Eur. Phys. J. C (2019) 79:503
https://doi.org/10.1140/epjc/s10052-019-7000-4

THE EUROPEAN ()]
PHYSICAL JOURNAL C e

updates

Regular Article - Theoretical Physics

Entanglement entropy and complexity of singular subregions in

deformed CFT

Elaheh Bakhshaei'?, Ahmad Shirzad'-2-°

! Department of Physics, Isfahan University of Technology, P.O.Box 84156-83111, Isfahan, Iran
2 School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM), P.O.Box 19395-5531, Tehran, Iran

Received: 3 April 2019 / Accepted: 27 May 2019 / Published online: 13 June 2019

© The Author(s) 2019

Abstract In the framework of the AdS/CFT correspon-
dence, imposing a scalar field in the bulk space-time leads to
deform the corresponding CFT in the boundary, which may
produce corrections to entanglement entropy, as well as the
so-called subregion complexity. We have computed such cor-
rections for a set of singular subregions including kink, cones
and creases in different dimensions. Our calculations shows
new singular terms including universal logarithmic correc-
tions for entanglement entropy and subregion complexity for
some distinct values of conformal weight.
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1 Introduction

Entanglement entropy of a subregion in a conformal field
theory is conjectured to be found holographically as the
extremum area of the extension of subregion into the bulk (i.e.
RT surface) [1,2]. This quantity diverges near the boundary.
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Most of the time people are interested in the behavior of the
divergent terms and their relationship with physical proper-
ties of the system. Specially the logarithmic singularity may
be interpreted as some cut-off independent characteristics of
the system. For instance, in three dimensions the coefficient
of logarithmic term has been shown to be proportional to the
central charge of the corresponding CFT at the boundary [3—
6]. Such relationship are also aimed for higher dimensions
in subsequent works [7].

There is also some interest in the entanglement entropy of
singular subregions in recent years [8—11]. The effect of sin-
gularities gained some attractions, first in three dimensions
[5] and then in higher dimensions [12]. The most interest is to
find new singular terms in the expansion of the entanglement
entropy due to singularity of the considered subregion [13].

Another quantity of great interest is the complexity of
a QFT living in the boundary. Besides the well-known
approaches of complexity = wvolume [14-17] and
comlexity = action [18-22], there is also another conjec-
ture which implies the complexity as the volume enclosed by
the Rio -Takayanagi surface [23,24]. This approach is known
as subregion complexity. In a recent paper [25] we used this
approach to study the subregion complexity of a number of
singular surfaces, focusing on the singularities in terms of
UV cutoff parameter.

Recently some interests have also been arisen to deform
the CFT by imposing a relevant operator [26-31]. Using
the standard AdS/CFT correspondence [32], this may be
achieved, for example, by turning on a scalar field in the bulk.
Hence, the geometry of the bulk is no longer pure AdS; how-
ever, it turns out to be asymptotically AdS near the boundary.
It has been shown that this deformation may lead to appearing
universal logarithmic correction in the entanglement entropy
for definite values of conformal dimension of the relevant
operator. The effect of deformation of the CFT on the entan-
glement entropy is investigated for regular subregions such
as sphere in [33]. For singular subregions, this effect has been
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recently studied for kink in three dimensions in [34] and for
cones in higher dimensions in [35].! Some general aspects
of complexity of the deformed theories are also studied in
[36].

In this paper we are mostly interested in calculating the
entanglement entropy and complexity for a set of singular
surfaces (including cones and creases) in a deformed confor-
mal field theory. After a brief review of deformed conformal
field theories in the next section, we will calculate the entan-
glement entropy for singular subregions of a kink ind = 3
and cones in d = 4, 5 and 6 for a deformed theory. We also
consider creases in d = 4, 5 and 6. This is done in Sect. 3.
The essential calculations and technical points are given in
more details for the case of kink and to some extent for cone
c1. For other singular surfaces we give only the important
results. In Sect. 4 we give our results for the subregion com-
plexities of the same singular submanifolds. We discuss about
our results in Sect. 5.

It is important to distinguish among different types of
singularities. The most familiar kind is that of ordinary
UV divergences of the entanglement entropy and complex-
ity, when we approach the boundary in the framework of
AdS/CFT. The next kind corresponds to geometrical singu-
larities near the needle points or wedges of singular sub-
regions. Finally we encounter new singular terms due to
deforming a theory by a relevant operator. Among different
singular terms people are mostly interested in the logarithmic
singular terms because of their universal characteristics due
to independence of the regularization process.

2 Deformed CFT

Consider a CFT living in the d-dimensional boundary of a
(d+1)-dimensional space-time. As is well-known [33], turn-
ing on a scalar field in the bulk, one can deform the CFT by
a relevant operator. To do this, the Hilbert—Einstein action

. . : dd—-1) .
with a negative cosmological constant A = T 1s
perturbed as follows

1 dd-—1)
I = dd+1 R
167Gy / e L2
1
— Efdd“wg[(a@)z +M2d>2]. (2.1

The mass parameter M determines the conformal dimention
of the boundary operator O (dual to @ ) as

A=y (ML)2+d2
j:—z 4’

! This paper has been published a few days after appearing the first
version of the current paper.

2.2)
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where A and A_ are valid for —% < (ML)2 < —§ +1;
while for —% +1 < (ML)? only A is valid [37]. Due to
this deformation the AdS solution of the Einstein equation
should be deformed. For this reason, one can fix the radial
coordinate z such that the radial component of the metric
remain dz?/z” and a correction factor f(z) is multiplied by
the flat space part of the metric [38]. However, following
[30], in order to simplify calculations we prefer to insert the
correction factor f(z) in the radial part and keep the flat space
as in AdS. Hence, we consider the following ensatz

2 = L_2 |:d_22 — dt? + dp2 + pz(dQZ + sin’ Qdﬂz)]
2 7/@ "l
2.3)

where f(z) is the deformation function. The geometry is
asymptotically AdS, i.e. f(z) — 1 as z — 0. Considering
the equations of motion for metric components as well as the
scalar field @, one can show directly that the expansion of
f (z) near the boundary is as follows

(n)* +...,
(nz)?(loguz)* + ...,

o1+ a2an

where p is a mass parameter determined from the parameter
A of coupling the relevant operator, andw =d — AL = A_
forboth A = Ay and A = A_.

Deforming the bulk geometry leads to some changes in
the entanglement entropy of the subregions as stated above.
It is shown [30] that to lowest order in x4, the variation of the
entanglement entropy for the sphere in a d-dimensional CFT
and A # d/2 reads

1 2 — 2
F(d;r >F< d2+ ot)
88 = — K(uR)™
41 (%+a) (nR)
K(uR)2

22 —d +20a)

(M8)27d+201 + 0(847d+2ot), (24)

where K = L4 1Vol(5972)/4G y, § is the UV cutoff and
R is the radius of the sphere. The first term is the finite result
while the subsequent terms are singular corrections. They are
a limited number of terms which are present unless 2n —d +
2o < 0 where equality leads to logarithmic singularity. For
A =A_whered/2 —1 <o <d/2,wefindn < 1 which
gives no contribution for « # d/2. For A = A4 we have
d/2 < A4 < d which leads to 0 < o < d/2. Hence, for
d = 3 we have a singular term as 712 fora < 1/2 a
logarithmic singularity for « = 1/2 and no singular term for
o > 1/2. Ford = 4,5 and 6 the results are consistent with
what we will find in the next section (see the Table 1).
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Table 1 Entanglement entropy for kink-cones

d Geometry Natural Geometrical singulrities o New divergences for EE
3 k 1/8 logs O<a<3 1/81-2
o= % log$
o > % 0
4 c 1/8%,1og 8 log? 8 O<a<l 1/8% 2
a=1 logé
a>1 0
5 c 1/8,1/83 logs 0<oa<3/2, a#1/2 1/812« 1 /532
a=1/2 1/8%,1og
a=3/2 logé§
o >3/2 0
6 c3 1/82,1/8% log$s log? 8 O<a<2 a#l 1/8272« 1 /542
a=1 1/8%,1og
a=2 logé
o> 2 0

3 Entanglement entropies

Let us rewrite the solution (2.3) of the equations of motion
of the action (2.1) in the following form

L? dz?
ds* = 2_2 |:—dt2+m+dp2

i=l
+p%(d6? + sin? 0dQ2) + de,?} , (3.1)

i=1

In this form we have divided the flat (d — 1)-dimensional
manifold of the boundary at fixed time into a (n+2) flat space
described by spherical coordinates and a /-dimensional space
described by Cartesian coordinates, such thatd = [ +n + 3.
This enables us to introduce the geometrical singularity by
assuming p — 0 when the angle 6 is limited to the interval
[—€2, @] for kink (i.e. n = 0 and [ = 0) and the interval
[0, 2] for cones (i.e.n > 1 and/ = 0). Creases correspond to
extensions / > 1. All of our singular subregions are restricted
to p < H where H is the IR cutoff. Assuming p = p(z,0)
to describe the RT surface, the induced metric reads

2 1 2 L2
/. ’
2 (/(z) +p ) zPrh
§ 4
L L2os o
PP s (p=+p)
L2p? sin2(6) .
—— 8 (S")
h = z

According to RT prescription, the entanglement entropy is
proportional to the minimized area of the RT surface as

2 4 ot 0%+ p?
§=_—""1%"Q /dzd@— sin 6| p?p? + ——
lgfl n zd—1 f(2)

(3.3)

where €2,, is the volume of the unit n-sphere, z = dgz and
7' = 9,z. Inthe following subsections we calculate the entan-
glement entropy for different singular subregions.

3.1 Kink k

The entanglement entropy (3.3) for kink is given by the fol-
lowing integral

27TL2 . /
S|k = lz dZdeL(p7 p»P)» (34)
p
where
52 2
. LG+ 0
L(p,p,p) = = (3.5

Minimizing the above integral gives the equation of motion
of p(z, 0) as follows

. 2. ..
2fzp(p* + 10" +2zp(1+ fp')s
—4fzpp' 60" + z2p0 (0% + P2 f

— 2 (L + fphp? +247)

—4fpp’ ((1 + £ + i)2) =0. (3.6)

@ Springer
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This partial differential equation should be solved according
to the following boundary conditions

ap
an 70 =Ov
ae(z )

p(z, ) =

3.7
(3.8)

Equation (3.7) shows that at arbitrary z the coordinate p on
RT surface acquires its minimum value at 8 = 0, while Eq.
(3.8) shows that at the limiting points & = £ the RT surface
touches the boundary p = H. See Fig. 1 to get a geometrical
feeling about the problem. To solve Eq. (3.6) we consider a
perturbative ensatz where in the limit 4 — 0, we assume
p = z/h(0). This leads to the following equation for 2(6)
24 3h% + h* 4+ 2R% + h(1 + h*)ih = 0, (3.9)
In fact, since the resulting Lagrangian does not contain the
variable 6 explicitly, the corresponding Hamiltonian, i.e.

(14 h?)

WY1+ h2 4R

is constant. Therefore Eq. (3.10) with K3 as a constant can be
considered as the first integration of Eq. (3.9). The boundary
condition (3.7) gives h(0) = 0 at the turning point 8 = 0.
Hence, the constant K3 can be written in terms of 79 = h(0).
In principal the Eq. (3.9) can be solved to find the function
h(0). However, we use this equation to find h as a function
of h. Inserting these results in Eq. (3.6), one can find the
entanglement entropy of kink [13]. Then we can complete
our enzatz by considering the following expansion

K3 = (3.10)

2a 2a+1
L 0) + -
ho) nz 82(0)

0(z,0) = @3.11)

Fig. 1 Schematic figure of the RT extension of the kink (green region)
into the bulk [13]

@ Springer

Inserting the complete ansatz (3.11) into the equation of
motion (3.6) we find (in addition to Eq. (3.9)) the follow-
ing equations for go,

203 (1 + h*) (1 4+ h% + h*) gy + 2h*h(Q2(5 + 2h* + 2)h?
+ (14 h*)(10 + 5h% + 4o + hh)) g,
— 2h(=2(=2+ h* 4+ a + 20*)h* + K2 (22 4 h*
+2(7 = 2a)a + h>(19 + 4o — 8a?)
+ 212+ h* 4 2a)h) + (1 4+ h*)(2(9 + 8a)
+h2(19 4 4h* — 4(=2 + @)a)
+3hQ2+ h% 4+ 2a)h))g,
+ Q=1+ h* + (1 + ) (8 +h* +2h* (=2 + )
+ (=2 + hD)h) + h2(h* + 2(=5 + ) + B> (=5 + 4a)
+h(—1+h>h)) = 0. (3.12)

As is expected, for the generic problem of the entanglement
entropy, we will find UV divergences in the limit z — 0
or equivalently as p — 0 (for arbitrary —Q2 < 6 < Q) or
6 — Q (for finite p). In terms of the variable & the latter
limit is equivalent to 7 — 0. The UV divergent terms of the
entanglement entropy originate from the divergences of the
integrand as well as the limits of the integral Eq. (3.4) as

271L2
Sl = — /dz/ dOL(p, b, p'),
Q+€

which upon changing the integration limits of 6 from
(-2, Q) to (0, Q) and replacing d6 in Eq. (3.4) by dh/h,
reads

4er2 dz hie gn
Sl =— " —L(p hdp/dh. p").

(3.13)

(3.14)

Concerning the integral bounds in Eq. (3.14), from the bound-
ary condition (3.8) we have p(z, 2 — €(z)) = H; hence we
can define h1.(z) = h(2 — €(2)). Inthe limitz = § — 0 we
have h1.(§) = h(2 — €(5)). The limit z,, is also achieved
via the condition p(z,,, 0) = H. Inserting p from Eq. (3.11)
into (3.14) gives the following expansion for the entangle-
ment entropy with respect to

4712
Sl = — 7 (]0+M20‘]1_|_...), (3.15)
p
where
3 hic
I = / dzz20k1 / dhGy(h), (3.16)
Zm ho
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in which

V1+h?+h?
hh?
—h% — h2(1 4 2hgy) +4(1 + a)hgy +2h3 g

2hh2y/1 + h2 + h2

Go(h) = , (3.17)

Gi(h) =

(3.18)

Now to calculate the entanglement entropy one needs to solve
Eq. (3.12) for g;. This is a difficult task. However, since we
are mostly interested to find the UV divergent terms of the
entanglement entropy, we just need to find the asymptotic
behavior the corresponding function g, near the boundary,
i.e. in the limit # — 0. According to Eq. (3.11), in order
to keep p finite in the limit 4 — 0 and § — 0, the most
singular term of g, should be of order /=2~ Assuming
g2 = ah™* ! 4 a’h=>* 4 ... and inserting it in the cor-
responding equations (3.12) (as well as g» = hdgz /dh etc.)
and using Eq. (3.10) for h we find the following results

_a a as ay 3
2= ittt sty +ash + O(h7),
3.19)
where
al 2
a) = ?(2—}-501—20( ), (3.20)

a3 = %(—12 +10K2 — Tor + 4302 — 280 + o),

(3.21)
1

a4 = —m s (322)

as 2 (3.23)

T 15+ 31a + 2002 + 43

The constant a; would be fixed from the boundary conditions
(3.7) and (3.8). Now we need to determine the limiting value
hi to find the divergencies of the integrals (3.16). This can
be down from the same boundary condition p(z, 2) = H in
the limitz = §,1.e. p(8, 2—¢€) = H where h1. = h(Q2—¢€).
Using Eqgs. (3.10) and (3.19) we can find the expansion of
hic in terms of § as follows

1
hlc((g) — <ﬁ +a1/ul/2aH2a_1> (S +a2M20!H20l—353

a
+a3u2aH2a—585 + Mza ﬁ432a+1

+ ;ﬂ“%az"‘” + O(s2+), (3.24)
From the Eqgs. (3.10) and (3.19) we can find the following
expansions for Gg and G in terms of the UV cut-off param-
eter &

Gothy ~ -~ 5 L outy (3.25)
0 22 ’ '
a (1 4+ 2a) 24+« Y
Gi(h) ~ — O™ %). ((3.26
() S+ e+ OB, (326

Separating the singular part of the integrals I, we can divide
them as Iy = I; + I/, where the integrand of I} is regular.
Hence, we have

Io= 15+ 1

(SdZ hie 1
= — dh | Goh) + —=
[zm z /ho ( ot h2>
Sd hice 1
—/ —Z/ dh—
zm < Jho h
(SdZ hie 1
= — dh | Goh) + —=
[zm z /ho ( ot h2>
+f5 dz( 1 1)
o 2 \hic  ho)’

L=1+1

3 hie
= / 221z f dh
Zm ho

ay (1 +2a)
X (G‘(h) + ]h2a+2

8 hie
— / 27z / dh
Zm ho
a;(1+2a) 24+«

x ( R+ (34 2a)h2> '
Note that for instance in the second term of Eq. (3.28) due to
the term z2dz, we just need to consider the first two terms of
the expansion of G in Eq. (3.26). The same task is done in
the other calculations. In order to find the singular behavior
in each case, let take the derivative of I;’s with respect to §,
ie.

dly 1/hlcdh Golh) + 1
ds — 8 Ju 0 K2

I/Odh G h—l—i
5 ), <0() h2>

dhie 1
Go(h) + — ) lnente + -
75 ( o(h) h2)|h_h1c

1/0dh Goh) + = ) + e Kl
5 Jio 0 K2 ds 2

! odh Go(h ! oItk

(3.27)

24+«
(3 +2a)h?

(3.28)

_|_

(3.29)

@ Springer
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dlél H 2 2 2 2
75 :57(1_“1“ CH — n™%aqs “)
1
— — 4+ 0@, 3.30
o +O©7) (3.30)
LI{ — 820{—1 /0
ds o
a (14 2a) 24+« 0
dh (G (h — 02,
* ( W+ = (3+2a)h2>+ @)
(3.31)
di  aiH'"™*  HQ+4a) 5, 5
ds 82 (3 + 2a)
+ 0. (3.32)

Integrating with respect to § we can find the entanglement
entropy for kink in a deformed CFT as

Sk = S0 + S1.4)s (3.33)

where

4n L’ |:log (%) (/hodh (—m

Sok) = —
(0,k) 1[27 hh2

)i 5]

is the he entanglement entropy of kink for the pure AdS case,
consistent with the existing results [13], and

0

(3.34)

42 M2aH82a71

0 1
L 20a—1) =¥=2
Sr) =\ 42 WOH .
7l’§ 7 log(ud) a =5
0 o > %,a * %

is the first order correction of the entanglement entropy due to
deformation with a relevant operator. This result also is con-
sistent with Ref. [34] (see Table 1). The important point is that
here we have a new universal logarithmic correction for the
case ¢ = 1/2. Considering the definition of « in the previous
section, this shows that for a special tuning (M L)*> = —5/2
we have new logarithmic term in entanglement entropy. On
the other hand we have no new UV correction for o > 1/2.

3.2 Cone ¢,

In this subsection, we give some details for the case n = 1
corresponding to d = 4, while forn = 2 and n = 3 we
give only the results. The entanglement entropy of the cone
c1 is achieved by minimizing the RT surface which may be
formulated by p = p(z, 6) as follows

@ Springer

27 QL3 psin(9),/ L + p2p2
Sle, = dezd& p , (3.35)
P

where o = 9gp and p’ = 9,p. For this reason we should
solve the following equation of motion

— 6z5in(0)pp* + 2zc08(0)p° — 4zsin(@)p3(1 + fp'?)
+sin@)p*(ef o' = 6170 + F(=6p" +22p"))
+ 02 (2zsin@)p(1 + fp'%)
+ 2z (cos(0) + fo'(cos()p" — 2sin(6) "))

+sin(@)6% ("0’ + f(=60"+22p"))) =0.  (3.36)

Using the general ensatz (3.11), we can find iterative equa-
tions for the unknown functions 4 (6), g2(0). So the entropy
functional S|, would be written peturbatively as

47213
Sle; == T(IO+M2all o), (3.37)
14
where
3 h]c
Iy = / dzz%k1 / dhG(h), (3.38)
Zm ho
in which
1 2 2
Go(h) = %’ (3.39)
Gi(h)
sin(@) (—h% — h2(1 +2hg) + 4h3 gy + 2h(3 + 20 + h?)g>)
20301 + h2 + h2 '
(3.40)

where as before we have changed the variable 6 to i. Now let
us insert the ensatz (3.11) in the equation of motion (3.36).
Assuming y = sin(6), we have i(y) = /1 — y2/y’ and
h(y) = =((1 = y)y" +yy*)/y"? where y' = dy/dh and
y" = d?y/dh?. Hence the zeroth order part of the equation
of motion reads

B+ h)y(=1+ yD)y + h(1 + "2 (=1 + 2yH)y?
— 3+ 5h* + 2h*)yy"

— (=142 (—1 32+ 1+ hz)yy”) —0.  (341)

In the next order we can use g» = g5/ and g = gih> + ghh,
and relations of / and & in terms of y, y" and y”, to find the
following equation
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hga(—2h(=1 + yH2 2 + h* + 20)
+y@4+y%(5+3#+42a+mﬂ4¢m%1+a+a%)
Xy + (1 412y <9+2h4+6a+h2(11 + 4o —4a2>) »?)
— (=14 )2 (14202 + 1))

F A +hYy xy? (3 —h* (=3 +a) + h* G+ 5h% + 2h4)gé)

+ y(=1 +y2)y'( — 21 +a + h?

x o +h2(1+ h2) (T + 5k + 4a)gh + b2 (1 + k)2 gh) = 0.
(3.42)

The Eq. (3.41) should be solved with the initial conditions
y =sin(Q) ath = 0and y' = 0 at h = hy where hg =
h(6 = 0) is the value of & at the turning point. This equation
can not be solved exactly. However, we are only interested
in the behavior of the quantities near the boundary 7 = 0.
Hence, we only need to know the expansion of y(/4) around
h = 0 which satisfy Eq. (3.41) and the boundary conditions.
The result turns out to be as follows

y = sin(Q) — %cos(sz) cot()h?

+ <6i4(3 — c0s(292)) cot(2)? csc(R) log(h)) *+ om).
(3.43)

Now we want to find the expansion of g» (/) near the bound-
ary. Since p should be finite in the limit 7 — O and z — O,
the most sigular term in the expansion of g, should bo of
order #!=2%_ Inserting a power expansion for g, in terms of
h which begins from 2 into Eq. (3.42) gives the following
result

82= 1ot + s + 7 Hash
+ <1;—13 T bzh) log(h) + O™, (3.44)
where
a) = ;—é csc(29)? (39 + 48a — 160 + 76 cos(2€2)
+(37 — 48 + 16a2) cos(4Q)) (3.45)
a3 = —ﬁ%ﬂ) (3.46)
by = —% (—3 4 cos(2€2)) csc(Q)2 (3.47)
L 3(5+4cos(22)) csc(ZQ)2 (3.48)

32Q+a)(—1+a?)

The undetermined constant (ap) in Eq. (3.44) should be fixed
from the boundary conditions (3.7) and (3.8). Finally we
should insert our results concerning sin 6, h and g; in terms

of h in Egs. (3.39) and (3.40) for Gy and G to find their
needed singular terms as

_sin(Q) n cos(£2) cot(L2)

Go(h) ~ % 7 +0(0), (3.49)
Gi(h) ~ _2a1:22i+nl(9)
(=3 4 o + a?) sin(RQ) )
AT +0Om™h. (3.50)

Now, we can use Egs. (3.49) and (3.50) in the integrands
of Eq. (3.38) to find their behavior near the boundary:

Ip=1Iy+ I

§ hie :
5 /‘ %/ 1 " (Go(h) N sin(€2)  cos() cot(Q))
Zm Z h()

h3 8h

§dz [Me Ssin(Q)  cos(Q) cot(Q)
+/zm7fho dh(— s ) 3.51)

L=1+1

8 hie 2aja sin($2)
20—1 1
X d dh| Gi(h) + ———
/;mZ Z/,;O ( l( ) hza 1

(SBta+t o2) sin(Q)
2(—1 4+ a2)h3

8 he 2aya sin(Q
[t [ an 2
Zm hO th+

(Bta+ o?) sin()
2(—1 4 a?)h3 ’

(3.52)

In order to find the singular terms of the integrals (3.51) and
(3.52) we should find 4. similar to what did in Eq. (3.24).
The result is

1
he@) = 28+ a W H* 383 4+ app > H? 383

2093 2041
—4
+un +

b
+ (bmzaHzas(ss +M2aH_2382a+3> log 8

20 94 §20+3
127 H3

+ 0% ). (3.53)
Following the same technique for calculating derivatives of
the singular terms in terms of the cut-off parameter and inte-
grating it again, we find the entanglement entropy of cone as
follows

Sler = Sl0,e1) + Sl(t,ep) (3.54)
47213 [ sin(Q)H?  cos(Q)cot(R). o (8
Slo,c) =— - log” | —
O,c1) 12 452 16 H

)
+q1 log <H)> ,
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O<a<l1

4213 H2 12 sin(Q)
Lo \8(1 —ws2—2e )’

S| 2,20 o
(1,e1) _47‘[[23L3 (_H 123 4SIH(Q) log(ll«‘s)) , o a=1
V4
0 o> 1
(3.55)
where
cos(R2) cot(Q) sin(2)
q) = —T log(h()) - 2h2
+/ (sm(e) 14+ h2 + h? sin(Q)
ho h3
_ cos@ ot @ (3.56)
8h

The above calculation can also be done for higher dimen-
sional cones, i.e. ford = 5andd = 6 correspondington = 2
and n = 3 in Eq. (3.1), respectively (see the appendix A
for our final results). In Table 1 above, we have shown the
nature of new singularities which emerge due to deformation
of theory by a relevant operator. These singularities should
be accompanied by the ordinary UV singularities, as well
as singularities due to needle points of the subregions con-
sidered. As is seen, for the case ¢y with the special tuning
M?L? = —3 we have new logarithmic corrections in entan-
glement entropy. The same thing happens for example for ¢
with special tunings M2L? = —9/4 and —21/4.

3.3 Crease k x R!

Consider the case n = 0 for arbitrary / in the general metric
(3.1), where our singular subregion is limited to the region

0el[-R,2],pel[0,H]and x; € [— 2, 2]whereHand
H are IR cut-off. Assuming p = p(z, 0) as the RT surface,
we need to optimize the following integral

2.2

2w L3H
Slexr = 7 dzdo (3.57)
P

Using the general ensatz (3.11) and inserting it in the equation
optimizing the integral (3.57), we can expand the expression
of the entanglement entropy as

375

Slixk = =——(h + 1>+, (3.58)
)4
where
d "'th\/l h2 h2
I = / Z/ T (3.59)
ho

@ Springer

8 hice dh
I =/ dzzza_zf —_
Zm hy h

y (—h% — k(1 4+ 2hg2) + 4(1 + a)hgr + 2h3g2)
2021 + h2 + Q2

(3.60)

Similar to our treatment for kink in Sect. 2, we find in
zeroth order the following constant of motion (see Eq. (3.10))

(1413
WY1 +h2+ k2
In the first order with respect to u the singular behavior of g2

near the boundary turns out to be given (similar to Eq. (3.19))
by the following expansion with respect to the variable &

Ky = (3.61)

o ar a3 as 3
9= it Tyt T s T, T ash+OW).
(3.62)
where
ap 2

ay =~ (=3 = Ta +27), (3.63)

AT 2 3 4
a3 = (=18 =3+ Tlo — 360’ + 4o, (3.64)

1

_ , 3.65

“T Tt w (.69
9

- . 3.66

CT 82+ a)G+4u+ad) (3:60)

The quantity i1, = h(S2 — €) turns out to have the following
expansion (similar to Eq. (3.24)) with respect to the UV cut-
off

1
hic(8) = <E ‘|‘alM2aH2a_1> S +a2,u2“H2°‘_383

a3u2a H20t—565
20 44 2041 20 45 243 2045
—4 —6 O .
+n + 3 + O( )

(3.67)

Using Egs. (3.61), (3.62) and (3.67) we can expand the inte-
grand of Eqgs. (3.59) and (3.60). Then the singular terms with
respect to the UV cut-off can be found similar to Egs. (3.27)—
(3.32).

SkxR = S0,kxR) + S(1,kxR)

(3.68)
P 471L3I-I|: 1/0
0kxR) = ——73 | 7%
3 8 Juy
/ 2 »)
«dh M 1 _£+i , (3.69)
hh? h? 282 hos
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S(l,ka),O<a<l,o¢;&%

_ 4AnL3H ,, 1 /0
R D

y dh((—h2 — B2(1 4 2hg) + 4(1 + a)hga + 2h3g2)
(1 — 2ay)

2020/ 1 + h2 + h2
- (“5 212

1+2
)

hg 72 (20203 + (—1 + 2493 + 2ash3 4+ 2a1)

3.4 Crease ¢, x R!

Now we consider some examples of the more general form of
the bulk geometry introduced earlier in Eq. (3.1). For [ =1
and n = 1 the singular subregion in the boundary is defined

as 0 € [0; 1, ¢ € [0; 2], p € [0; H] and x! € [2,—§].
The entanglement entropy is obtained by minimizing the area

of RT surface given by

2

2Q2a — 1812« 27tS21L4H o’ sin(6),/ 575 + o' p?
i Sleyer = [ dzao < ,
S(l,ka).a:% =
4xL3Hp | H  (=2lho + 3h} + 35a; + 35h3a where p = p(z, 0) gives the extension of subregion to the
3 2% 3512 bulk. As before this quantity can be expanded as given by the
g 0 ensatz (3.11). Similar to case of ¢, we find the expansions of
x log(ué)+ the quantities y = sin 6 and g near the boundary (i.e. in the
O [ —h?—n2(1 +2hg 23 imi
+log(ud) | dh h (. +2hgs) + 6h$2 +2h’g) limit 4 — 0) as follows
ho 2hh2V/1 + h? + h? | .
21 3 = - 24—
- ( h +§:h3 70a1 ) ) } ’ 3.71) y = sin(R)  COS(2) coD> +
s x (—19 + 5cos(2sz)) cot?(Q) esc(Q)h* + O?),
4 L°Hu* H
S(1,kxR),a=1 = Bt log(ud), (3.72) (.75
o b2 my=—2 ¢ 2 Bt om 3.76
S,kxRy,a>1 = 0. (3.73) g2(h) = h20=2 + h2a—4 + h +ash + O (3.76)
where
The above calculation can also be done for higher dimen- |
sional cresaes, i.e. ford = 4,d = 5 and d = 6 correspond- a) = Eal (—235 + 1440 — 360
ingtom = 1,m = 2 and m = 3 in Eq. (3.1) respectively 5 s
(see the Appendix A for our final results). In Table 2 below, +(179 — 1440 + 360 )005(29)) cse(£2), (3.77)
we have shown the nature of new singularities which emerge 3—a
due to deformation of theory by a relevant operator. 3= —6 — 2o + 402’ ©-78)
Table 2 Entanglement entropy for k x R’
d Geometry Natural Geometrical singularities o New divergences for EE
4 kxR 1/82 1/8 O<a<la#i 1/81-2« 1 /522
a=1 log$, 1/8
a=1 logé
a>1 0
5 k x R? 1/83 1/82 0O<a<3/2,a#1 178272 1 /8372
a=1 logé, 1/8
o= % logé§
o > % 0
6 k x R3 1/8% 1/83 O<a<2a#3 1/8372« 1 /542
a=3 logé, 1/8
oa=2 logé
o>2 0
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(=14 +a+ 4+ a)cos(22)) csc2(Q)
aq =
N 9(6 — Tor — 1302 + 43 + da*)

(3.79)

We also need to know the limiting value /1. in terms of the
UV-cutoff. The result is

1)
hi.(8) = ﬁ + alM20H2Ol—454 + a2M2aH2a—686

a
4 2o B et

20 4 2a+3 20+5
—6 O .
I T + O( )

(3.80)

Inserting all the data in the integral (3.74) leads to the fol-
lowing result

SeixR = S(0,e1xR) T S(1,e1xR)> (3.81)
where

A2 L*H H? sin(Q)
S(l,('] ><R),()<a<%,a¢% == l;t’ x (12 — 80{)53720‘

h0—2(1+ot)
8172436(1 — 20)2(1 + @) (2 + @) (=3 + 20)

x (162h3“ —216h3ar — 261h3%a + 16k«

+252h3ara — 171h3% o* + 4nd T o>

+ 468h3a1a® + 72h3% @’ — 144h3ara’ + 36h3%a*
— 144h3aro® — 4h3T (14 + a)a

x cse? () + 2h5 T cot? () — 24 + da + 100
+ (18 = 37 — 7a? + 160 + 4a*) log (o)

+ (=18 + 37a + 7o* — 160 — 4a) log(B/H))) sin(2)
1 0
+ -
81720 (—1 4 2a) Jj,
h sin(@) (=h? — h>(1 + 2hg>) + 4h3g> + 2h (3 + 20 + h?)g2)
21301 4+ h? + h?
( (=9 + 5a + 2a?) cos(£2) cot(2)
18h(=3 — a + 2a2)
(=9 + & + 20%) sin($2)
73(—6 — 20 + 4a?)

+h (1 — 20) sin(Q) +

)], (3.82)
S

(1,c1 ><R),Dt=%
4712L4I—~Iy,2°‘ H? sin()
l;‘, 852

1
— log(us
+72 og(ud)

X ( — 13—0 cos(£2) cot(£2) + 8 cos(£2) cot(£2)

% log(ho)4 cos(€2) cot(€2) log(d) + 9 (31:2 - 8a1> sin(Q))
0

0
+log(ud) | an

ho

(sin(e) (—h? — k(1 4 2hg)) + 4h3gy + 2h(4 + h?)g2)
X

20301 + h? + h?
h2 cos(§2) cot () — 12sin(RQ)
+ o3 >] (3.83)

@ Springer

27497,,20
S - AL (g @) (384)

(LerxR).a=3 = = l?; 4

N =0. (3.85)

(l,c1 ><R),a>%

For crease ¢; x R? the final results are given in Appendix A.
Table 3 below, shows the nature of new singular terms similar
to previous cases.

4 Subregion complexity

As stated in the introduction, the subregion approach for com-
plexity of a given static state [23,24] in a conformal theory
concerns the volume enclosed by the Ryu-Takayanagi sur-
face, i.e.

_ Y
SJTZGN ’

“.1)

where [ is a characteristic length scale of the bulk geom-
etry, and y is the RT surface corresponding to the
subregion specified in the boundary. Now let us calculate
this quantity for the kink given by the metric (3.1). The vol-
ume surrounded by the surface with the induced metric (3.2)
can be given as

0
Viy)=1L> / dzdOdp ————
) zdfdp o
3 1 "
=L dzdeif dpp
F@23 Joz0)
L3< dzdb > w2 [ dzao—L )
=—\- 2d0 ———— 2d0 ————
2 72" 7@
=V + Vs, (42)
Using the ansatz (3.11) in the integrand we find
L3H2Q H2L3 2a 95201—2
) = e + 0", 4.3)

4o —1)

262
Vi =13 /6 d—Z/hlp dhL. + L3> /8 dzz? !
m Z ho h2h m

he 14 4n
x / an L8 (4)
ho 2h%h
Let us search for the divergent terms of V| using
L stk o)), 4.5)
h2h
—1+4hg 2a1ks3 54 2« 2_n
— ~ — ks + O™, (4.6
h7, 2 3G 12w 3+ O( ), (4.6)
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Table 3 Entanglement entropy for ¢, x R

d Geometry Natural Geometrical singularities o New divergences for EE
5 c1 X R 1/83,1/5 log(8)/8 O<a<3 a#l log(8) /8172 1782« 1/53-2
a=1 log2(8), log(8), 1/82
a=3 log()
o > % 0
6 c1 x R? 1/8%,1/82,10g(8) log(8)/8 O<a<2a#l log §/8272%, 1/8%7 2, 1 /842
o= log2(8), log(s), 1/82
o= log §
a>2 0
6 c2 X R 1/8%, 1/8%, log(8) 1/8 O<a<2 a#il 18172 1782720 ] /542
a=1 log(3), 178, 1/8°
a=1 log(8), 1/8*
a=2 log(8)
a>2 0
7 ¢ x R? 1/85,1/8%,1/8 1/8% O<a<3a#l 3 18272 /83720 1852
a=1 log(8), 178 ,1/8°
a=3 log(8), 1/82
a=3 log()
o > % 0

where a; is the coefficient defined in Eq. (3.19). In terms of
different powers of ©« we have

Vi=L3I +p* L+, (4.7)
where
§ d hie 1
- / ad / dh— (4.8)
Zm < hO zh
B e
/d222 /
—1+4h 2a,k 542
x dh +‘g2+a13_ +ee 3
2h2h h2* 23+ 2a)
5 hie 2aik 542
—/ dzzza_lf dh (+ als ot k3)
. o 2 2(3 4 2a)
=1+ 1. (4.9)

In the expansions of the above integrands we encounter terms
of the form [ dzz" [ dhh™™ for positive n and m. To find
the singularities we need just to keep terms withm > n + 2.
In the first integral Vj, which is just the complexity for the
undeformed CFT, the integral over 4 is finite, so we have a
logarithmic divergent term for integration over z. However,
in the expansions of the terms in the integrals Vi over h, we
do not find any term for which m > n + 2. The final result
reads

Ck =Co.k) +C(1, k) (4.10)

L3 (H?Q
Cox = M( 257 —i—log(S/H)/ dh—) + finite,
2
132 H-=Q
8rlG (4(_1+a)32—2¢x)’ 0<a<l
Can = 3.0 (H?Q
L ( log(ub‘)) a=1
0 o> 1

.11

We can also find the subregion complexity for all of the
cones discussed in the previous section. The final result for
cyis

Ce, = Clo.ep) +C(1, 1) (4.12)
where
Co = L3 [2(1 —cos(Q))H_3 _cos(Q) H
8Gy 9 83 308
+ﬁ(§’°) log (%)} , (4.13)
and
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L3p* H(=3 4 o+ a?)cos(Q) H3(—1 4+ cos(2)) N |
— ,0<a < 5.a #= 3
8GN 6(—1 +2a)(—1 + a2)§1 -2 83722(9 — 6a)
L3 [H3(cos(Q) — 1)
— 5 H cos(2) log(ud) |, =1
Coen = 1 8Gy [ 52 3 (£2) log(1e )} a=3
L3,bL2a 3
1153 —
[—§H (—1 + cos(£2)) log(;uS)] , o ==
8GN %
0, o> —
2
in which ing on a scalar field in the bulk. The entanglement entropy,
as well as the subregion complexity, are important quantities
0 sin(@) 1 cos() . . .
B(ho) =2 / dh ( 4+ = which demonstrate physical properties of the deformed CFT.
ho h3h 2 h The singular behavior of these quantities near the boundary
1 . . .
— — cot?(R) sin(R) csc(22) (3 — cos(22)) log(h) or near the Slngular.pomt (or wedgf.:) of an aSSUI.ned SI.ngu.lar
8 subregion may be viewed as key points towards investigating
1 O . ;
L os@ co2@)) - cos(£2) the properties of the correspgndmg CFT. .
8 0 Considering the asymptotic AdS theory, we introduced a

- l% cos(Q) cot*(Q) + %ho(l — log(ho)) cot?(2)

x sin(€2) csc(22)(3 — cos(2£2)). (4.14)

In the Tables 4,5 and 6 we give the nature of UV singular
terms for different cases.
5 Discussions

In this paper we concentrated on the effect of deformation of
the boundary CFT due to arelevant operator achieved by turn-

Table 4 Complexity for k — ¢,

set of subregions characterized by singular points or wedges.
For the pure AdS space-time in the bulk (i.e. undeformed the-
ory) two kinds of singularity appears in entanglement entropy
and complexity. The first category is the natural UV singu-
larity of these quantities. However, it is showed that for sin-
gular subregions, such as kink, cone or cresae, new kinds
of singularity may appear as one approaches the singular
point or wedge. Deformation of the CFT by means of a rele-
vant operator, imposes a third kind of singularity in the final
expressions.

Our results are summarized in Tables 1,2, 3,4, 5 and 6 of
the text. For completeness we have shown the known results

d Geometry Natural singularities Geometrical ot New divergences for C
3 k 1/82 log(8) 0O<a<l 1/8272
o= log(8)
o> 1 0
4 c 1/83,1/8 log(8) O<a<3a#3,3 18172 1/83-2¢
a=1 log(8), 1/82
a=3 log(8)
o >3/2 0
5 c 1/8%, 1782, 1og(8) log?(8) O<a<2a#1,2 18272 1 /542
a=1 log(8), 1/8%
a=2 log(8)
o >2 0
6 3 1/8%,1/83,1/5 log(8) O<a<3a#3.3.3 1781720 1532 ] /55-2e

a=1/2 log(8), 1/82,1/8*
a=3/2 log(8), 1/8%
a=5/2 log(8)

o>5/2 0
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Table 5 Complexity for k x R!

d Geometry Natural Geometrical singularities o New divergences for C
4 kxR 1/8,1/8° - O<a<3 a#l 178120 1532
a=1 log s, 1/82
o= % logé
o > % 0
5 k x R? 1/82,1/8* - O<a<2a#l 1/8272« 1 /542
a=1 log 8, 1/82
a=2 log$
o >2 0
6 k x R? 1/8%,1/85 - O<a<3 a#3 17832 1 /552
a=3 log$, 1/82
o= % logé
5
o > 5 0
Table 6 Complexity for ¢, x R!
Geometry Natural Geometrical singularities o New divergences for C
c1 x R log(8), 1/8',i =2,4 1/8 O<a<2 a#il 1/8072% i =1,2,4
a=3 log(8), 178, 1/8°
a=1 log(8), 1/8%
a=2 log(8)
a>2 0
¢ x R 1/88,i=1,3,5 log(8)/8 O<a<3a#i3 log(8)/8' 2%, 178~ =1,3,5
a=1 log?(8), log(8), 1/82, 1/8*
a=3 log(s), 1/82
a=3 log()
o > % 0
¢ x R? log(8),1/8',i =2,4,6 log(8) /8> O<a<3,a#1,2 log(8)/8%72%,1/8172% i =2,4,6
a=1 log?(8), log(8), 1/8%, 1/8*
a=2 log(8), 1/8%
a=3 log(d)
a >3 0

for natural as well as geometrical singularities in independent
columns (forth and fifth columns). The new kind of singu-
larities due to deformation are p-dependent terms which are
shown in the sixth column of the corresponding tables. Tables
1, 2 and 3 give the entanglement entropy for kink, cones, and
creases k x R! and C,, x R', respectively. Tables 4, 5 and 6
give the subregion complexity for the same singular subre-
gions. In the tables we have indicated only the kind of UV
divergences. However, in appendices A and B we have given
the complete singular terms for entanglement entropy and
complexity respectively.

Among different results we point on the following impor-
tant ones.

(1) In all cases we have new logarithmic divergent terms
in entanglement entropy for particular values of con-
formal dimension of the relevant operator which corre-
sponds to some special tunings of the parameter M of
the scalar field in the bulk. In fact, our results may have
some underlying geometrical interpretations. In other
words, the power law and logarithmic divergent correc-
tions may be expressible in terms of appropriate geomet-
rical quantities such as intrinsic and extrinsic curvature,
opening angles, etc. (similar to what have been done in
[38] for regular subregions.)
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Ser = S0.¢2) T S(1e) (A1)
P 872L* [ sin®(Q)H? N 4cos?(QH ol ( ) ) A2)
=— — og(—)], .
0,c2) l;‘, 953 95 q210g H
A H?3sin2(Q) 2H (=9 + 5a + 2a%) cos? () 0ca<iartl
L (18 — 12)83-22 " 9(1 4+ a)(3 — 8a + 4a2)51-2¢ )’ z
2742 ( H?sin%(Q)
Sten = § =" < g T H cos’(Q) log (Ws)), a=1
_SHZ%“MZ_“ (—# H3sin?(Q) log (u8)) . a=3
0, o > %
(ii) The same thing happens for complexity but for dif-  yhere
ferent values of conformal dimension. In fact, for
deformed theory we may have logarithmic corrections _ sin()?  4cos?(Q)  cos2()ho
in all dimensions for particular values of the conformal 2= 3 h(3) 9% + 9
o dmension. . 0 si2@OVI 4R LR sin(Q)
(iii) Forcrease Cy x R" we found divergent terms of the form + / dh ( _ 4 :
8 % log 8 or (log 8)? for entanglement entropy depend- ho hh* h
ing on the values of / and the conformal dimension. The 4 cos?(RQ) A3
same thing happens for complexity for crease C» x R’ T 9p2 ’ (A-3)
For cone c¢3 in d = 6 we find
Sez = S(0.¢3) + S(1.e3) (A.4)

S 3L [H*sin3(Q)  27H? cos2(2) sin() +aal ) N 9¢cos(R2) cot(22)(31 — cos(2R)) log? B
= — og| — 0 — )|,

O =773 1654 12852 “O8\H 8192 £ \m

sn3rs2 ( 9H*(—18 + 5o + 3a?) cos?(Q) sin(Q) H*sin3(Q) 0 2w £ 1

— — ,O0<a<2,«x
B 256(—2 +a)(—1 +a)(1 +a)82=2% (32 — 160)54—2
2 .

soL52 (1 o ( ) 8H sm(Q)> _

Sten=1_ B ( g H = sin(£2) (45 cos~(2) log(ud) + — ) a=1 (A.5)
375,20 ((H*sin(Q
S ) togus)) .« =2
b 8

0, a>2
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Appendix A some results for entanglement entropy
For crease k x R? we have

For the cones ¢, (remember d = n 4+ 3) similar calculations
as ¢ can be performed. Our final results for d = 5 read SkxR2 = S0,kxR?) T S(1,kxR?) (A7)
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where sin(@)v'1+h2+h2  sin()  3cos() cot(Q)
x dh ; + -
hh3 h3 32h
Ar LA 2 3(—13 + 19cos(2Q)) cot? () sec(2)h
S0.kxR2) = _T B 4096
. —13+1 2Q 2(Q Q
X[_L/.O(ﬁ /1+h2+h2+i)_£+ 1 :| +3( 34 9C0;i922;0t( ) sec( )log(S/H)i|,
262 Jpo \ B h? h2) 383 2hps% ] A4
(A.8) (A1)
and
P _ AmL*H* GB+a) 4hy
(LkxR?),0<a<3/2.041 = 1 2ho(=1+a)(5+2a) (=1 +a)(35 + 59 + 282 + 4a3)
hy'72ay (126 — 18h3(—4 — 9o + 2a%) + h(—24 + 5o + 10702 — 4403 + 4a*))
252(—1 + )
L] N H N 1 /Odh —h% — h? —2h%hgr 4+ 22 4 2a + h®)goh
82720 (6 —4w)83-2¢  2(—1+ )82 2 ho 20201 4+ h2 + B2
342 8 arh—20+® 5 5 3
N <h2(5+2a) 5+ 9 1 282 1 4ad) 7 (_7(1+2“)+h (e — 200" + 4o >) - (A9
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Ar L*H?*p> H
StkxRY).a=3 = BT — 710g(u5), (A.11)
P
S kxR?),a>3/2 = 0. (A.12)
For entanglement entropy of (c; x R?) we have St1.c1xR2) 0<a<2,a1
_ 4AnL3E % [ sin(Q) H?
B T (16— 8a)5t 20
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h62(1+0{)
* - - 2(1+ )2 + )52 2
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Sl.ei xRy a=2 = I H? log(é) sin(2), (A.17)
p

St,e1xR?),a>2 =0, (A.18)

Appendix B: Some results for complexity

We have performed similar calculations for higher dimen-
sional cones to what we did in d = 4. In the case of ¢, we
find two family of divergent terms proportional to log é and
log? 8 as

L 8 0 in?(0
CRt = = log (= / an (SO
2 8GN H ho h*h

4 cos2(§2) cot(RQ) N 2 cos(S2) sin(sz)>

oh 343
cos(£2) sin(2)
e )+c§°§2a, (B.1)
3h0 i 3
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For other values of o we don’t have any logarithmic term.
For the case of ¢3 we also find

5 20
1 Lru
Coroyami/a = 206Gy log (ud)
H
y (3115 cos(2) 4+ 473 cos(3€2) ’ (B.5)
3072
5 2a
1 L mp
Cs(,)§3,a:3/z =T 06y log (18)
3
x |:§H3cos(Q) sinz(Q)} (B.6)
5 20
log I
Cocsa=s/2 = ~30G, 1081
2 nt (2
X 3 H” (2 4+ cos(£2)) sin )| (B.7)

We have also performed the calculations for complexity of
creases in higher dimensions. The result is as follows
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in which the constants a; — as are given in Eqgs. ((3.63)—
(3.66)). The complexity of crease k x R? we find
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Ckxr?),a>2 = 0. (B.18)

For crease ¢; x R the corresponding subregion complexity
turns out to be as follows
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C(0,c1xR)
LYHQ, H*( @1+ cos(Q)H B.20)
= COS — —_— .
327G 384 652
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