two bound-
aries of the shell region of the gravastar, the inner boundary
of the shell is located at the surface r = D and the outer
boundary of the shell is located at the surface r = D + ε,
where the proper thickness of the shell is assumed to be very
small, i.e., ε � 1. So, the proper thickness of the shell is
determined by [9]

� =
∫ D+ε

D

√
eb(r) dr. (53)

Since in the shell region, the expressions of eb(r) are lengthy,
we cannot find the analytical form of the above integral. So
let us assume

√
eb(r) = dg(r)

dr , so from the above integral we
get

� =
∫ D+ε

D

dg(r)

dr
dr = g(D + ε) − g(D) ≈ ε

dg(r)

dr

∣∣∣∣
D

= ε
√

eb(D) (54)
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where we have taken only the first order term of ε (since
ε � 1, we have O(ε2) ≈ 0). For fT T = 0, the proper length
will be (from Eq. (44))

� = ε

[
h2 − 2D − βD

2
+ E2

0

α(m + 2)
D2m+4

]− 1
2

, (55)

which implies that the proper length of the shell is propor-
tional to the thickness (ε) of the shell.

5.2 Energy

The energy within the shell region of the gravastar is [9]

E =
∫ D+ε

D
4πr2

[
ρ + E2

8π

]
dr. (56)

For fT T = 0, we can obtain the energy as

E =
∫ D+ε

D

[
E2

0r
2m+4 − α

2
− βr2

4

]
dr

= E2
0

2m + 4

[
(D + ε)2m+4 − D2m+4

]

−εα

2
− β

12

[
(D + ε)3 − D3

]
(57)

≈ εE2
0 D

2m+4 − εα

2
− εβD2

4
. (58)

For this approximation, we see that the energy content in the
shell is proportional to the thickness (ε) of the shell.

5.3 Entropy

Mazur and Mottola [1,2] have shown that the entropy density
is zero in the interior region R1 of the gravastar. However,
the entropy within the shell can be defined by [9]

S =
∫ D+ε

D
4πr2s(r)

√
eb(r) dr (59)

where s(r) is the entropy density for the local temperature
T (r) and which can be written as

s(r) = γ 2k2
BT (r)

4π�
= γ kB

�

√
p(r)

2π
(60)

where γ is a dimensionless constant. So the entropy can be
written as

S = γ kB
�

∫ D+ε

D
r2

√
8πp(r) eb(r) dr. (61)

For the approximation (ε � 1), we can obtain

S ≈ εγ kB
�

D2
√

8πp(D) eb(D). (62)

For fT T = 0, we get the entropy as

S ≈ εγ kB
�

[
E2

0 D
2m+3 − α

D
− βD

2

] 1
2

×
[
h2 − 2D − βD

2
+ E2

0

α(m + 2)
D2m+4

]− 1
2

. (63)

This means that the entropy in the shell is proportional to the
thickness (ε) of the shell.

6 Junction conditions between interior and exterior
regions

Since a gravastar consists of three regions: the interior region,
the shell region and the exterior region, it is necessary to
match the surfaces of the interior and exterior regions accord-
ing to the Darmois–Israel formalism [51–53]. At r = D, the
junction surface is denoted by �. We consider the metric on
the junction surface in the form

ds2 = − f (r)dt2 + dr2

f (r)
+ r2(dθ2 + sin2 θdφ2) (64)

where the metric coefficients are continuous at �, though
their derivatives may not be continuous at �. With the help of
the Darmois–Israel formalism, we want to find the expression
for the stress-energy surface Si j from the Lanczos equation
[54],

Sij = − 1

8π
(ηij − δijη

k
k ) (65)

where ηi j = K+
i j − K−

i j . Here Ki j is the extrinsic curvature.
So ηi j gives the discontinuous surfaces in the extrinsic cur-
vatures (second fundamental form). Here the signs “+′′ and
“−′′ correspond to the interior and the exterior regions of the
gravastar, respectively. The extrinsic curvatures associated
with the two surfaces of the shell region can be written as

K±
i j =

[
−n±

ν

{
∂2xν

∂ξ i∂ξ j
+ �ν

αβ

∂xα

∂ξ i

∂xβ

∂ξ j

}]
�

(66)

where ξ i are the intrinsic coordinates on the shell, and n±
ν

are the unit normals to the surface �, defined by nνnν = −1.
For the above metric, we obtain

n±
ν = ±

[
gαβ ∂ f

∂xα

∂ f

∂xβ

]− 1
2 ∂ f

∂xν
. (67)
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Using the Lanczos equation, we can obtain the stress-energy
surface tensor as Sij = diag(−�,℘,℘,℘) where � is the
surface energy density and ℘ is the surface pressure given by
[10]

� = − 1

4πD

[√
f
]+
− (68)

and

℘ = 1

8πD

[√
f
]+
− + 1

16π

[
f ′

√
f

]+

−
. (69)

For fT T = 0, we obtain

� = − 1

4πD

⎡
⎣

√
1 − 2M

D
+ βD2

6α
+ Q2

αD2

−
√

1 + (β + 16πk2)D2

6α
+ (8πk1 − E2

0)

α(2m + 5)
D2m+4

⎤
⎦

(70)

and

℘ = 1

8πD

⎡
⎣

√
1 − 2M

D
+ βD2

6α
+ Q2

αD2

−
√

1 + (β + 16πk2)D2

6α
+ (8πk1 − E2

0)

α(2m + 5)
D2m+4

⎤
⎦

+ 1

16π

⎡
⎢⎢⎣

2M
D2 + βD

3α
− 2Q2

αD3√
1 − 2M

D + βD2

6α
+ Q2

αD2

−
(β+16πk2)D

3α
+ (2m+4)(8πk1−E2

0 )

α(2m+5)
D2m+3

√
1 + (β+16πk2)D2

6α
+ (8πk1−E2

0 )

α(2m+5)
D2m+4

⎤
⎥⎥⎦ . (71)

6.1 Equation of state

The equation of state parameter w(D) can be written as

w(D) = ℘

�
. (72)

For fT T = 0, the equation of state parameter can be writ-
ten in the following form:

w(D) = −1

2
− 1

4

⎡
⎣ 2M

D2 + βD
3α

− 2Q2

αD3√
1 − 2M

D + βD2

6α
+ Q2

αD2

−
(β+16πk2)D

3α
+ (2m+4)(8πk1−E2

0 )

α(2m+5)
D2m+3

√
1 + (β+16πk2)D2

6α
+ (8πk1−E2

0 )

α(2m+5)
D2m+4

⎤
⎥⎥⎦

×
⎡
⎣

√
1 − 2M

D
+ βD2

6α
+ Q2

αD2

−
√

1+ (β+16πk2)D2

6α
+ (8πk1−E2

0)

α(2m+5)
D2m+4

⎤
⎦

−1

.

(73)

6.2 Mass

The mass M of the thin shell can be obtained from the fol-
lowing formula:

M = 4πD2�. (74)

For fT T = 0, the mass of the thin shell can be expressed
as

M = −D

⎡
⎣

√
1 − 2M

D
+ βD2

6α
+ Q2

αD2

−
√

1 + (β + 16πk2)D2

6α
+ (8πk1 − E2

0)

α(2m + 5)
D2m+4

⎤
⎦ .

(75)

So the total mass M of the gravastar in terms of the thin shell
can be expressed as

M = D

2
+ βD3

12α
+ Q2

2αD

− D

2

⎡
⎣

√
1 + (β + 16πk2)D2

6α
+ (8πk1 − E2

0 )

α(2m + 5)
D2m+4 − M

D

⎤
⎦

2

.

(76)

We see that the total mass M of the gravastar will be less than
D
2 + βD3

12α
+ Q2

2αD .

7 Discussions

In the present work, we have discussed the four dimensional
spherically symmetric stellar system in the framework of
modified f (T ) gravity theory with an electromagnetic field.
The field equations have been found for two cases, T ′ = 0
and fT T = 0. For T ′ = 0, T must be constant and all the
derivatives of f (T ) with respect to T must be constants. Also
for fT T = 0, we have found that f (T ) is a linear function
of T . Next we have discussed the charged gravastar model

123



499 Page 8 of 9 Eur. Phys. J. C (2019) 79 :499

where the equation of state in the three regions of the gravas-
tar satisfies for the interior region (p = −ρ), for the shell
region (p = ρ) and for the exterior region (p = ρ = 0). In
the interior region, we have found the solutions of all phys-
ical quantities like density, pressure, electromagnetic field
and also the metric coefficients for both cases. For T ′ = 0,
we have found E(r) ∝ 1

r . Since for T ′ = 0, the central
singularity occurs at r = 0, a gravastar cannot form in this
case. For fT T = 0, E(r) ∝ rm+1 and gravastar forms in
this case. In the exterior region, we have obtained the exte-
rior solution for the vacuum model. For fT T = 0, we found
that the metric is a generalization of the Reissner–Nordstrom
spacetime. In the shell region, we have assumed that the
interior and exterior regions join together at a certain place,
so the intermediate region must be a thin shell with limit
0 < e−b ≡ h � 1. This thin shell structure suggests that, as
r approaches zero, the corresponding radial parameter gen-
erally becomes � 1. In this approximation, we have found
the solutions for fT T = 0. The electromagnetic field gets
the form E ∝ rm+1. The proper length of the thin shell,
the entropy and the energy content inside the thin shell have
been found and they are directly proportional to the proper
thickness of the shell ε under the approximation (ε � 1).
According to the Darmois–Israel formalism, we have stud-
ied the matching between the surfaces of the interior and
exterior regions of the gravastar. The energy density and pres-
sure on the surface have been obtained. Also the equation of
state parameter w(D) has been found. Moreover, the mass
M of the thin shell has been obtained and the total mass of
the gravastar has been expressed in terms of the thin shell
mass.
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