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Abstract We suggest a modified form of a unitarized
BFKL equation imposing the so-called kinematic constraint
on the gluon evolution in multi-Regge kinematics. The under-
lying nonlinear effects on the gluon evolution are investigated
by solving the unitarized BFKL equation analytically. We
obtain an equation of the critical boundary between dilute
and dense partonic system, following a new differential geo-
metric approach and sketch a phenomenological insight on
geometrical scaling. Later we illustrate the phenomenolog-
ical implication of our solution for unintegrated gluon dis-
tribution f (x, k2

T ) towards exploring high precision HERA
DIS data by theoretical prediction of proton structure func-
tions (F2 and FL ) as well as double differential reduced cross
section (σr ). The validity of our theory in the low Q2 transi-
tion region is established by studying virtual photon–proton
cross section in light of HERA data.
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1 Introduction

In perturbative QCD the two well-known parton evolution
equations DGLAP [1–3] and BFKL [4,5] serve as the basic
tools for prediction of parton distribution functions (PDFs) on
their respective kinematic domains. The DGLAP approach
is valid for the large interaction scale Q2 since it sums higher
order αs contributions enhanced by the leading logarithmic
powers of ln Q2. On the other hand, BFKL evolution deals
with the small-x and semi-hard Q2 kinematic region by sum-
ming the leading logarithmic contributions of (αs ln 1/x)n .
However, both the linear evolutions turn out to be inadequate
to comply with the unitary bound or the conventional Frois-
sart bound [6]. To restore the unitarity, a higher order pQCD
correction is required to shadow the rapid parton growth
which eventually leads to the saturation phenomena at very
small-x . In this respect, several nonlinear equations have
been proposed in recent years to entertain this shadowing
correction in DGLAP and BFKL equation.

In pQCD interactions, the origin of the shadowing cor-
rection is primarily considered as the gluon recombination
(g + g → g) which is simply the inverse process of gluon
splitting (g → g + g). The modification of gluon recombi-
nation to the original DGLAP equation was first performed
in GLR-MQ equation [7–10] proposed by Gribov–Levin–
Ryskin and Mueller–Qui. It is considered that the interferant
cut diagrams of the recombination amplitude are the origin
for the negative shadowing effects in the gluon recombina-
tion processes [7,11]. The GLR-MQ equation was originally
derived using AGK-cutting rules [12] to compute the contri-
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butions from these interference processes. However, GLR-
MQ does not possess any antishadowing correction term
since in this equation momentum conservation is violated
in the gluon recombination processes. The shadowing and
antishadowing effects are expected to happen in a comple-
mentary fashion which in fact ensure the momentum con-
servation during the process of gluon recombination [13]. In
consequence of gluon recombination, a part of gluon momen-
tum lost due to shadowing is believed to be compensated in
terms of new gluons with comparatively larger x . This causes
an enhanced density of larger momentum gluons responsible
for the antishadowing effect. In this respect, to take care of
momentum conservation and antishadowing effects in gluon
evolution, a modified DGLAP equation was proposed [11] to
replace the GLR-MQ equation. In the derivation of the mod-
ified DGLAP equation, the author has used TOPT-cutting
rules based on time ordered perturbation theory (TOPT) to
calculate the contribution of the gluon recombination, instead
of using AGK-cutting rules unlike in the derivation of GLR-
MQ equation. This equation naturally comes with two sepa-
rate nonlinear terms, quadratic in gluon distribution function
which are identified as the positive antishadowing and neg-
ative shadowing components in the gluon evolution. This
suggests that negative shadowing effects are suppressed by
antishadowing effects in the gluon evolution process.

However, above mentioned modified DGLAP approach
cannot predict the evolution of unintegrated gluon distri-
bution because DGLAP is based on collinear factorization
scheme while the later deals with kT -factorization. In this
respect, a new unitarized BFKL equation was proposed by
Ruan et al. [14] incorporating both shadowing and antishad-
owing correction. This modified BFKL (MD-BFKL) equa-
tion allows one to study antishadowing effects in unintegrated
gluon distribution platform.

However, there are several other BFKL based non-
linear evolution equations that consider corrections from
gluon fusion. One of the most widely studied models is
Balitsky–Kovchegov (BK) equation [15,16] which is orig-
inally derived in terms of scattering amplitude. It can be
explained by the dipole model in which the nonlinear term
comes from the dipole splitting while the screening effect
origins from the double scattering of the dipole on the target
[17]. The solution of the BK equation suggests an intense
shadowing leading to the so-called saturation of the scatter-
ing amplitude showing a complete flat spectrum. However,
like GLR-MQ equation the BK equation is also irrelevant to
the gluon antishadowing. On the other hand, besides inclu-
sion of antishadowing correction term, the nonlinear terms in
MD-BFKL equation hold a simple form which is quadratic in
unintegrated gluon distribution as well as running coupling
constant with some constant coefficients. These unique fea-
tures of MD-BFKL equation motivate our current studies on
small-x physics.

A numerical solution of MD-BFKL equation suggests a
sizable impact of antishadowing effect on gluon evolution
particularly in the pre-asymptotic regime [14]. In the litera-
ture [18] the phenomenology of the MD-BFKL equation is
extended to study the implicit nuclear shadowing and anti-
shadowing effects. In our current work, we try to construct
a modified evolution equation by implanting the so-called
kinematic constraint or consistency constraint on the MD-
BFKL equation. The kinematic constraint (see Fig. 1) is
implemented in different forms:

q2
T <

k2
T

z
LDC [19,20], (1)

q2
T <

(1 − z)k2
T

z
[21], (2)

k
′2
T <

k2
T

z
BFKL [21]. (3)

This constraint arises as a consequence of BFKL multi-Regge
kinematics which suggests the exchanged gluon virtuality
is dominated by transverse components while the longitu-
dinal components of the gluon momentum are required to
be small i.e. k

′2 ≈ k
′2
T . The kinematic constraint gives an

implicit cutoff on k
′2
T as depicted by (3). The inequality (3)

can be considered as a special case of (1) recalling the fact
that for a given value of k2

T , a high q2
T implies an equally high

k
′2
T [21]. Although there are other constraints coming from

energy–momentum conservation [22], this bound is consid-
erably tighter than the later [21]. Besides the introduction of
this cutoff on the upper limit of integration found to preserve
the scale invariance of the BFKL equation.

Our primary goal of this work is to investigate the nonlin-
ear effects on gluon evolution in terms of MD-BFKL equa-
tion supplemented by the kinematic constraint. Our studies
are particularly focused on the near saturation region where
shadowing effects are dominant over antishadowing effects.
The content of the paper is organized as follows. In Sect. 2
we present our kinematic constraint improved MD-BFKL
equation starting from the construction of the equation and a
brief discussion on some of its main features (Sect. 2.1). We
suggest an analytical solution to this equation and sketch a
particular solution in terms of x and k2

T evolution followed
by three-dimensional realization of gluon evolution in x-k2

T
phase space (Sect. 2.2). We have also extracted collinear
gluon distribution xg(x, Q2) from unintegrated gluon dis-
tribution f (x, k2

T ) and compared our prediction with that of
global parameterization groups NNPDF 3.1sx and CT 14. In
Sect. 3 we suggest a differential geometric approach towards
finding the equation of the critical boundary between high
and low gluon density regime. In this section, a phenomeno-
logical insight of the geometrical scaling is discussed as well.
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(a) (b)

(c) (d)

Fig. 1 From left: a chain of sequential gluon emission which forms
the basis of BFKL equation. On squaring the amplitude of a the ladder
diagram, b is generated which when summed gives the BFKL kernel.

c, d Two simple examples of the inhomogeneous driving term of (10)
which correspond to the shaded region of gluon-virtual photon coupling
in b

In Sect. 4 we explore the phenomenological implication of
our solution for unintegrated gluon distribution towards pre-
diction of DIS structure function F2 and longitudinal struc-
ture function FL at HERA. We show the comparisons of
reduced cross sections (Sect. 4.1) as well as virtual photon–
proton cross sections in the transition region (Sect. 4.2) with
HERA H1 and ZEUS data. Finally, in Sect. 5 we summa-
rize and outline our conclusion as well as possible future
prospects.

2 Nonlinear effects in kinematic constraint improved
MD-BFKL equation

2.1 Construction of kinematic constraint improved
MD-BFKL

The modified BFKL (MD-BFKL) equation reads [14],

−x
∂ f (x, k2

T )

∂x

= αs Nck2
T

π

∫ ∞

k
′2
Tmin

dk
′2
T

k
′2
T

⎡
⎣ f (x, k

′2
T ) − f (x, k2

T )

|k ′2
T − k2

T | + f (x, k2
T )√

k4
T + 4k

′4
T

⎤
⎦

− 36α2
s

πk2
T R

2

N 2
c

N 2
c − 1

f 2(x, k2
T ) + 18α2

s

πk2
T R

2

N 2
c

N 2
c − 1

f 2
( x

2
, k2

T

)
,

(4)

where f (x, k2
T ) denotes the gluon distribution unintegrated

over the transverse momentum of gluon kT and k
′2
Tmin

is the
infrared cutoff of the evolution. The first part of (4) linear in
f (x, k

′2
T ) (or f (x, k2

T )) is the BFKL kernel at leading loga-
rithmic of 1/x (LLx) accuracy. A diagrammatic representa-
tion for probing gluon content of the proton at high photon

virtuality Q2 is sketched in Fig. 1a. The BFKL kernel corre-
sponds to the sum of gluon ladder diagram Fig. 1b generated
by squaring the amplitude of Fig. 1a. The 1st term in the
BFKL kernel, involving f (x, k

′2
T ) corresponds to diagrams

with real gluon emission while the second term takes care
of diagrams with virtual corrections. Note that the apparent
singularity that is observed at k

′2
T = k2

T cancels between real
and virtual contributions.

The quadratic terms in (4) viz. ∂ fshad
∂ ln 1/x = − 36α2

s
πk2

T R
2

N2
c

N2
c −1

f 2

and ∂ fantishad
∂ ln 1/x = 18α2

s
πk2

T R
2

N2
c

N2
c −1

f 2 depict shadowing and anti-

shadowing correction to the original BFKL equation respec-
tively. The factor πR2 represents the transverse area popu-
lated by gluons. The radius parameter R arises in the QCD
cut diagram coupling 4 gluons to 2 gluons (see Fig. 2), the
value of which depends on how exactly the gluon ladders
couple to hadron. If the gluon ladder couples to two differ-
ent constituents of hadron, R is characterized by hadronic
radius i.e. R ≈ RH = 5 GeV−1 whereas if we consider the
possibility of ladder coupling to the same parton then the
appropriate choice of R is the radius of valence quark i.e.
R = 2 GeV−1. In the latter case (R = 2 GeV−1) we have
“hot spots” [8,23].

The interpretation of the real emission term in the BFKL
kernel is that we have a splitting k

′ → k + q inside hadron
resulting an infinite chain of reggeized gluons labeled as
k1, k2, k3, . . . , kn (Fig. 1a). In high energy limit, the lon-
gitudinal components of the gluon momentum are strongly
ordered while there is no ordering on the transverse compo-
nents of the gluon momentum i.e.

x1 � x2 � x3 · · · � xn−1 � xn, (5)

k1T ∼ k2T ∼ k3T ∼ · · · ∼ kn−1T ∼ knT. (6)
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Fig. 2 QCD cut diagram representing nonlinear terms in (4) with 4 →
2 gluon recombination kernel (dashed box). The dashed box includes
all possible pQCD diagrams which couple 4 gluons to 2 gluons

In addition, the small-x regime where the BFKL is valid, the
gluon virtuality along the chain must be dominated by the
transverse components of the gluon momentum,

k2 = 2k+k− − k2
T ≈ k2

T . (7)

The above kinematics corresponding to (5)–(7) is referred
as multi-Regge kinematics. The inequality (5) implies z =
x
x
z

= xn−1
xn

� 1 and since transverse momenta are of the same

order: kT � kT
′
, depict a cutoff

kT
′ 2 <

kT 2

z
, (8)

which is so-called kinematic constraint or consistency con-
straint for real gluon emission [19,21,24,25]. The BFKL
kernel in (4) is at leading logarithmic 1/x (LLx) accuracy.
However, higher order corrections to the BFKL equation are
already been evaluated up to NLLx accuracy, which turns out
to be quite large [26]. Implementation of the constraint (8)
on the evolution of BFKL based equations makes the theory
more realistic in the sense that this ensures the participation
of only the LLx part of higher order correction in the evolu-
tion. This, in fact, portrays the importance NLLx correction
in BFKL kernel.

Recalling that BFKL equation can be written as an integral
equation of f (x, k2

T ) [7,27], the kinematic constraint (8) can
be imposed onto the real emission part of the BFKL kernel
as follows

∫ 1

x

dz

z

∫
k
′2
Tmin

dk
′2
T

k
′2
T

⎡
⎢⎢⎣

Θ

(
k2
T
z − k

′2
T

)
f
(
x
z , k

′2
T

)
− f

(
x
z , k2

T

)
∣∣∣k ′
T

2 − k2
T

∣∣∣

+
f
(
x
z , k2

T

)
√
k4
T + 4k

′4
T

⎤
⎥⎥⎦ , (9)

where the heaviside function Θ
(
k2

z − k
′ 2
)

in (9) serves the

purpose of the kinematic cutoff. The upper limit of the inte-
gration over k

′2
T is implicit in Θ . The BFKL kernel gains one

more degree of freedom after implementation of kinematic
constraint for real emission. Now expressing the MD-BFKL
equation (4) in terms of the KC improved BFKL kernel (9)
yields

f (x, k2
T ) = f (0)(x, k2

T ) + αsk2
T Nc

π

×
∫ 1

x

dz

z

∫
k
′2
Tmin

dk
′2
T

k
′2
T

⎡
⎢⎢⎣

Θ

(
k2
T
z − k

′2
T

)
f
(
x
z , k

′2
T

)
− f

(
x
z , k2

T

)
∣∣∣k′2
T − k2

T

∣∣∣

+
f
(
x
z , k2

T

)
√
k4
T + 4k

′4
T

⎤
⎥⎥⎦− 36α2

s

πk2
T R2

N2
c

N2
c − 1

∫ 1

x

dz

z
f 2(x, k2

T )

+ 18α2
s

πk2
T R2

N2
c

N2
c − 1

∫ 1

x

dz

z
f 2
( x

2
, k2

T

)
. (10)

The above Eq. (10) is the integral form of our KC improved
MD-BFKL equation. The inhomogeneous driving term
f (0)(x, k2

T ) depicts gluon–proton coupling corresponding to
the shaded region in Fig. 1b. The Fig. 1c, d represents two
simple possible contributions to f 0(x, k2

T ) which indicates
radiation of gluons from valence quark.

To sketch an integro-differential form of KC improved
MD-BFKL equation out of (10) we differentiate (10) w.r.t.
ln(1/x), then using properties of Θ and Dirac-δ function, to
be specific Θ ′(t) = δ(t) and f (t)δ(t − a) = f (a)δ(t − a)

and doing some algebra one can show

∂

∂ ln 1
x

∫ 1

x

dz

z
Θ

(
k2
T

z
− k

′2
T

)
f (x, k

′2
T )

−→ Θ(k2
T − k

′2
T ) f (x, k

′2
T ) + Θ(k

′2
T − k2

T ) f

(
k

′2
T

k2
T

x, k
′2
T

)
. (11)

Above prescription allows one to express (10) in the follow-
ing integro-differential form:

− x
∂ f

(
x, k2

T

)
∂x

= αsk2
T Nc

π

∫
k
′2
Tmin

dk
′2
T

k
′2
T

×

⎡
⎢⎢⎣

Θ
(
k2
T − k

′2
T

)
f
(
x, k

′2
T

)
+ Θ(k

′2
T − k2

T ) f

(
k
′2
T
k2
T
x, k2

T

)
∣∣k ′2

T − k2
T

∣∣

− f (x, k2
T )

|k ′2
T − k2

T | + f
(
x, k2

T

)
√
k4
T + 4k

′4
T

⎤
⎥⎥⎦− 36α2

s

πk2
T R

2

N 2
c

N 2
c − 1

f 2(x, k2
T )

+ 18α2
s

πk2
T R

2

N 2
c

N 2
c − 1

f 2
( x

2
, k2

T

)
. (12)

In derivation of (12) we have neglected the term x ∂ f (0)

∂x . This

is justified in the sense that x ∂ f (0)

∂x is much less singular than
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x ∂ f
∂x at small-x . Moreover if we consider f (0) is particularly

contributed by the diagrams shown in Fig. 1c, d then f (0)

would be independent of x (or, ∂ f (0)

∂x = 0 ) at small-x limit
[19,27].

To simplify the distribution function f

(
k
′2
T

k
′2
T

x, k2
T

)
cor-

responding to real emission term in (12) we have incor-
porated Regge like behavior of gluon distribution. Before
the advent of pQCD, Regge theory is been considered as
a very successful theory regarding the phenomenological
analysis of total hadronic and photoproduction cross sec-
tions. These non-perturbative processes can economically
described by two Regge contributions namely pomerons with
intercept slightly above unity (αP (0) ≈ 1.08) and Reggons
with intercept αR(0) ≈ 0.5. The Regge behavior correspond-
ing to sea quark and anti-quark distributions is given by
qsea ∼ x−αP whereas that of valence quark distribution is
given by qv ∼ x−αR . On the other hand, in pQCD also,
particularly the small-x region is considered to have higher
possibility towards exploring Regge limit of pQCD. Note
that the BFKL dynamics itself is based on the concept of
pomeranchuk theorem or pomeron: the Regge-pole carrying
the quantum-numbers of the vacuum. However, the BFKL
pomeron (also called hard pomeron) should be contrasted
with non perturbative description of pomeron (soft pomeron)
in the sense that they pose relatively different magnitude of
intercept. For BFKL-pomeron the intercept is

αBFK L
P (0) = 1 + λBFKL,

where λBFKL = 3αs
π

28ζ(3), ζ being Reiman zeta function
[28]. The typical value of λBFKL for αs = 0.2 is ∼ 0.5 implies
αBFK L
P (0) ≈ 1.5 which is potentially large in magnitude

compared to soft pomeron (αP (0) = 1.08).
In pQCD the small-x behavior of the parton distribution is

supposed to be controlled by intercept of appropriate Regge
trajectory. Regge model provides parametrizations of DIS
distribution functions, fi (x, Q2) = Ai (Q2)x−λi [i =

∑
(sin-

glet structure function) and g (gluon distribution)], whereλi
is the pomeron intercept minus one (αP (0) − 1). At small-
x , the leading order calculations in ln(1/x) with fixed αs

predicts a steep power law behavior of f(x, k2) ∼ x−λBFKL

[22,29]. This motivates us to consider a simple form of Regge
factorization as follows,

f

(
k

′2
T

k2
T

x, k2
T

)
� x−λBFKL

(
k2
T

k
′2
T

)λBFKL

H(k2
T )

=
(
k2
T

k
′2
T

)λ

f (x, k2
T ), (13)

where we have dropped the subscript on λ and in the rest
of the text we will follow this notation. Similar way we can
express

f
( x

2
, k2

)
� 2λ f (x, k2). (14)

This type of Regge like form considered in (13) and (14)
is supported by various literatures [30–33]. But note that
Regge factorization can’t be taken as good ansatz for the
entire kinematic region of x and k2

T [34]. This type of
Regge behavior is considered to be valid only in the vicin-
ity of the saturation scale, Q2

s where scattering amplitude
depends only on a single dimensionless variable, Q2/Q2

s .
The Regge theory is applicable if the quantity invariant mass,
W (= √

Q2(1 − x)/x) is much greater than all other vari-
ables. Therefore, we expect it to be valid if x is enough small,
for any value of Q2.

Now recalling Θ(t) = 1 − Θ(−t) and substituting (13)
and (14) in (12) we get

− x
∂ f (x, k2

T )

∂x

= αs Nck2
T

π

∫
k
′2
Tmin

dk′2

k
′
T

2

⎡
⎢⎢⎢⎣Θ(k2

T − k
′2
T )

1 −
(

k2
T

k
′2
T

)λ

∣∣k ′2
T − k2

T

∣∣ f (x, k
′2
T )

+
(
k2
T

k
′2
T

)λ
f (x, k2

T )∣∣k ′2
T − k2

∣∣ − f (x, k2
T )∣∣k ′2

T − k2
∣∣ + f (x, k2

T )√
k4
T + 4k

′4
T

⎤
⎥⎥⎦

− 36α2
s

πk2
T R

2

N 2
c

N 2
c − 1

(1 − 22λ−1) f 2(x, k2
T ). (15)

The above Eq. (15) is our kinematic constraint improved
MD-BFKL equation in LLx accuracy.

Before going into in depth phenomenological analysis and
consistency of the equation towards experimental result, we
want to highlight two important features of the evolution Eq.
(15). As we follow, in the region far below saturation limit,
for the canonical choice of λ ∼ 0.5, the quadratic term in
(15) tends to vanish since (1 − 22λ−1) → 0. This indicates
that below saturation region both the contribution from shad-
owing correction ∂ fshad

∂ ln 1
x

and antishadowing correction ∂ fantishad

∂ ln 1
x

coexists but seem to balance each other for which nonlinear
effect becomes negligible. Therefore, in the below satura-
tion regime, we can revert (15) back to the original BFKL
equation choosing λ = 0.5.

On the other hand, in the vicinity of saturation limit, our
interpretation of gluon distribution for the nonlinear term has
to be reviewed. In this region, the gluon distribution becomes
flat which makes our Regge factorization for the nonlinear
term in (14) invalid. Rather essentially, we should take the
approximation

f
( x

2
, k2

T

)
� f (x, k2

T ),
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which is supposed to justify our understanding of the satura-
tion region. Taking this approximation in (12) one can arrive
at

− x
∂ f (x, k2

T )

∂x

= Ncαsk2
T

π

∫
k
′2
Tmin

dk′2

k
′
T

2

⎡
⎢⎢⎢⎣Θ(k2

T − k
′2
T )

1 −
(

k2
T

k
′2
T

)λ

∣∣k ′2
T − k2

T

∣∣ f (x, k
′2
T )

+
(
k2
T

k
′2
T

)λ
f (x, k

′2
T )∣∣k ′2

T − k2
∣∣ − f (x, k2

T )∣∣k ′2
T − k2

∣∣ + f (x, k2
T )√

k4
T + 4k

′4
T

⎤
⎥⎥⎦

− 18α2
s

πk2
T R

2

N 2
c

N 2
c − 1

f 2(x, k2
T ). (16)

Equation (16) serves the evolution of gluon near the satu-
ration limit. Here the λ dependence of the nonlinear term
has been completely wiped up, unlike (15). In this regime,
the shadowing contribution becomes twice as that of anti-
shadowing effect forecasting a net shadowing effect in the
evolution.

2.2 Analytical solution of KC improved MD-BFKL

In this section, we present an analytical solution of our KC
improved MD-BFKL equation, particularly in the saturation
region where shadowing effect is the dominant one. Since
our calculations are limited to fixed strong coupling αs , so
do fix λ, therefore, the solution for both (15) and (16) will
exhibit the same form only differ by the coefficients of their
respective quadratic terms.

Recalling that there is no ordering for transverse momenta
k

′
T � kT in BFKL multi-Regge kinematics, this allows us to

write the gluon distribution in Taylor series,

f (x, k
′2
T ) = f (x, k2

T )+ ∂ f (x, k2
T )

∂k2
T

(k
′2
T −k2

T )+O(k
′2
T −k2

T ),

(17)

where O(k
′2
T − k2

T ) denotes the higher order terms. Above
series is a convergent series in (k

′2
T − k2

T ) as no ordering of
the transverse momenta in BFKL kinematics k

′
T − kT � 0

implies the higher order terms O(k
′2
T − k2

T ) → 0, thereby
ensures the higher order terms to become insignificant and
can be neglected. Thus this assumption would hold good
as long as no ordering condition of the transverse momenta
in BFKL kinematics is concerned. This type of series
expansion of distribution function is well supported in the
literature [35].

Now neglecting these higher order terms we can express
(16) as

−x
∂ f (x, k2

T )

∂x
= ξ(k2

T )
∂ f (x, k2

T )

∂k2
T

+ ζ(k2
T ) f (x, k2

T )

− Δ(k2
T ) f 2(x, k2

T ), (18)

where

ξ(k2
T ) = αs Nc

π
k2
T

[ ∫ k2
T

k
′2
Tmin

dk
′2
T

k
′2
T

k
′2
T − k2

T∣∣k ′2
T − k2

T

∣∣

+
∫ ∞

k2
T

dk
′2
T

k
′2
T

(
k2
T

k
′2
T

)λ
k

′2
T − k2

T∣∣k ′2
T − k2

T

∣∣
]
, (19)

ζ(k2
T ) = αs Nc

π
k2
T

[
−
∫ ∞

k2
T

dk
′2
T

k
′2
T

1∣∣k ′2
T − k2

T

∣∣

+
∫ ∞

k2
T

dk
′2
T

k
′2
T

(
k2
T

k
′2
T

)λ
1∣∣k ′2

T − k2
T

∣∣

+
∫ ∞

k
′2
Tmin

dk
′2
T

k
′2
T

1√
k4
T + 4k

′4
T

]
, (20)

and Δ(k2
T ) = 18α2

s
πk2

T R
2

N2
c

N2
c −1

.

Note that the integrals in (20), I1 = ∫∞
k2
T

dk
′2
T

k
′2
T

1∣∣∣k′2
T −k2

T

∣∣∣ and

I2 = ∫
k2
T

dk
′2
T

k
′2
T

(
k2
T

k
′2
T

)λ
1∣∣∣k′2

T −k2
T

∣∣∣ are improper since both blow-

up at the lower limit k2
T . To get rid of the singularity in I1

we have performed some angular integral prescription. To be
specific we have used the standard trigonometric integral

∫ 2π

0

dθ

p + q cos θ
= 2π√

p2 + q2
, (21)

valid for p + q > 0. Replacing the variable k
′
T → k

′
T + kT

one can write

∫
d2k

′
T

(k
′
T − kT )2

1

(k
′
T − kT )2 + k

′2
T

=
∫

d2k
′
T

k
′2
T

1

k
′2
T + (k

′
T + kT )2

. (22)

Now using (21) in the r.h.s. of (22) we get

∫
dk

′
T k

′
T dθ

k
′2
T (2k

′2
T + k2

T + 2k
′
T kT cos θ)

= 2π

∫
dk

′
T k

′
T

k
′2
T

√
4k

′4
T + k4

T

= π

∫
dk

′2
T

k
′2
T

√
4k

′4
T + k4

T

.

(23)

Similarly using (21) in the l.h.s. of (22) we get
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∫
d2k

′
T

(k
′
T − kT )2

1

(k
′
T − kT )2 + k

′2
T

= π

∫
dk

′2
T

k
′2
T

1∣∣k ′2
T − k2

T

∣∣
−π

∫
dk

′2
T

k
′2
T

√
4k

′4
T + k4

T

.

(24)

Equating (23) and (24) we obtain

∫
dk

′2
T

k
′2
T

1∣∣k ′2
T − k2

T

∣∣ = 2
∫

dk
′2
T

k
′2
T

√
4k

′4
T + k4

T

, (25)

which turns out to be well-behaved for both integration limit
for I1. On the other hand, in the limit k

′2
Tmin

≤ k
′2
T ≤ k2

T

i.e. for not too large k
′2
T , the contribution from the longitudi-

nal component to the gluon virtuality k
′2 becomes negligible

which in turn preserves the no ordering condition of trans-
verse momentum of BFKL kinematics i.e. k

′2
T ≈ k2

T very
strictly. Therefore, in this limit k

′2
Tmin

≤ k
′2
T ≤ k2

T , it is justi-

fied to implant a factor (k2
T /k

′2
T )λ inside the integrals which

will in fact make our calculation simpler without altering
the underlying physics. Moreover, this will fix the infrared
divergence problem of the second improper integral I2 by
allowing us to evaluate the integral down to k

′2
Tmin

.
Now considering these approximations in (19) and (20)

and putting I1 in (20) we obtain

ξ(k2
T ) = αs Nck2

T

π

[ ∫ k2
T

k
′2
Tmin

dk
′2
T

k
′2
T

(
k2
T

k
′2
T

)λ
k

′2
T − k2

T∣∣k ′2
T − k2

T

∣∣

+
∫ ∞

k2
T

dk
′2
T

k
′2
T

(
k2
T

k
′2
T

)λ
k

′2
T − k2

T∣∣k ′2
T − k2

T

∣∣
]

= αs Nck2
T

π

1

λ
(2 − k2λ

T ) ≈ −αs Nc

πλ
(k2

T )λ+1, (26)

ζ(k2
T ) = αs Nc

π
k2
T

[ ∫ ∞

k
′2
Tmin

(
k2
T

k
′2
T

)λ
dk

′2
T

k
′2
T

1∣∣k ′2
T − k2

T

∣∣

−
∫ ∞

k
′2
Tmin

dk
′2
T

k
′2
T

1√
k4
T + 4k

′4
T

]

= αs Nc

π

⎡
⎢⎣ k2λ

T

λ
− 22− λ

2 λ−1k2λ
T

⎛
⎝1 −

√
k4
T + 4

k2
T

⎞
⎠

λ/2

2F1

− λ ln

⎛
⎝ k2

T

2
+
√

1 + k4
T

4

⎞
⎠
⎤
⎦ ≈ αs Nc

π

(
ε + (k2

T )λ

λ

)
, (27)

where 2F1= 2F1

(
−λ

2 , λ
2 ; 1 − λ

2 ; k2
T +

√
k4
T +4

2k2
T

)
is a standard

hypergeometric function. In the above calculations we have
taken infrared cutoff k

′2
Tmin

= 1 GeV2 since for unified BFKL-
DGLAP framework this provided a very consistent result
towards HERA DIS data for proton structure function F2

[36]. In (27) (k2
T )λ/λ is the only dominant term since other

terms are significantly small. The contribution from the log-
arithmic term in (27) is negligible in comparison to the net
contribution for all k2

T . However, phenomenological studies
shows the term involving hypergeometric function in (27)
becomes irrelevant towards change in k2

T i.e. it possess a
constant value (≈ − 4.79) (see Fig. 3a). This constant con-
tribution is insignificant to the net contribution for ζ(k2

T ) if
k2
T is enough high. But for small k2

T this contribution can not
be neglected since at this range, the k2λ

T /λ contribution itself
is small. In consequence, this constant contribution can be
treated as a small perturbation ε to the dominant term k2λ

T /λ.
We have performed phenomenological determination of the
constant perturbation parameter ε using standard non-linear
regression method (see Fig. 3b).

Now we are set to solve our original Eq. (18) which is
indeed a 1st order semilinear (nonlinear) PDE. Our analytical
approach of solving the same involves two steps: first we will
express the nonlinear PDE in terms of a linear PDE then we
will solve the linear PDE via. change of coordinates.

Substitution of f (x, k2
T ) by its inverse function ω(x, k2

T )

i.e. f = ω−1 in (18) yields

− x
∂ω

∂x
= ξ

∂ω

∂k2
T

− ζω + Δ, (28)

which is in fact a linear PDE in ∂ω
∂x , ∂ω

∂k2
T

and ω. Now we

construct a new set of co-ordinate σ ≡ σ(x, k2
T ) and η ≡

η(x, k2
T ) such that it transforms (28) into an ODE. To be

specific we define this transformation in such a way that it
is one to one for all (x, k2

T ) in some set of points D in x-
k2
T plane. This will allow us to solve (28) for x and k2

T as
functions of σ and η. The only requirement is that we should
ensure the Jacobian of the transformation does not vanish i.e.

J =
∣∣∣∣∣

σx ηx
σk2

T
ηk2

T

∣∣∣∣∣ �= 0 in D.

Next we want to recast (28) in (σ, η) plane computing the
derivatives via chain rule:

ωx = ωσ σx + ωηηx ,

ωk2
T

= ωσ σk2
T

+ ωηηk2
T
. (29)

Substitution of (29) into (28) yields

− (xσx + ξσk2
T
)ωσ − (xηx + ξηk2

T
)ωη + ζω − Δ = 0. (30)

Since we want above equation to be expressed as an ODE,
we require either,

xσx + ξσk2
T

= 0 or xηx + ξηk2
T

= 0.
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(a) (b)

Fig. 3 a k2
T dependence of the small perturbation ε̃ = |ε| corresponding to the term with the hypergeometric function in (17) (left). b A

phenomenological calculation of ε using standard non-linear regression (right). Comparison between ζ̃ = π
αs Nc

ζ (green dotted line) and ε+2λ−1k2λ
T

(red dotted line) is shown

If we consider xσx + ξσk2
T

= 0, the solution σ is constant
along the curves that satisfy

dk2
T

dx
= ξ

x
�⇒ ln(xC1) =

∫
dk2

T

ξ
�⇒ C1 = e− k−2λ

T
lλ

x
,

(31)

where l = −αs Nc
πλ

and C1 is the constant of integration. Now

we can choose the new coordinates as σ = e− k−2λ
T
lλ

x and η = x .

Here J =
∣∣∣∣∣

σx ηx
σk2

T
ηk2

T

∣∣∣∣∣ �= 0 as required.

We rewrite (29) as

ωx = ωσ σx + ωηηx = −e− k−2λ
T
lλ

x2 ωσ + ωη,

ωk2
T

= ωσ σk2
T

+ ωηηk2
T

= (k2
T )−1−λe− k−2λ

T
lλ

lx
. (32)

Now putting (32) in (30) we get

−ηωη + ζω − Δ = 0. (33)

Equation (33) is an ODE and it can be solved using stan-
dard ODE solving techniques. Now solving (33) and then
transforming it to the original coordinates (σ, η) → (x, k2

T )

we get the general solution of the KC improved MD-BFKL
equation,

f (x, k2
T ) = ω−1(x, k2

T ) = k
−2 n

l
T (−1)

n
λl l− n

λl λ− n
λl

G

⎛
⎝ e− k−2λ

T
lλ

x

⎞
⎠ xm +

18α2
s (−1)1/λλ1/λN2

c l
1/λe−mk−2λ

T
λl m− λl+l+n

λl Γ

(
l+n
lλ +1,− k−2λ

T m
lλ

)

πR2(N2
c −1)

, (34)

where Γ

(
l+n
lλ + 1,− k−2λ

T m
lλ

)
is a standard Gamma function

and G

(
e− k−2λ

lλ

x

)
is an arbitrary continuously differentiable

function. The parameters m = εαs Nc
π

and n = αs Nc
πλ

are com-
ing from (27). In the following section, we try to get particular
solutions for the PDE applying some initial boundary condi-
tion and present an analysis of the phenomenological aspects
of (34).

2.2.1 x and k2
T evolution

In this section, we study the small-x dependence of gluon dis-
tribution by picking an appropriate input distribution at some
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high x , as well as the k2
T dependence of gluon distribution

setting input distribution at some low k2
T .

Let us rewrite (34) rearranging a bit

G

⎛
⎜⎝e− k−2λ

T
lλ

x

⎞
⎟⎠ = 1

N 2
c − 1

⎡
⎢⎢⎢⎣x−mN 2

C

⎛
⎜⎜⎜⎝

18α2
s (−1)

1
λ
+1λ1/λl1/λe−mk−2λ

T
λl m− λl+l+n

λl Γ

(
l+n
lλ + 1,− k−2λ

T m
lλ

)

πR2

+ 1

f (x, k2
T )

k
−2 n

l
T (−1)

n
λl l−

n
λl λ− n

λl

⎞
⎟⎟⎟⎠+ 1

f (x, k2
T )

x−mk
−2 n

l
T (−1)

n
λl +1l−

n
λl λ− n

λl

⎤
⎥⎥⎥⎦ , (35)

First we will try to evaluate the functional form of the arbi-
trary differentiable function G applying some initial bound-
ary condition on it. For k2

T evolution we set the initial distri-
bution at (x, k2

0) where x is fixed throughout the evolution.

At (x, k2
0) let the argument of G be denoted by t = e− k−2λ

0
lλ

x .

Now writing (35) for (x, k2
0) and putting x = e− k−2λ

0
lλ

t we
get

G (t) = 1

N 2
c − 1

⎡
⎢⎢⎢⎣
e
mk−2λ

0
lλ

t−m
N 2
c

⎛
⎜⎜⎜⎝

18α2
s (−1)

1
λ
+1λ1/λl1/λe−mk−2λ

0
λl m− λl+l+n

λl Γ

(
l+n
lλ + 1,− k−2λ

0 m
lλ

)

πR2

+ 1

F0
k
−2 n

l
0 (−1)

n
λl l−

n
λl λ− n

λl

⎞
⎟⎟⎟⎠+ 1

F0

e
mk−2λ

0
lλ

t−m
k
−2 n

l
0 (−1)

n
λl +1l−

n
λl λ− n

λl

⎤
⎥⎥⎥⎦ , (36)

where F0 is the unintegrated gluon distribution at (x, k2
0).

Equation (36) is the functional form of G. Replacing t with

any other argument will give us the value of G at that par-

ticular argument. We put t = e− k−2λ
T
lλ

x in (36) which gives us
the l.h.s. of (35) and then we solve (35) for f (x, k2

T ). The
solution for k2

T evolution turns out to be

f (x, k2
T ) =

(−1)
n
λl (N 2

c − 1)k
−2 n

l
T k2n/ l

0

(
e
k−2λ
T −k−2λ

0
λl

)m

A[x, k2
T ]

(−1)
1
λ
+1N 2

c B[k2
0] + (−1)

n
λl N 2

c F0A[x, k2
T ] + (−1)1/λN 2

c B[k2
T ] + (−1)

n
λl +1F0A[x, k2

T ]
, (37)

where

A[x, k2
T ] = πR2xmm

λl+l+n
λl e

m
(
k−2λ
T +k−2λ

0

)
λl ; B[i] = 18α2

s x
ml

l+n
λl λ

l+n
λl k2n/ l

0 Γ

(
l + n

lλ
+ 1,−m(i)−λ

lλ

)∣∣∣∣
i=k2

T ,k2
0

.
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Similarly setting the initial distribution at (x0, k2
T ), we

obtain the solution for x-evolution as follows

f (x, k2
T ) =

(−1)
3
λ
+ 2n

λl
(
N 2
c − 1

)
( x0
x )mk

−2 n
l

T

(
− k−2λ

T
λl − ln x

x0

)− n
λl

C[x, k2
T ]

⎡
⎢⎢⎣

(−1)
3
λ
+ 3n

λl N 2
c F

′
0C[x, k2

T ] + (−1)
2
λ

+ n
λl

k2
T

Γ1D[x, k2
T ]

+ (−1)
2
λ
+ n

λl +1k
2
(
n
l −λ

(
1
λ
+ n

λl

))
T Γ2D[x, k2

T ] + (−1)
3
λ
+ 3n

λl +1πR2F
′
0x

mC[x, k2
T ]

⎤
⎥⎥⎦

, (38)

where, F
′
0 is the initial gluon distribution at (x0, k2

T ),

Γ1 = Γ

(
l + n

lλ
+ 1,−k−2λ

T m

lλ

)
,

Γ2 = Γ

(
l + n

lλ
+ 1,m

(
−k−2λ

T

lλ
− ln

x

x0

))
,

C[x, k2
T ] = πR2xml−

1
λ
− n

λl λ− 1
λ
− n

λl k
2
(
n
l −λ

(
1
λ
+ n

λl

))
T

× m
2
λ
+ 2n

λl +1

(
−k−2λ

T

λl
− ln

x

x0

) 1
λ
+ n

λl

,

D[x, k2
T ] = 18α2

s N
2
c x

m
0 l−

n
λl λ− n

λl e−mk−2λ
T
λl

× m
1
λ
+ n

λl

(
−k−2λ

T

λl
− ln

x

x0

)1/λ

.

We have plotted the solution for both x evolution (38) and
k2
T evolution (37) in Figs. 4 and 6. Our prediction of uninte-

grated gluon distribution f (x, k2
T ) is contrasted with that of

modified BK equation [25],

−x
∂ f

(
x, k2

T

)
∂x

= αs Nck2
T

π

∫ ∞

k
′2
Tmin

dk
′2
T

k
′2
T

⎡
⎣ f (x, k

′2
T ) − f (x, k2

T )

|k ′2
T − k2

T | + f (x, k2
T )√

k4
T + 4k

′4
T

⎤
⎦

− αs

(
1 − k2

T
d

dk2
T

)2
k2
T

R2

[∫ ∞

k2
T

dk
′2
T

k
′2
T

ln

(
k

′2
T

k2
T

)
f (x, k2

T )

]

(39)

which is BFKL equation supplemented by the negative non-
linear term, derived in approximation of infinite and uniform
target. In [25] the perturbative parton saturation is studied to
a vast extent, including modification of (39) in terms of kine-
matic constraint, DGLAP, Pgg splitting function and running
coupling constant, then solving the same numerically. We

have also extracted collinear gluon distribution from uninte-
grated gluon distribution using the standard relation,

xg(x, Q2) =
∫ Q2

0

dk2
T

k2
T

f (x, k2
T ) (40)

sketched in Figs. 5 and 7. Our predicted collinear gluon den-
sity is compared with that of LHAPDF global parameteriza-
tion groups NNPDF 3.1sx [37] and CT 14 [38]. Both of the
LHAPDF datasets include HERA as well as recent LHC data
with high precision PDF sensitive measurements.

Our prediction of both unintegrated and collinear gluon
distribution is obtained for two different form of shadow-
ing: conventional R = 5 GeV−1 (order of proton radius)
where gluons are spread throughout the nucleus and extreme
R = 2 GeV−1 where gluons are expected to concentrated
in hotspots within the proton disk, recalling that πR2 is the
transverse area within which gluons are concentrated inside
proton. From Figs. 4, 5, 6 and 7 it is clear that shadowing cor-
rection are more prominent when gluons are concentrated in
hotspots within proton.

The k2
T (and Q2) evolution in Figs. 4 and 5 is studied for

the kinematic range 1 GeV2 ≤ k2
T (or Q2) ≤ 103 GeV2 cor-

responding to four different values of x as indicated in the
figure. Our evolution for both f (x, k2

T ) and xg(x, Q2) shows
a similar growth as modified BK as well as datasets respec-
tively for all x . It is also observed that the growth of f (x, k2

T )

(or xg(x, Q2)) is almost linear for the entire kinematic range
of k2

T (or Q2). This is expected since the net shadowing term
in (16) has 1/k2

T dependence, which suppresses the contri-
bution from the shadowing term at large k2

T .
The x evolution of f (x, k2

T ) and xg(x, Q2) is shown in
Figs. 6 and 7 for two k2

T values viz. 5 GeV2, 50 GeV2 and
two Q2 values viz. 35 GeV2, 100 GeV2. The input is taken at
higher x value x = 10−2 and then evolved down to smaller x
value upto x = 10−6 thereby setting the kinematic range of
evolution 10−6 ≤ x ≤ 10−2. We observed that the singular
x−λ growth of the gluon is eventually suppressed by the net
shadowing effect. KC improved MD-BFKL seem to poses
a more intense shadowing then modified BK. However, it is
hard to establish the existence of shadowing for x ≥ 10−3.
The obvious distinction between the two form of shadowing
R = 5 GeV−1 (conventional) and R = 2 GeV−1 (“hotspot”)
is also observed towards small-x (x ≤ 10−3). Interestingly
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Fig. 4 k2
T evolution of unintegrated gluon distribution f (x, k2

T ). Our results of KC improved MD-BFKL are shown for conventional R = 5 GeV−1

(gluons are distributed throughout the nucleus) and R = 2 GeV−1 (at “hot-spots” within proton disk). Prediction from modified BK equation is
plotted for comparison

Fig. 5 Q2 evolution of collinear gluon distribution xg(x, Q2). Our
results of KC improved MD-BFKL are shown for conventional R =
5 GeV−1 (gluons are distributed throughout the nucleus) and R =

2 GeV−1 (at “hot-spots” within proton disk). Theoretical prediction
is compared with global datasets NNPDF 3.1sx and CT 14

Fig. 6 x evolution of unintegrated gluon distribution f (x, k2
T ). Our results of KC improved MD-BFKL are shown for conventional R = 5 GeV−1

(gluons are distributed throughout the nucleus) and R = 2 GeV−1 (at “hot-spots” within proton disk). Prediction from modified BK equation is
plotted for comparison
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Fig. 7 x evolution of collinear gluon distribution xg(x, k2
T ). Our

results of KC improved MD-BFKL are shown for conventional R =
5 GeV−1 (gluons are distributed throughout the nucleus) and R =

2 GeV−1 (at “hot-spots” within proton disk). Theoretical prediction
is compared with global datasets NNPDF 3.1sx and CT 14

(a) (b)

Fig. 8 a Comparison between linear BFKL, MD-BFKL without KC and MD-BFKL with KC for k2
T evolution at x = 10−4 and 10−6. b

Comparison between linear BFKL, MD-BFKL without KC and MD-BFKL with KC for x evolution at k2
T = 5 GeV2 and 50 GeV2. Results are

shown for R = 5 GeV−1

towards very small-x (x ≤ 10−5), at small k2
T (or Q2) values

(viz. k2
T = 5 GeV2, Q2 = 35 GeV2) the gluon distribu-

tion becomes almost irrelevant of change in x . This could
be a strong hint for the possible saturation phenomena in the
small-x high density regime.

In Fig. 8a we have shown a comparison between the lin-
ear BFKL equation, MD-BFKL without kinematic constraint
and MD-BFKL with kinematic constraint for x evolution.
The three solutions are compared for two different values of
k2
T i.e. 5 GeV2 and 50 GeV2. Similarly in Fig. 8b we have

shown similar comparison but for k2
T evolution for two dif-

ferent values of x i.e. x = 10−4 and x = 10−6. In Fig. 8 the
singular x−λ behavior of f (x, k2

T ) is distinct for unshadowed

linear BFKL equation. On the other hand, the deviation of the
two different forms of the MD-BFKL equation from linear
BFKL equation reflects the underlying shadowing correc-
tion. It is also observed that shadowing effect is more intense
in MD-BFKL with KC than MD-BFKL without KC.

2.2.2 Complete solution of KC improved MD-BFKL

In this section we implant a functional form of the input distri-
bution (more likely a dynamic one) on the general solution of
our KC improved MD-BFKL equation (34) and try to obtain
a parametric form of the solution. The underlying motivation
towards doing so is that this allows us to evolve our solution
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for both x and k2
T simultaneously in x-k2

T phase space which
help us to portray a three-dimensional realization of the gluon
evolution.

Recall the well-known solution of the linear BFKL equa-
tion [28]

f (x, k2
T ) = β

x−λ
√
k2
T√

ln 1
x

exp

(
− ln2(k2

T /k2
s )

2Ω ln(1/x)

)
, (41)

where λ = 3αs
π

28ζ(3), ζ being Reimann zeta function and
Ω = 32.1αs . The nonperturbative parameter k2

s = 1 GeV2

and the normalization constant β ∼ 0.01 [14]. Since far
below saturation region both linear and nonlinear equation
should give the same solution, therefore we can take (41) as
the input distribution for our general solution of KC improved
MD-BFKL equation.

First we try to find the functional form of the arbitrary dif-

ferentiable function G

⎛
⎝ e− k−2λ

T
lλ

x

⎞
⎠ present in the general solu-

tion (34) applying the initial distribution (41). Let us rewrite
(35) which is the rearranged form of the general solution (34)

G

⎛
⎜⎝e− k−2λ

T
lλ

x

⎞
⎟⎠ = 1

N 2
c − 1

⎡
⎢⎢⎢⎣x−mN 2

c

⎛
⎜⎜⎜⎝

18α2
s (−1)

1
λ
+1λ1/λl1/λe−mk−2λ

T
λl m− λl+l+n

λl Γ

(
l+n
lλ + 1,− k−2λ

T m
lλ

)

πR2

+ 1

f (x, k2
T )

k
−2 n

l
T (−1)

n
λl l−

n
λl λ− n

λl

⎞
⎟⎟⎟⎠+ 1

f (x, k2
T )

x−mk
−2 n

l
T (−1)

n
λl +1l−

n
λl λ− n

λl

⎤
⎥⎥⎥⎦ . (42)

Setting initial parameters at (x0, k2
T ) we get initial distribu-

tion (41) as

f (x0, k
2
T ) = β

x−λ
0

√
k2
T√

ln 1
x0

exp

(
− ln2(k2

T /k2
s )

2Ω ln(1/x0)

)
. (43)

We denote the argument of G at (x0, k2
T ) as τ = e− k−2λ

T
lλ

x0

which implies k2
T = (−lλ ln(τ x0))

−1/λ. Now writing (42)
for (x0, k2

T ) we obtain

G(τ ) = x−mk
− n

l
T (−lλ)

n
λl

⎛
⎜⎜⎝
xλ
√

ln 1
x (λ(−l) ln(τ x0))

1/λ exp

(
ln2

(
(λ(−l) ln(τ x0))−1/λ

)
2Ω ln 1

x

)

β

−
18α2

s N
2
c

(
k−λ
T

)1/λ
(
e− k−λ

T
λl

)m (
−mk−λ

T
λl

)− l+n
λl

Γ

(
l+n
lλ + 1,− k−λ

T m
lλ

)

πmR2
(
N 2
c − 1

)

⎞
⎟⎟⎟⎟⎟⎠

, (44)

where, k2
T = (−lλ ln(τ x0))

−1/λ. Note that (44) is the func-

tional form of G. We substitute τ = e− k−2λ
T
lλ

x in (44) which
gives us the l.h.s. of (42) and then solve (42) for f (x, k2

T ),

f (x, k2
T )

=
βmqn/ l

(
−mk−2λ

T
λl

) l+n
λl

(
−mq−λ

λl

) l+n
λl

(
−mq−λ

λl

) l+n
λl

(Δ̃qn/ l Ã[k2
T ] + χ) − Δ̃βk2n/ l

T Ã(q)

(
−mk−2λ

T
λl

) l+n
λl

,

(45)
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where,

χ = mxλ

√
ln

1

x
k2n/ l
T e

ln2(q)

2Ω ln 1
x

(
−mk−2λ

T

λl

) l+n
λl

q−1, Ã[i] = i−1β

(
e− q−λ

λl

)m

Γ [i] , q =
⎛
⎜⎝−lλ ln

x0e− k−2λ
T
λl

x

⎞
⎟⎠

−1/λ

,

Γ [i] = Γ

(
1 + l + n

lλ
,
m(i)−λ

lλ

)
, Δ̃ = 18α2

s

πR2

N 2
c

N 2
c − 1

.

For simplicity let us denote r.h.s. of (45) by γ i.e.

f (x, k2
T ) = γ (x, k2

T ). (46)

At x = x0 and k2
T = k2

0

f (x0, k
2
0) = γ (x0, k

2
0). (47)

Now dividing (46) by (47) we get

f (x, k2
T ) = f (x0, k

2
0)

γ (x, k2
T )

γ (x0, k2
0)

. (48)

From (41) we have the input distribution

f (x0, k
2
0) = β

x−λ
0

√
k2

0√
ln 1

x0

exp

(
− ln2(k2

0/k2
s )

2Ω ln(1/x0)

)
. (49)

Now substituting f (x, k2
0) from (49) into (48) we obtain

f (x, k2
T )

=
(

ln 1
x0

)− 1
2 qn/ l k

−2 n
l +4 l+n

l −2
0 βx−λ

0 e
− ln2(k2

0 )

2Ω ln 1
x0 (k2

T q)
− l+n

l φ̃

(
−mq−λ

λl

) l+n
λl

(Δ̃qn/ l Ã[k2
T ] + χ) − Δ̃k2n/ l

T Ã[q]
(

−mk−2λ
T
λl

) l+n
λl

,

(50)

where

δ = mxλ
0

√
ln

1

x0
k2n/ l−2

0 e

ln2(k2
0 )

2Ω ln 1
x0

(
−mk−2λ

0

λl

) l+n
λl

,

φ̃ =
(

−mk−2λ
0

λl

) l+n
λl

(Δ̃k2n/ l
0 Ã[k2

0] + δ[x, k2
T ])

− Δ̃k2n/ l
0 Ã[k2

0]
(

−mk−2λ
0

λl

) l+n
λl

.

Equation (50) serves as the parametric form of the solution
for KC improved MD-BFKL equation. The input distribution
is inclusive in the solution (50) itself, therefore, we do not
have to depend on the experimental data fits for input

distribution unlike we did in the previous section of x and
k2
T evolution. This parametric form of the solution actually

helps us to explore the three-dimensional insight of the gluon
evolution in x-k2

T phase space. However, using (50) one may
also study x and k2

T evolution separately by setting x fixed
for k2

T evolution or k2
T fixed for x evolution.

In Fig. 9 we have shown our solution of KC improved
MD-BFKL equation (50) in three dimension. The kinematic
region for our study is set to be 10−6 ≤ x ≤ 10−2 and
1 GeV2 ≤ k2

T ≤ 103 GeV2. In the 3D surface, the suppres-
sion in the rise of the gluon distribution towards small x due
to shadowing correction is visible. However, a linear rise of
the surface in the k2

T direction can be seen, attributed to the
1/k2

T factor in the nonlinear term, which offset the effect of
shadowing at large x .

In Fig. 10 we have shown density plots of f (x, k2
T ) in

x-k2
T domain to examine the sensitivity of f (x, k2

T ) towards
the parameterλ. Density plot allows us to visualize and distin-
guish the kinematic regions with high/low f (x, k2

T ) in x-k2
T

plane which is more informative then any ordinary 3D plot.

Fig. 9 Three dimensional representation of a TMDlib HERA data fit:
PB-NLO-HERAI+II+2018 (left), b our solution for KC improved MD-
BFKL in x-k2

T phase space (right)
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Fig. 10 Density plots showing
λ sensitivity of unintegrated
gluon distribution f (x, k2

T ),
sketched for two canonical
choice of λ viz. λ = 0.4 (left)
and λ = 0.6 (right)

Fig. 11 Density plots showing
R sensitivity of unintegrated
gluon distribution f (x, k2

T ),
sketched for two form of
shadowing: conventional
R = 5 GeV−1 (left) and
extreme R = 2 GeV−1 (right)

In Fig. 10 the plots are sketched for two canonical choices of
λ viz. λ = 0.4 and 0.6 corresponding to two αs values 0.15
and 0.23. Our solution seems to be very sensitive towards a
small change in λ. An apparent 50% change in λ (0.4–0.6)
suggests approximately around one order of magnitude rise
in gluon distribution f (x, k2

T ) for an approximate limit of x
and k2

T : 10−6 ≤ x ≤ 10−5 and 50 GeV2 ≤ k2
T ≤ 100 GeV2.

It is also observed that the range of high k2
T and very small-x

is the high gluon distribution f (x, k2
T ) region where gluons

are mostly populated. In Fig. 11 we have shown R sensitivity
of our solution for two choices of the shadowing parameter
R viz. R = 5 GeV−1 and 2 GeV−1. A satisfactory shadow-
ing effect is observed from the comparison of the two plots.
The extreme form of shadowing (R = 2 GeV−1) is found
to suppress atleast 10–20% magnitude of gluon density than
the conventional shadowing (R = 5 GeV−1) in the high k2

T
and small-x region.

3 Equation of critical line and prediction of saturation
scale: a differential geometric approach

The so-called saturation physics allows one to study the
high parton density region in the small coupling regime. The
transition from the linear region to saturation region is char-
acterized by the saturation scale. The saturation momentum
scale Qs is the threshold transverse momentum for which
non-linearity becomes visible. The boundary in (x, Q2) or
(x, k2

T ) plane along which saturation sets in is characterized
by the critical line. An important feature of our analytical
solution to the KC improved MD-BFKL equation is the find-
ing of the equation of the critical line which is supposed to
mark the boundary between dilute and dense partonic system
in x-k2

T phase space.
Although the gluon saturation can be achieved only when

Qs ∼ Q (or k2
T ), the observables already become sensitive to
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Fig. 12 a Contour plot
obtained by solving (55) (left).
Solid lines show contours of
constant gradients along the
curve. b Diagram showing
critical boundary line separating
high and low gluon density
region (right). Blue dashed line
is obtained from (58) while red
dashed line is corresponding to
GBW model [39]

(a) (b)

Qs during the approach to saturation regime. This property
is known as geometrical scaling in DIS inclusive event which
means that instead of depending on k2

T and x separately, the
gluon distribution depends on a single dimensionless variable
k2
T

Q2
s

i.e.

φ(x, k2
T ) ≡ φ

(
k2
T

Q2
s

)
. (51)

In recent years, this geometrical scaling property of DIS
observables is studied very extensively for various frame-
works [40–44]. In [41] an analysis of the saturation scale has
been performed in the platform of resummed NLLx BFKL
where the saturation scale was calculated via the relation

−dω(γc)

dγc
= ωs(γc)

1 − γc
, (52)

which has been repeatedly derived in several literature [7,
45,46]. In [40] the saturation scale Qs was obtained from
the numerical solution of a nonlinear equation by finding
the maximum of the momentum distribution of the gluon.
Another approach for determination of Qs can be found in
[25] where a parameter β is defined as the relative difference
between the solutions to the linear and nonlinear equation,

β = | f lin(x, Q2
s (x, β)) − f lin(x, Q2

s (x, β))|
f lin(x, Q2

s (x, β))
. (53)

The crucial parameter β actually depicts the percentage devi-
ation that the non linear solution shows from the linear one
and it lies in the order of 0.1–0.5 (or 10–50% deviation).

Our approach towards studying geometrical scaling and
critical line is primarily based on the basic understanding
from differential geometry, in particular gradient of a func-
tion which is considered as the direction of steepest ascent
of that function. Each component of the gradient gives us

the rate of change of the function with respect to some stan-
dard basis i.e. it gives us an idea about how fast our function
grows or decays or saturates with respect to the change of
the variables. One important advantage of choosing gradient
is that it is a two dimensional object since it does not pos-
sess any component along f (x, k2

T ) axis in R
3. This ensures

that it does not have any direct dependence on the magnitude
of gluon density f (x, k2

T ), rather it depends on the rate at
which f (x, k2

T ) changes with respect to x and k2
T change.

This property of gradient actually helps us in distinguish-
ing out the saturation region and linear region although the
distribution function f (x, k2

T ) has large variation in order of
magnitude for different regions in x-k2

T phase space.
Recall that towards small-x , gluon evolution is suppressed

due to shadowing effect as sketch in Fig. 9 which motivates us
to evaluate the gradient of f (x, k2

T )particularly along x basis.
For simplicity we consider an unit vector ν along η̃ (= 1/x)
basis, we can project the gradient ∇ f (η̃, k2

T ) along ν via
dot product ∇ f (η̃, k2

T ).ν. This scalar quantity can also be
interpreted as the directional derivative along the direction
ν,

g ≡ ∇ν f (η̃, k2
T ) = ∇ f (η̃, k2

T ).ν. (54)

Taking the Euclidean norm yields

g = ± |∇ν f (η̃, k2
T )|, (55)

where the negative (−) sign is for the descending function
(or negative slope).

We obtained a family of contours (or level curves) η̃(k2
T )

in η̃ − k2
T plane solving (55) as shown in Fig. 12a. Each

contour depicts a constant gradient g along the curves. The
set of contours can also be identified as some set of possi-
ble saturation scales. As sketch in Fig. 12a the η̃ − k2

T plane
is divided into two regions: low gluon density region where
the spacing between two consecutive contours is very small
and high gluon density region where the spacing becomes
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very large compared to previous. This distinction in con-
tour spacing in the two regions comes from the fact that the
gradient changes very fast until the saturation is reached
and then after reaching the saturation boundary gradient
changes very slowly or almost freezes for further increase
in η̃(k2

T ) as can be seen in Fig. 12a. In high gluon density
region, the contour curves tend to η̃(k2

T ) → ∞ towards
high k2

T . For low gluon density region, shadowing effects are
negligible and the contours become almost parallel straight
lines.

Let us try to find the equation of critical line which divides
the two regions in η̃ − k2

T space. The level curves of the
function g = ±|∇ν f (η̃, k2

T )| are two dimensional curves
that can be obtained by setting g = k where k is a constant
(k ∈ R). Therefore, the equations of the level curves are
given by

|∇ν f (η̃, k2
T )| = ±k. (56)

Now for a known initial saturation momentum scale Qs0(1/x0)

we can predict equation of the critical line using (55) and
(56). The equation of the critical line is the equation for the
level curve of the function g = ±|∇ν f (η̃, k2

T )| that passes
through the point (Qs0(η̃0), η̃0). First we find the value of k
by plugging the point (Qs0(η̃0), η̃0) into (56)

ks0 = ±|∇ν f (Q
2
s0(η̃0))|. (57)

Now the level curve passing through (Qs0(η̃0), η̃0) is
obtained by setting

|∇ν f (η̃, Q2
s )| = |∇ν f (Q

2
s0(η̃0))|, (58)

which is the equation of the critical boundary. The knowledge
of an appropriate initial saturation scale Qs0(1/x0) allows
one to separate out the linear and saturation region using
(58). In Fig. 12b we have sketched a possible critical line
obtained from (58) for the choice of initial saturation scale
Q2

s0(η0) � 2.8 GeV2 at η0 = 106 (or x0 = 10−6) which is
taken from the calculation from the original saturation model
by Golec–Biernat and Wusthoff [25,39]. A rough agreement
between our prediction and that of GBW model is observed
in Fig. 12b. However, Qs given by (58) is found to have
weaker x dependence than the one from GBW model Q

′2
s .

The saturation scale has direct dependence on partons per
unit transverse area. Smaller x suggests larger parton density
giving rise to a larger saturation momentum scale, Q2

s . In
other words the saturation scale Qs depends on x in such a
way that with decreasing x one has to probe smaller distances
or higher Q2 in order to resolve the dense partonic structure
of the proton which is clear from our analysis.

4 KC improved MD-BFKL prediction of HERA DIS
data

4.1 DIS structure functions and reduced cross section

In this section we present a quantitative prediction of pro-
ton structure functions F2(x, Q2) and longitudinal struc-
ture function FL(x, Q2) as an outcome of our solution to
the KC improved MD-BFKL equation. At small-x , the sea
quark distribution is driven by gluons via. g → qq̄ pro-
cess. This component from sea quark distribution can be
calculated in perturbative QCD. The relevant diagram for
this QCD process is shown in Fig. 13 and the contribu-
tion to the transverse and longitudinal components of the
structure functions can be written using the kT -factorization
theorem [47,48]

Fi(x, Q
2) =

∫ 1

x

dx
′

x ′

∫
dk2

T

k4
T

f

(
x

x ′ , k
2
T

)
F (0)

i (x
′
, k2

T , Q2),

(59)

where i = T, L and x
x ′ is the fractional momentum carried

by gluon which splits into qq̄ pair. F (0)
i includes both the

quark box and cross box contribution which comes from
virtual gluon-virtual photon subprocess leading to qq̄ pro-
duction (Fig. 13). The gluon distribution f ( x

x ′ , k2
T ) in (59)

represents the sum of the gluon ladder diagrams in the lower
part of the box as shown in Fig. 13 is given by BFKL equa-
tion [26]. Here we will study the effect of gluon shadow-
ing using the solution f (x, k2

T ) of KC improved MD-BFKL
in (59).

The explicit expression for quark box contribution F0
i can

be obtained by writing four momentum in terms of the conve-

nient light like momenta p and q
′ ≡ q+ xp, where x = Q2

2p.q

and Q2 = −q2 like as usual (see Fig. 13). Now we can
decompose quark and gluon momentum in terms of sudakov
variables

κ = αp − βq ′ + κT ,

k = ap + bq ′ + kT . (60)

The integration should be performed over the box diagram
subject to quark mass-shell constraints [29]

(α − x)2p.q(1 − β) − κ2
T = m2

q ,

(a − α)2p.qβ − (κT − kT )2 = m2
q , (61)

which leads to the box contribution [49]
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Fig. 13 Diagrammatic
representation of the
factorization formula (59) where
gluon couples to virtual photon
through the a quark box (left)
and b crossed box (right)
diagrams

(a) (b)

F̃ (0)
T (k2

T , Q2) = 2
∑
q

e2
q
Q2

4π2

∫ 1

0
dβ

∫
d2κT αs(κT )

×
{

[β2 + (1 − β)2]
[

κ2
T

L2
1

− κT .(κT − kT )

L1L2

]
+ mq

L2
1

− m2
q

L1L2

}
,

(62)

F̃ (0)
L (k2

T , Q2) = 2
∑
q

e2
q
Q4

π2

∫ 1

0
dβ

∫
d2κT αs(κT )

× β2(1 − β)2
(

1

L2
1

− 1

L1L2

)
, (63)

where the denominators L i are

L1 = κ2
T + β(1 − β)Q2 + m2

q ,

L2 = (κT − kT )2 + β(1 − β)Q2 + m2
q .

Note that F̃ (0)
i (k2

T , Q2) ≡ ∫ 1
x

dx
′

x ′ F
(0)
i (x

′
, k2

T , Q2) i.e. the x
′

integration of (59) is implicit in the d2k
′
T and dβ integration

in (62) and (63). Now plugging (62) and (63) in the kT -
factorization formula (59) we get

FT (x, Q2) = 2
∑
q

e2
q
Q2

4π2

∫ ∞

k2
0

dk2
T

k4
T

∫ 1

0
dβ

∫
d2κTαs(κT )

×
{
[β2 + (1 − β)2]

[
κ2
T

L2
1

− κT .(κT − kT )

L1L2

]

+ mq

L2
1

− m2
q

L1L2

}
f

(
x

x ′ , k
2
T

)
, (64)

FL(k2
T , Q2) = 2

∑
q

e2
q
Q4

π2

∫ ∞

k2
0

dk2
T

k4
T

∫ 1

0
dβ

∫
d2κTαs(κT )

× β2(1 − β)2
(

1

L2
1

− 1

L1L2

)
f

(
x

x ′ , k
2
T

)
.

(65)

Equations (64) and (65) serve as the basic tool for calculating
structure functions at small-x provided that the gluon distri-
bution f (x, k2

T ) is known. An analytical approach towards
the calculation of F2 and FL can be found in literature [55,56]
for fixed coupling case using linear BFKL equation. In the
literature [28], structure functions are calculated taking gluon
distribution f (x, k2

T ) from the numerical solution of unita-
rized BFKL equation for running coupling consideration.
It has been seen that the analytical approach [56] consid-
erably overestimates the actual (numerical) solution [28].
This is because of the fact that analytical approach neglects
terms down only by powers of ln(1/z)−1 as well as it does
not accommodate running of strong coupling. However, our
approach is a semi-analytical one, in the sense that we take
gluon distribution from our analytical solution while further
integrations are performed numerically. This indeed allows
us to check the feasibility of our analytical solution in describ-
ing DIS data.

In (59) mq denotes the quark mass and it is taken to be
mq = 1.28 GeV for charm quark while massless (mq = 0)
for light quarks (u, d and s). Our phenomenology is limited
for light quark therefore putting m = 0 in (62) and replacing
the quark transverse momentum by κT = κ

′
T + (1 − λ)kT

we obtain [56]
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F̃ (0)
T (k2

T , Q2)

=
∑
q

e2
q
αs

π
Q2k2

T

∫ 1

0
dβ

∫ 1

0
dλ

∫ ∞

0
dκ

′2
T [β2 + (1 − β)2]

× λ
(2λ − 1)κ

′2
T + (1 − λ)[λ(1 − λ)k2

T + β(1 − β)Q2]
[κ ′2

T + λ(1 − λ)k2
T + β(1 − β)Q2]3

.

(66)

After integrating over κ
′2
T one can arrive at

F̃ (0)
T (k2

T , Q2) =
∑
q

e2
q
αs

π
Q2k2

T

∫ 1

0
dβ

∫ 1

0
dλ

× [λ2 + (1 − λ)2][β2 + (1 − β)2]
λ(1 − λ)k2

T + β(1 − β)Q2
. (67)

Equations (66) and (67) are written in terms of Feynman
integral which actually eliminates the azimuthal dependence
and reduces the two fold integral d2κT of (62) to sin-
gle integral πdκ

′2
T . From (67) it is clear that F̃ (0)

T (k2
T , Q2)

or F(x
′
, k2

T , Q2) possess the dimension of k2
T . Therefore,

F(x
′
, k2

T , Q2) or more conveniently F(x
′
, k2

T , Q2)/k2
T may

be considered as the structure function of an off mass shell
gluon of approximate virtuality k2

T . In [55] differential struc-
ture functions have been studied for fixed coupling and it is
found that the ratio between longitudinal FL and transverse
structure function FT is 2:9 for fixed coupling approxima-
tion. We have considered this ratio directly in our calculation
of longitudinal structure function. Finally, we have taken an
assumption f (x/x

′
.k2
T ) → f (x, k2

T ) i.e. we ignore the x
′

dependence of f (x/x
′
.k2
T ) which is reasonable in LLx accu-

racy since

(
ln

x

x ′

)n

= (ln x)n[1 + O(1/ ln x)].

The advantage of taking this assumption is that we do not
have to impose the possible constraint [29] coming from
x/x

′
< 1 on the region of integration. In principle, the fac-

torization formula (59) require to be run down to k2
T = 0.

The integral itself is infrared finite as both the functions
f ( x

x ′ , k2
T ) and F (0)

i (x
′
, k2

T , Q2) vanish at k2
T = 0. However,

BFKL dynamics is based on perturbative QCD which is not
expected to hold the nonperturbative small k2

T physics. On
the other hand, for small k2

T the gluon distribution vanishes
linearly with the decrease in k2

T on account of gauge invari-
ance [28] making the contribution small. Therefore, we have
neglected this small contribution from small k2

T region in our
calculations of unintegrated gluon distribution f (x, k2

T ).
Before proceeding to the realistic estimation of the struc-

ture functions, we add on the “background” some non-BFKL

contribution, FBG
i to Fi since the above prediction of struc-

ture function is not enough for describing DIS data [28]. This
is because (64) and (65) represent only the LLx gluon con-
tribution and they are not the only contributions to the DIS
structure functions. Although gluonic contribution is domi-
nant at small-x , towards higher x their effect becomes weak
and we cannot neglect other non-BFKL contribution. For
instance, we assume that FBG

i evolves like x−0.08 motivated
from soft pomeron intercept αP (0) = 1.08 [58]. To be pre-
cise we use

FBG
i (x, Q2) = Fi(x0, Q

2)

(
x

x0

)−0.08

. (68)

An intelligent way of calculating this non-BFKL contribution
is to choose x0 at some high x and then take FBG

i (x0, Q2)

from data [52] which is also listed in the figure caption. The
recent HERA DIS data taken for comparison with our result
can be found in [50,57] from H1 collaboration and in [51]
from ZEUS collaboration. In the text [50] from H1 collabo-
ration inclusive neutral current e± p scattering cross section
data collected during the years (2003-2007) is presented. The
beam energies Ep of corresponding H1 experiment run are
920, 575 and 460 GeV2. Corresponding FL data of H1 is
taken from [57] where measurement are performed at c.m.s.
energies

√
s = 225 and 252 GeV. On the other hand, in

[51] from ZEUS collaboration reduced cross sections for
ep scattering for different c.m.s. energies viz. 318, 251 and
225 GeV is presented. The fixed target data from NMC [52]
and BCDMS [53] collaboration which exist for x > 10−2

is also shown in the Fig. 14. Finally, we have included data
from global parameterization groups viz. NNPDF3.1sx [37]
and PDF4LHC15 [54] for comparison.

The x dependence of the structure functions FL and F2

is shown in Figs. 14 and 15 for the four Q2 values 5 GeV2,
15 GeV2, 35 GeV2 and 45 GeV2. The nonperturbative con-
tribution, Fnpert.

2/L (or FBG
2/L ) given by (68) contrasted with total

(nonpert. +pert.) contribution, Fnpert.+pert.
2/L . QCD prediction

shows a satisfactory agreement with DIS data for both struc-
ture functions F2 and FL . It is clear that perturbative contribu-
tion is insignificant towards large x (≥ 10−2), while for small
x around x ≤ 10−3 this contribution becomes visibly impor-
tant. Interestingly both data and theory for F2 structure func-
tion seem to preserve the x−λ singular behavior rather than
showing taming due to net shadowing effect in the asymptotic
limit x → 0. It is difficult to observe the existence of any siz-
able shadowing effect for x > 10−3. However, for x < 10−3,
recalling that the shadowing term is proportional to 1/R2 it
is seen that for R = 2 GeV−1 (gluons in hotspots) the rise of
structure function becomes slower than that of R = 5 GeV−1

(R = RH , hadron radius) as expected. But even the extreme
form of the gluon shadowing (R = 2 GeV−1) suppresses
F2 only by about 10% or less at 10−3. It just depicts that
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Fig. 14 Prediction for proton structure function F2 obtained for two
choices of shadowing: conventional (R = 5 GeV−1) and “hotspot”
(R = 2 GeV−1). Data are taken from HERA (H1 [50] and ZEUS
[51]) as well as fixed target experiment (NMC [52] and BCDMS [53]).
Data-sets from global parametrization groups NNPDF3.1sx [37] and

PDF4LHC 15 [54] is also included. The background contribution is
given by (68) with FBG

2 (x0 = 0.1) ≈ 0.316, 0.384, 0.391 and 0.406
corresponding to four Q2 values viz. 5 GeV2, 15 GeV2, 35 GeV2 and
45 GeV2. Separate plots of Fnpert.

2 vs. Fnpert.+pert.
2 is also sketched

shadowing has the negligible impact on structure functions
even towards smaller x . This is because of the fact that in
this low x regime gluons are expected to drive the sea quark
distribution via g → qq̄ . Therefore, a similar sea quark con-
tribution to the structure function F2 in addition to the gluon
contribution can be expected in low x regime. On the other
hand from Fig. 15 it is clear that for x > 10−3, the size of
the longitudinal structure function is negligibly small while
for very small-x regime (x < 10−3) , FL grows eventually.
This is in accord with our expectation since measurement of
FL directly probes the gluonic content of the proton which
is dominant in small-x regime.

The proton structure functions F2 and FL are of comple-
mentary in nature. These are related to the γ ∗ p cross sec-
tions of longitudinally and transversely polarized photons
σL and σT as FL ∝ σL and F2 ∝ (σL + σT ). Since σL

and σT are positive, that imposes a restriction on FL and

F2 i.e. 0 ≤ FL ≤ F2. To circumvent the need of a proper
relationship between the structure functions and polarized
cross sections to study γ ∗ p cross section one can define a
ratio between the structure functions or the equivalent cross
section ratio

R = σL

σT
= FL

F2 − FL
. (69)

The advantage behind this formulation is that this is inde-
pendent of any normalization factors.

In Fig. 16 a phenomenological comparison between data
and theory is shown to illustrate Q2 dependence of the ratio
R(x, Q2). The HERA data taken for comparison can be
found in [57] where ep cross section data measured for two
center of mass energies

√
s = 225 and 252 GeV is enlisted.

From Fig. 16 it is clear that the HERA data is in general
agreement with the QCD expectation. Available H1 data for
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Fig. 15 Prediction for proton structure function FL obtained for two
choices of shadowing: conventional (R = 5 GeV−1) and “hotspot”
(R = 2 GeV−1). Data are taken from HERA H1 [57] and ZEUS
[51]. Data-sets from global parametrization group PDF4LHC 15 [54]

is also included. The background contribution is given by (68) with
FBG
L (x0 = 0.1) ≈ 0.057, 0.063, 0.071 and 0.073 corresponding to

four Q2 values viz. 5 GeV2, 15 GeV2, 35 GeV2 and 45 GeV2. Sep-
arate plots of Fnpert.

2 vs. Fnpert.+pert.
2 is also sketched

very low Q2 (Q2 ≤ 5 GeV) is also sketched in Fig. 16. We
have excluded the very low Q2 region in our calculation of
R since we are bounded to stick in the perturbative region.
However, a more realistic study in this transition region is
performed in Sect. 4.2.

Now we try to predict reduced cross section σr for ep
scattering process from the knowledge of structure functions
that we have discussed above. The inclusive deep-inelastic
differential cross section for ep scattering can be represented
in terms of three structure functions F2, FL and xF3. The
structure functions have direct dependence with DIS kine-
matic variables, x and Q2 only, while the cross section has
additional dependence with inelasticity y = Q2/sx . The
inclusive cross section for neutral current ep scattering is
given by

d2σ e± p

dxdQ2 = 2πα2

xQ4 Y+
(
F2 − y2

Y+
FL ∓ Y−

Y+
xF3

)
, (70)

where Y± = 1 ± (1 − y)2. The cross section for exchanged
virtual boson (Z or γ ∗) is related to F2 and F3 in which con-
tribution from both longitudinal and transverse boson polar-
ization state exists. On the other hand, only the longitudinal
polarized virtual boson exchange processes contribute to FL

which has a significant impact on higher order QCD though
it vanishes at lowest order. At small momentum transfer Q2

(i.e. Q2 � M2
Z ≈ 800 GeV2), interaction of massless pho-

ton is dominant over the exchange of heavy Z boson. Thus,
the contribution from Z boson exchange and the influence of
the term xF3 is negligible at low and moderate Q2. There-
fore, in this range of Q2, in one photon exchange approx-
imation, the differential cross section formula (70) can be
written as

σr ≡ d2σ e± p

dxdQ2

xQ4

2πα2

1

Y+
=
(
F2 − y2

Y+
FL

)
, (71)
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where σr is the reduced cross section. Note that (71) is sym-
metric under charge exchange i.e. identical for both e+ p and
e− p processes unlike (70). Additionally, it is independent of
incoming electron helicity state. Thus, at low and moderate
Q2 (≤ m2

Z ) which is our region of study, the knowledge of

Fig. 16 pQCD prediction from KC improved MD-BFKL for the ratio
R(Q2) in the kinematic range 2 GeV2 ≤ Q2 ≤ 100 GeV2. The data
[57] are from H1 (

√
s = 252 GeV) and ZEUS (

√
s = 225 GeV) exper-

iment. The theoretical calculation are for
√
s = 225 GeV analogous to

c.m.s. of ZEUS

F2 and FL is enough to predict the reduced cross section. We
can also express reduced cross section in terms of the ratio
R(x, Q2) defined in (69) replacing FL by FL = R

1+R F2

which yields

σr = F2(x, Q
2)

[
1 − y2

Y+
R

1 + R

]
. (72)

The x dependence of e± p reduced cross section σr calcu-
lated for center of mass energy

√
s = 318 GeV is shown in

Fig. 17. Our theoretical expectation is compared with HERA
H1 measurement [59,60] and ZEUS (

√
s = 318 GeV) [51].

The available H1 data for low Q2 (≤ 12 GeV2) measured at√
s = 318 GeV (SVX) and 300 GeV (NVX-BST) is taken

from [59], while the same for high Q2 (> 12 GeV2) is taken
from [60]. The cross section measurement of SVX is found to
be slightly higher than that of NVX-BST as expected because
of the increase in center of mass energy. Both theory and data
agree well for our phenomenology range Q2 ≤ 100 GeV2.
The distinction in σr due to the two forms of shadowing
R = 5 GeV−1 and R = 2 GeV−1 is more prominent for
smaller Q2 values. For each Q2, starting at some high x
the reduced cross section first increases as x → 0 and then
an abrupt fall in cross section can be observed in both the-
ory and data at very small-x region (x < 10−4) . For all
Q2, this region of x corresponds to the highest inelasticity
y ≈ 0.65 (y = Q2/sx) and thus characteristic turn over of

Fig. 17 Theoretical prediction from KC improved MD-BFKL for reduced cross section σr (x, Q2). The data are from H1 [59,60] (
√
s ≈ 318, 300

and 252 GeV2) and ZEUS [51] (
√
s ≈ 318 GeV2). Theoretical calculations are for

√
s = 318 GeV2
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cross section at y ≈ 0.65 can be attributed to the influence
of FL . In simple words, towards very small-x (or high y) the
monotonic rise of F2 is suppressed by the contribution from
longitudinal structure function FL thereby causing an overall
fall in the cross section. For low inelasticity y < 0.65, the
contribution from the longitudinal structure function is small
on the other hand, structure function F2 exhibits a steady
increase as x → 0. Therefore, in the region where x is not so
small, the growth of the cross section is found to be power
like as expected.

4.2 Virtual photon–proton cross section prediction in
transition region

Traditionally the photon–proton interaction is classified into
two separate processes depending upon the photon virtual-
ity Q2 viz. photoproduction (at low Q2) and deep inelas-
tic scattering (at high Q2). DIS is considered as a basic
tool for exploring pQCD where the point like virtual pho-
ton directly probes the partonic contents of the proton. On
the other hand, photoproduction is completely nonperturba-
tive phenomena defined in the limit of vanishing Q2 where
real (or quasi-real) photons interact with the proton more
likely a hadron-hadron collision. The experiment at HERA
collider provides a unique opportunity to study both the pro-
cesses photoproduction and DIS on their respective kine-
matic domains. The Q2 dependence of the proton structure
functions are well described by pQCD over a wide range
of x and Q2 [61,62] in accordance with HERA data. How-
ever, for Q2 � 2 GeV2 (photo production region) the pQCD
breakdowns since the higher order contributions to the per-
turbative expansion becomes very large. In this region, data
can be only described by non-perturbative phenomenolog-
ical models [63]. Our present study is especially focused
on the transition region (2 GeV2 ≤ Q2 ≤ 10 GeV2) from
photoproduction to deep inelastic scattering. To measure the
photon–proton cross section in the transition region two ded-
icated runs were performed in the years 1999 (Nominal ver-
tex “NVX’99”) and 2000 (Shifted Vertex “SVX’00”) by H1
experiment at HERA. The published data can be found in
[59].

Recall the neutral current ep double differential cross
section formula (71) defined in the region Q2 � M2

Z . In
this region massive boson (MZ ) exchange is neglected and
only one photon exchange is considered, thereby the role of
incoming electron reduces to be a source of virtual photon
interacting proton. Thus, we can recast the formula (71) in
terms of photon–proton reaction. In fact the structure func-
tion F2 and FL in (71) related to the longitudinally and trans-
versely polarized photon–proton scattering cross sections σL

and σT by the relations

Fig. 18 QCD prediction from KC improved MD-BFKL for virtual
photon–proton cross section σ eff

γ ∗ p as a function of Q2 at different values
of W . The cross section for different W values are multiplied by factor
multiple of 2 indicated in the figure. The included data are from H1 [59]
(
√
s = 318 GeV) and ZEUS [64] (

√
s = 300 GeV)

FL = Q2

4π2α
(1 − x)σL , (73)

F2 = Q2

4πα
(1 − x)(σL + σT ), (74)

which hold good at low x . Considering (73) and (74) the
reduce cross section in (71) can be written as

σr = Q2(1 − x)

4π2α
σ eff

γ ∗ p, (75)

where

σ eff
γ ∗ p = σT +

(
1 − y2

Y+

)
σL (76)

is the effective virtual photon–proton cross section. Note that
the expression for σ eff

γ ∗ p is similar to the total cross section

σ tot
γ ∗ p which is linear combination of σL and σT i.e. σ tot

γ ∗ p =
σL + σT . In fact the total cross section σ tot

γ ∗ p and σ eff
γ ∗ p can

be regarded as the same quantity at low inelasticity y i.e.

σ eff
γ ∗ p

y→0−−−→ σ tot
γ ∗ p which differ only in the region of high y.

Figure 18 shows the measurement of the virtual photon–
proton cross section σ eff

γ ∗ p as a function of Q2 corresponding

to different values of W . The total cross section σ tot
γ ∗ p is often

expressed as a function of Q2 and invariant massW . The stan-
dard relation between W , x and Q2 is W = √

Q2(1 − x)/x .
Since Q2 ≈ syx , for small-x we can have an approximate
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relationship between W and y i.e. W 2 � sy which we have
used in our calculations. HERA measurement for σ eff

γ ∗ p from
H1 [59] (

√
s = 318 GeV) and ZEUS [64] (

√
s = 300 GeV)

are included for comparison with our theoretical prediction.
We have chosen

√
s = 318 GeV for our calculation analo-

gous to H1 measurement. The precision of the data is such
that their errors are hardly visible. Both the HERA data and
theoretically measured cross sections for different values of
W are multiplied by the factors multiple of 2 as indicated
in the figure. For Q2 � 3 GeV2, an excellent agreement
between the theory and HERA data can be observed for
the wide range of W , while for Q2 < 3 GeV2, the slop of
the QCD prediction seems unsatisfactory. This indicates the
inadequacy of perturbative QCD at very low Q2 (< 3 GeV2)
and roughly provides a lower bound of Q2 to our theory.

5 Conclusion

In conclusion, we have presented a phenomenological study
on the behavior of unintegrated gluon distribution at small-
x and moderate k2

T region particularly 10−6 ≤ x ≤ 10−2

and 2 GeV2 ≤ k2
T ≤ 1000 GeV2 which is also the accessi-

ble kinematic range to experiments performed at HERA ep
collider. In the beginning, we have improved the MD-BFKL
equation supplementing so-called kinematic constraint on it.
Then we have solved this unitarized BFKL equation analyt-
ically in order to study x and k2

T dependence of unintegrated
gluon distribution function. Our prediction of gluon distribu-
tion is contrasted with that of modified BK equation as well
as global datasets NNPDF 3.1sx and CT 14. The x evolution
of gluon distribution shows the singular x−λ type behav-
ior of gluon evolution tamed by shadowing correction. We
found that for intense shadowing (R = 2 GeV−1), towards
smaller x, certainly from x = 10−4, the gluon distribution
emerges from rapid BFKL growth which indicates the dom-
inance of gluon shadowing. While in case of conventional
shadowing (R = 5 GeV−1) an appreciable modification of
BFKL behavior can only be seen from x = 10−5. The k2

T
dependence of unintegrated gluon distribution is also studied.
Although obvious suppression due to net shadowing correc-
tion is seen in our studies, however no significant saturation
phenomenon is observed. The reason is the nonlinear contri-
bution term is suppressed by the factor 1/k2

T at large values
of k2

T .
We have obtained a more general solution of KC improved

MD-BFKL equation implementing a pre-defined input dis-
tribution on it. This has allowed us to visualize the gluon
evolution in three dimensions R3 into x-k2

T phase space. We
have also shown the sensitiveness of unintegrated gluon dis-
tribution towards R and λ using density plots in x-k2

T plane.
An important achievement of obtaining an analytical solu-

tion in this work is its implication on qualitative studies on

geometrical scaling which is presented in Sect. 3. Starting
from a basic concept of differential geometry and knowl-
edge of level curves we have managed to obtain an equation
of the critical boundary which is supposed to separate low
and high gluon density regions.

In Sect. 4 we have studied the small-x dependence of the
structure function F2 and FL obtained via kT -factorization
formula Fi = f ⊗ F (0)

i . Here the unintegrated gluon distri-
bution f (x, k2

T ) is taken from our analytical solution of KC
improved MD-BFKL equation setting boundary condition at
x0 = 0.01. Surprisingly the quantitative size of the shadow-
ing correction to F2 and FL is found to be very small and the
structure functions seem to hold the singular x−λ behavior.
Even at intense shadowing condition (R = 2 GeV−1) the F2

structure function is found to be suppressed only by 10%.
In addition we have measured e± p reduced cross section
as well as equivalent γ ∗ p longitudinal to transverse cross
section ratio R(x, Q2) from the knowledge of F2 and FL .
Our results are compared with recent high precision HERA
measurements. The comparison reveals a good agreement
between our theory and DIS data.

In Sect. 4.2 we have examined the virtual photon–proton
effective cross section, particularly in the transition region
from photoproduction to deep inelastic scattering. The quan-
tity σ eff

γ ∗ p serves the role of the total cross section if small
inelasticity y is concerned. We have compared our predicted
σ eff

γ ∗ p with the HERA data of two dedicated runs “NVX’99”
and “SVX’00” by H1 as well as ZEUS for the transition
region. Our theoretical prediction shows well-consistency
with HERA data particularly upto Q2 ∼ 3 GeV2 in the tran-
sition region.

In summary, there are several attractive features of our
present study. First, we have able to predict a wide range of
physical quantities, starting right from our solution for unin-
tegrated gluon density. Secondly, all analysis is performed in
terms of relatively small numbers of parameters. Moreover,
the idea developed in this work for studying geometrical scal-
ing can be implemented in any other framework. Finally, a
very significant feature of this analysis is that we have con-
sidered two extreme possibilities of shadowing which can be
distinguished by experimental data. In the end, we conclude
that, as per feasibility towards HERA DIS data is concerned,
the KC improved MD-BFKL equation could be a reliable
framework for exploring high energy physics over a wide
range of x and k2

T which is also relevant for LHC probe and
future collider phenomenology.
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21. J. Kwieciński, A.D. Martin, P. Sutton, Zeitschrift für Physik C

Particles and Fields 71(1), 585 (1996)
22. J.R. Forshaw, P. Harriman, P. Sutton, Nucl. Phys. B 416(3), 739

(1994)
23. A. Askew, J. Kwiecinski, A.D. Martin, P. Sutton, Phys. Rev. D

47(9), 3775 (1993)
24. M. Kimber, J. Kwiecinski, A.D. Martin, Phys. Lett. B 508(1–2),

58 (2001)
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