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Abstract In this paper, we work on the topological Lifshitz-
like black hole solutions of a special class of vacuum
F(R)−gravity that are static and spherically symmetric. We
investigate geometric and thermodynamic properties of the
solutions with due respect to the validity of the first law of
thermodynamics. We examine the van der Waals like behav-
ior for asymptotically AdS solutions with spherical horizon
by studying the P − v, G − T and CQ,P − r+ diagrams and
find a consistent result. We also investigate the same behavior
for hyperbolic horizon and interestingly find that the system
under study can experience a phase transition with negative
temperature.

1 Introduction

F(R) gravity is one of the best models of modified general
relativity with a renewed interest in recent years. In addition
to the simple and general Lagrangian of this model, the main
(but not the first) motivation of considering F(R) gravity
with arbitrary function of Ricci scalar is that one can explain
the accelerated expansion and structure formation of the Uni-
verse without considering dark energy or dark matter. It is
also believed that some curvature corrections arising from
quantum theory of gravity may be collected to special func-
tional forms of F(R) gravity.

In other words, some defects in Einstein’s general relativ-
ity and the motivation of studying more complete and general
gravitational models, have led to the creation of general mod-
ified gravity models. These gravitational models have been
considered in various branches of gravity, cosmology, astro-
physics and their interesting results have made these models
appropriate generalization for the Einstein’s gravity [1–3].
In the lastest decade, special attention was given to modified
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theories that generalize the gravitational action integral with
the simplest model, the so-called F(R) gravity [4]. There
are two approaches for obtaining the field equations of the
generalized F(R) gravity. The first one is the standard met-
ric formalism and the other one is the Palatini method [5] in
which metric tensor and affine connection are treated, a pri-
ori, as independent variables. There are many viable F(R)

models that can satisfy both cosmological and local gravity
constraints [6–9]. Moreover, F(R) gravity can be reduced to
general relativity in the specific cases [10]. Nowadays, F(R)

gravity has attracted much attentions of the researchers and
there are many studies in this field [11–14].

The generalization of F(R) theory in the context of
Horava–Lifshitz gravity and its interesting cosmological
results have been addressed in series of papers [15–24] . The
pioneer work of Horava in 2009 [25], the so-called Horava–
Lifshitz gravity is one of the candidate theories of quantum
gravity. Since general relativity is not a renormalizable theory
(it means that it is successful as a classical theory of gravity,
but it breaks down at some scale), and therefore, it should
be viewed as an effective theory. Beyond that scale, general
relativity is not suitable theory to describe the gravitational
interactions or spacetime itself and one cannot construct its
quantum counterpart using conventional quantization tech-
niques.

On the other hand, within this perspective that general rel-
ativity is an effective theory, it may solve some problems in
gravitation by treating the quantum concept more fundamen-
tally, and so, space and time are not equivalent (anisotropic)
at high energy level. The relativistic concept of time with
its Lorentz invariance emerges at large distances. The the-
ory relies on the theory of foliations to produce its causal
structure. It is related to topologically massive gravity and
the Cotton tensor. So it may have a possible UV completion
of general relativity to address this issue. Recently, the pro-
posed Horava-Lifshitz gravity promises a UV completion of
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Einstein’s theory by sacrificing general covariance at short
distances and introducing anisotropic spacetime scaling. In
addition, Donoghue showed that general relativity and quan-
tum field theory can be perfectly compatible if the quantum
gravity is formulated as an effective field theory [26]. There-
fore, the effective field theory of quantum gravity is valid
above which the effective description is replaced with the
UV completion. Furthermore, Horava-Lifshitz gravity theory
can be employed as a covariant framework to build an effec-
tive field theory for the fractional quantum Hall effect that
respects all the spacetime symmetries such as non-relativistic
diffeomorphism invariance and anisotropic Weyl invariance
as well as the gauge symmetry. Consequently, investigation
of Horava–Lifshitz gravity family can help us to deepen our
insight for moving from classical gravity point of view to
quantum one.

According to the discovery of Hawking radiation [27],
one finds that the black hole thermodynamics has crucial
role for studying the quantum nature of gravity. Hawking
tried to show that black holes behave like black bodies in
the usual thermodynamic sense, emitting radiation with a
thermal spectrum [27,28]. In this regard, many authors have
tried to obtain a new approach to find a statistical origin to
Bekenstein–Hawking entropy [29–31].

The entropy of Einsteinian black hole, known as the
Bekenstein–Hawking area law entropy, suggests that the
quantum degrees of freedom of a typical black hole are effec-
tively distributed over a surface, rather than a volume. Fol-
lowing the works of ’t Hooft [32] and Susskind [33], one can
find this crucial result based on the holographic principle, in
which says that quantum gravity in a given volume should be
described by a theory on the boundary of that volume. The
mentioned holographic principle is related to the so-called
anti-de Sitter/conformal field theory (AdS/CFT) correspon-
dence [34,35]. In the other words, in order to explain the
holographic principle, a consistent quantum gravity theory
should admit two equivalent descriptions (AdS/CFT corre-
spondence): one as a bulk semiclassical general relativity
theory, and one as a boundary quantum field theory. So, inves-
tigation of black hole solutions with AdS asymptote, which
has an undeniable role for constructing a consistent quantum
gravity theory [36], has special interest.

Recently, a renewed interest in phase transition of asymp-
totically AdS black holes, especially van der Waals like
[37,38], has appeared. Subsequently, a number of interesting
results, such as, triple points [39–41], reentrant phase transi-
tions [42–44], and analogous Carnot-cycle heat engines [45–
47] were obtained. Regardless of massive gravity black holes
[48], it is known that the van der Waals behavior in Einstein
gravity is seen only for AdS black holes with spherical hori-
zon [37], and therefore, such behavior does not take place for
AdS black holes with flat or hyperbolic horizons (no real crit-
ical point is found). In this paper, we observe that in addition

to spherical horizon, one can find the van der Waals behavior
in the especial case of F(R) gravity with hyperbolic hori-
zon. It is note that in this case, although the critical volume
and pressure are positive, the critical temperature is nega-
tive. Since negative temperature has a physical interpretation
in usual thermodynamics of quantum system (e.g: a system
of nuclear spins in an external magnetic field or population
inversion in laser [49–53], it will be interesting to investigate
our solutions with quantum mechanical point of view.

Thermodynamic descriptions of gravitational solutions at
the event horizon and cosmological ones at the apparent hori-
zon in F(R) gravity have been studied in series of papers
[54–62] . In this work, we are going to evaluate thermody-
namic phase transition of black hole solutions in a special
class of F(R) gravity with constant Ricci scalar in which
both F(R) and its derivative FR(R) are vanished in the field
equations. The structure of our paper is as follows: in next
section, we are going to introduce F(R) gravity, in brief, and
then we obtain the special class of exact solutions with black
hole interpretation. Then we investigate geometric and ther-
modynamic properties. In Sec. 3, we work in the extended
phase space and investigate the possible phase transition and
van der Waals like behavior. We also discuss thermal stabil-
ity and critical quantities. Final section is devoted to some
concluding remarks.

2 Basic equations and dynamic black hole solutions

The purpose of this paper is to study the thermodynamics
of a typical anti-de Sitter black hole solution in four dimen-
sional F(R) = R+ f (R) gravity in which the Ricci scalar is
constant (R = R0). Let us first consider the 4-dimensional
action of R + f (R) gravity which is given by

S =
∫
M

d4x
√−gF(R) =

∫
M

d4x
√−g[R + f (R)], (1)

where M is a four-dimensional bulk manifold. It is clear
that for F(R) = R ( f (R) = 0), one can recover the Hilbert-
Einstein action of General Relativity. Using the variational
principle on the action of F(R) gravity (1), it is a matter of
calculation to show that the field equation is given by

Rμν[1 + fR]− 1

2
[R+ f (R)]gμν +[gμν�−∇μ∇ν] fR = 0,

(2)

where we use the notation AB = d A
dB . It is easy to show that

one can rewrite Eq. (2) with the following form

GμνFR = 1

2
gμν[F(R) − RFR] + [∇μ∇ν − gμν�]FR . (3)
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In this paper, we follow the method of Ref. [63], which is
a special class of F(R)-gravity models with two constraints,
simultaneously, F(R0) = 0 and FR = 0. Taking into account
the mentioned constraints, one can find that the vacuum equa-
tion (3) are automatically satisfied with arbitrary R0. It is
notable that the mentioned class does not cover the usual
general relativity solutions since the vacuum field equation
of general relativity with arbitrary metric identically satis-
fied FR = 1 with vanishing Ricci scalar. Consequently, our
strategy is working on some viable models of F(R)-gravity
that satisfy these conditions and solving the equation of con-
stant Ricci scalar. As it is mentioned in [63], there are several
models for the early-time inflation or late-time accelerated
expansion that can satisfy the mentioned constraints. As a
result, we regard a spherically symmetric and static solu-
tions with constant Ricci scalar which are reported in [63] to
investigate their possible phase transition.

Here, our main motivation is the study of thermodynam-
ical and geometrical aspects of topological black hole solu-
tions with Lifshitz-like spacetime. Therefore, we consider
the metric of 4-dimensional spacetime as [63]

ds2 = −e2α(r)B(r)dt2 + dr2

B(r)
+ r2d�2, (4)

in which

d�2
k =

⎧⎨
⎩

dθ2 + sin2 θdϕ2 k = 1
dθ2 + dϕ2 k = 0

dθ2 + sinh2 θdϕ2 k = −1
, (5)

where k = 1, 0 and −1 represent spherical, flat and hyper-
bolic horizon of possible black holes, respectively. Hereafter,
we indicate ωk as the volume of boundary t = cte and
r = cte of the metric. Since we desire to study the Lifshitz-
like solutions [63], we define α(r) as

α(r) = 1

2
ln

(
r

r0

)z

, (6)

where z is a real number and r0 is an arbitrary (positive)
length scale. It is notable that in order to obtain a dimension-
less argument of logarithmic function, the existence of r0 is
necessary. Inserting Eq. (6) in the introduced metric (4), one
can obtain

ds2 = −
(
r

r0

)z

B(r)dt2 + dr2

B(r)
+ r2d�2. (7)

As an additional comment, we note that although we can
start with Eq. (7) as the line element, it is convenient to define
Eq. (4 ) at the first step to guarantee that the Lifshitz factor
(e2α(r) ) is positive definite and change of signature of the
metric comes from the sign of B(r) (the number of plus (+)

and minus (−) signs is unchanged). Considering the metric
(7) with the mentioned field equation (2) (and also the men-
tioned constraints for special class of F(R)-gravity), one can
extract the metric function for R = R0, where

R = R0 = −d2B(r)

dr2 −3z + 8

2r

dB(r)

dr
− z2 + 2z + 4

2r2 B(r)+2k

r2 ,

(8)

with the following exact solutions [63]

B(r) = K − C±
rb± − λr2, (9)

where K and λ, are two (positive/negative or zero) constants
which their values are depending on the signs/values of k and
R0 as

K = 4k

z2 + 2z + 4
, (10)

λ = 2R0

z2 + 8z + 24
. (11)

In addition, C± are two integration constants while b± is

b± = 1

4

(
3z + 6 ±

√
z2 + 20z + 4

)
. (12)

Avoiding complex values of B(r), one may regard the
following constrain on z

z2 + 20z + 4 > 0

or equivalently z /∈
[
−2(2

√
6 + 5), 2(2

√
6 − 5)

]
.

(13)

According to the above constrain on z, one can find the
allowed ranges of b± as follows

b− ∈ (−∞,−13.35] when z < −2(2
√

6 + 5),

(14)

b− ∈ [0.93,+∞) when z > 2(2
√

6 − 5).

(15)

and

b+ ∈ (−∞,−12.93] when z < −2(5 + 2
√

6),

(16)

b+ ∈ [1.35,+∞) when z > 2(2
√

6 − 5).

(17)

In order to interpret the solutions as black holes, we should
examine the existence of horizon and singularity for the sin-
gular black holes. The presence of singularity could be inves-
tigated by studying curvature scalars for which we choose the
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Kretschmann scalar. It is a matter of calculation to show that
for these solutions, the Kretschmann scalar is

Rαβγ δR
αβγ δ =

(
d2B(r)

dr2

)2

+
⎛
⎝ z

(
3 dB(r)

dr + zB(r) − 2B(r)
)

r2

⎞
⎠ d2B(r)

dr2

+9z2 + 16

4r2

(
dB(r)

dr

)2

+
(
z(3z2 − 6z + 8)B(r)

2r3

)
dB(r)

dr

+ z4 − 4z3 + 12z2 + 16

4r4 B2(r)

−8k

r4 B(r) + 4k2

r4 . (18)

It is straightforward to show that Eq. (18) diverges at
r = 0 and it is finite for r �= 0. In addition, according to
the Fig. 1, one finds that the metric function has at least one
real positive root (with positive slope). As a result, the men-
tioned solutions can be interpreted as black holes. In addition,
according to Fig. 1 and also Eq. (9), one finds that for pos-
itive and negative R0, one can find asymptotically dS and
adS, respectively with an effective cosmological constant,
�e f f = 6R0

z2+8z+24
. Moreover, it is clear that for vanishing R0

and k = 1 the mentioned solutions are asymptotically flat
only for z = 0 [we should note that although z = −2 with
k = 1 leads to K = 1, but z = −2 is not allowed based on
Eq. (13)].

Now, we are in a position to study thermodynamical prop-
erties of the solutions and investigate their thermal stability
based on the heat capacity.

2.1 Conserved and thermodynamical quantities

Here, we are going to calculate the conserved and thermo-
dynamic quantities of black holes in F(R) gravity. Due to
the fact that the employed metric contains a temporal Killing
vector, we use the concept of surface gravity to calculate the
temperature of black holes at the event horizon r+

T = 1

2π

√
1

2
(∇μχν)(∇μχν) = B ′(r)

4π

(
r

r0

) z
2 |r=r+ , (19)

where χν = δν
0 is the Killing vector. Regarding Eq. (19) with

metric function (9), one can find

T =
[
(K − λr2+)b− − 2λr2+

]
rb++ − C+ (b+ − b−)

4πr1+b++

(
r+
r0

) z
2

,

(20)

where C+ is removed due to the fact that the metric function
vanishes on the event horizon, r+.

In order to study the entropy of black holes in F(R) =
R + f (R) gravity, one can use the generalized area law [1].
According to the result of Ref. [1], the entropy can be calcu-
lated as

S = A

4
[1 + fR(R0)], (21)

where A is the event horizon area of the black holes. But
here we have used two constraints F(R) = 0 and FR = 0,
and therefore, Eq. (21) leads to zero entropy. This problem
comes from the fact that the entropy of F(R) gravity (in
the non-equilibrium description of thermodynamics [64]) is
a modification of the area law with an effective gravitational
coupling (Gef f = G/FR). Since in our case we have FR = 0
and the effective gravitational coupling diverges, we could

Fig. 1 B(r) versus r for C+ = 1, C− = 0, k = 1, and R0 = −1 (black-continuous line), R0 = 0 (blue-bold line) and R0 = 1 (green-dashed line).
“left figure: z = 0 and right figure: z = 1”
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not use the mentioned modified area law relation. In other
words, the usual Wald approach is break down and we have
to use an alternative method. Since we believe that the black
hole solutions should satisfy the laws of thermodynamics,
we use the first law to calculate the nonzero entropy.

Taking into account the timelike Killing vector (∂/∂t),
one can show that the finite mass per unit volume ωk can be
obtained as

M = 1

2

(
Krb−+ − λr2+b−+ − C+

rb+−b−+

)
. (22)

Here, we desire to calculate the entropy in by using the
validity of the first law of thermodynamics. It is easy to show
that

δM = T δS, (23)

and therefore, it is a matter of calculation to show that the
following equality holds

S =
∫

dM

T
= 4πr1+b−+

2 − z + 2b−

(
r0

r+

) z
2

. (24)

It is notable that the obtained relation for the entropy
reduces to the area law for z = 0 (b− = 1). In other
words, it seems that the F(R) gravity does not direct effect
on the entropy relation, such as that occurs in the equilibrium
description of thermodynamics in F(R) gravity [64].

3 Extended phase space thermodynamics, thermal
stability and phase transition

Regarding the variation of the cosmological constant as the
vacuum expectation value of a quantum field, one may expect
to consider it and its conjugate in the first law of thermody-
namics [65–67]. In this regard, the cosmological constant
interpreted as a dynamical pressure of the black hole system
as [37] (note: λ ≈ �

3 )

P = − 3λ

8π
, (25)

where its conjugate extensive quantity is the thermodynamic
volume which can be obtained by

V =
(

∂H

∂P

)
S,C+

, (26)

in which H is the enthalpy of system. We should note that
in the extended phase space the mass of black hole is not the
internal energy of the system, but its enthalpy H ≡ M . As

an additional comment, it is worthwhile to mention that the
modified Smarr relation which can be calculated by the scal-
ing argument for our Lifshitz like solutions in the extended
phase space is

M = (2b− + 2 − z)

2b−
T S − 2

b−
PV + b+

b−
CC+, (27)

where C =
(

∂M
∂C+

)
S,P

= −1

2r
b+−b−+

can be interpreted as a

modified potential per unit charge that calculated at the event
horizon of Lifshitz like black hole solutions. One can confirm
that Eq. (27) is reduced to that of charged AdS black holes
for z = 0 . It is also notable that in the extended phase space,
the modified first law of thermodynamics is completely in
agreement with the modified Smarr relation and can be writ-
ten as

dM = TdS + VdP + CdC+. (28)

Moreover, we can calculate the modified volume in the Lif-
shitz like spacetime as

V =
(

∂M

∂P

)
S,C+

= 4π

3
r2+b−+ . (29)

where we see that the Lifshitz parameter modify the thermo-
dynamic volume and for z = 0 one can recover the usual

volume V = 4πr3+
3 .

Hereafter, since we desire to investigate the possible van
der Waals phase transition, we regard negative cosmological
constant (positive P) and spherical horizon (S2) with volume
ω1 = 4π . Regarding the relation for the temperature (20)
with the mentioned equation of pressure (25), we can obtain
the equation of state P = P(T, r+), as

P =
12πr+

(
r+
r0

)− z
2
T − 3C+ (b+ − b−) r−b++ − 3Kb+

8πr2+ (2 + b+)
,

(30)

where r+ is a function of the thermodynamic volume as indi-
cated in Eq. (29). Following Ref. [37], one can find a relation
between the horizon radius and specific volume. In the geo-
metric units, we can obtain

r+ = v

2
. (31)

As a result, we can work with specific volume, or directly,
the radius of event horizon as volume representative.

Supposing the existence of critical behavior of the system
in the P − V isotherm diagram, one finds that the inflection
point of P − V diagram can be interpreted as the critical
point on the critical isotherm with the following properties
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(
∂P

∂r+

)
T

=
(

∂2P

∂r2+

)

T

= 0. (32)

Using Eq. (32) and the equation of state (30), we can
calculate the critical parameters as

Tc = 2Kb+b−ξ
2−z
2b+

π(z + 2)(2b+ + 2 − z)r
z
2

0

,

rc = vc

2
= ξ

−1
b+ ,

Pc = − 3K (z − 2)b−b+
8π(2 + z)(2 + b−)(2 + b+)

ξ
2
b+ , (33)

These relations lead us to obtain the following ratio

ρc = Pcvc
Tc

= −3(z − 2)(2b+ + 2 − z)r
z
2

0

8(2 + b−)(2 + b+)
ξ

z
2b+ ,

where the constant ξ is defined as

ξ = 2K (z − 2)b−
(2b+ + 2 − z)(2 + b+)(b+ − b−)C+

.

It is easy to check that for z = 0, the mentioned ratio reduces
to the van der Waals fluid, 3

8 .
On the other hand, thermodynamic behavior of a system

can be investigated by some thermodynamic potentials such
as the free energy. It is known that the enthalpy of black holes
in the extended phase space is the total mass. The reason is
due to the fact that the cosmological constant is no longer a
fixed parameter but a thermodynamical one. Due to modifi-
cation in interpretation of the total mass of the black holes in
extended phase space, the Gibbs free energy is given by

G = M − T S, (34)

or equivalently its value per unit volume ωk is

G = K

2
rb−+

(
1 − b+

1 + b− − z
2

)

+4

3
π Pr2+b−+

(
1 − 2 + b+

1 + b− − z
2

)

− C+
2rb+−b−+

(
1 + b+ − b−

1 + b− − z
2

)]
. (35)

In order to investigate thermal behavior of the obtained
black holes, we have plotted P − r+ isotherms and G − T

diagrams. The presence of both swallow-tail characteristic
in G − T diagrams and the inflection point in P − r+ dia-
grams indicate that our system undergoes a first order phase
transition. Generally speaking, the van der Waals like phase
transition between two different phases is characterized by
a swallow-tail shape in G − T diagrams and the inflection
point in P −r+ plots. In our case, such a behavior represents
a phase transition between small and large black holes.

Now, we desire to investigate thermal stability of the
obtained black hole solutions. In order to discuss thermal
stability of a black hole, one can calculate the heat capacity
and discuss its sign (positivity/negativity) through its roots
and divergencies. Basically, the conditions regarding ther-
mal stability of black holes could be attained by studying the
sign of heat capacity. Regardless of the values of parameters
in the theory, positivity of the heat capacity ensures thermal
stability of the solutions, whereas its negativity is consid-
ered to be an unstable state. Another advantage of investigat-
ing the heat capacity is the relation of its divergencies with
phase-transition interpretation. Since we are working in the
extended phase space, the heat capacity is given by

CQ,P = T

(
∂S

∂T

)
Q,P

= T

(
∂S
∂r+

)
Q,P(

∂T
∂r+

)
Q,P

. (36)

By using the equations of temperature (20) and entropy
(24), we can obtain the heat capacity of black holes as

CQ,P = 4πr1+b−+ χ(
r+
r0

) z
2

, (37)

where

χ = 8π P(2 + b−)r2+b++ + 3Kb−rb++ − 3C+(b− − b+)

8π P(2 + b−)(z + 2)r2+b++ + 3Kb−(z − 2)rb++ − 3C+(b− − b+)(z − 2b+ − 2)

3.1 Results and discussion

Regarding Figs. 2, 3 and 4, one can find that for T < Tc (in
P − r+ diagrams) or P < Pc (in G − T and CQ,P − r+
diagrams) there is a van der Waals like phase transition
for the obtained black hole solutions. The critical behav-
ior is indicated as blue-bold line in the mentioned dia-
grams. As we expected the results of all diagrams are con-
sistent.
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Fig. 2 P − r+ diagrams for C+ = −1, k = 1, r0 = 1, T < Tc (green continuous line), T = Tc (blue bold line) and T > Tc (black dashed line).
“Note: z = −0.1 (left panel), z = 0 (middle panel) and, z = 1 (right panel)”

Fig. 3 Gibbs free energy versus temperature for C+ = −1, k = 1, r0 = 1, P < Pc (green continuous line), P = Pc (blue bold line) and P > Pc
(black dashed line). “Note: z = −0.1 (left panel), z = 0 (middle panel) and z = 1 (right panel)”

Fig. 4 Heat capacity versus r+ for C+ = −1, k = 1, r0 = 1, P < Pc (green continuous line), P = Pc (blue bold line) and P > Pc (black dashed
line). “Note: z = −0.1 (left panel), z = 0 (middle panel) and z = 1 (right panel)”

Strictly speaking, regarding isotherm P − r+ diagrams,
we find that for T > Tc an ideal gas behavior with no phase
transition is observed. The critical isotherm is plotted for
T = Tc with an inflection point at P = Pc, r+ = rc. For
T < Tc a van der Waals like shape is appeared.

Taking into accountG−T diagrams, one can find a smooth
curve for P > Pc, a continuously curve which is not differen-
tiable at a point with P = Pc and T = Tc, and a swallow-tail
shape for P < Pc, which is the characteristic of a phase
transition in G − T diagrams.

In addition, having a look at the heat capacity diagrams,
we find that there is thermally stable black holes with pos-
itive definite heat capacity for P > Pc, while for the crit-
ical case, P = Pc, there is only one divergence point in
the heat capacity diagrams, in which the positive sign of
CQ,P does not change around the singularity. Finally for
P < Pc, we observe two divergence points, in which the
heat capacity is negative between them, and therefore, there
is a phase transition between the mentioned two divergence
points.
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Fig. 5 Critical quantities versus z for C+ = −1, k = 1 and r0 = 1 . Left-up panel: Tc versus z, right-up panel: vc versus z, left-down panel: Pc
versus z, right-down panel: black continuous line ρc versus z and blue dotted line is ρc = 3

8

Table 1 Critical quantities for k = 1, r0 = 1 and C+ = −1

z Tc vc = 2rc Pc ρc = Pcvc
Tc

−0.1 0.0595 3.85 0.0061 0.397

0.0 0.043 4.90 0.0033 0.375

0.1 0.036 5.53 0.0023 0.343

0.5 0.028 6.72 0.0009 0.210

1.0 0.027 7.37 0.0003 0.095

1.5 0.029 8.17 0.0001 0.030

Having a glance at the critical quantities, one can find
different behaviors. According to Fig. 5 and Table 1, we find
that Pc (vc) is a decreasing (an increasing) function of z,
while there is a minimum (maximum) for Tc (ρc). Therefore,
in order to have a universal ratio such as the van der Waals
fluid, one can obtain z 
 −0.1853, in addition to z = 0. It
is also worth mentioning that for z −→ 2−, both Pc and ρc

vanish and criticality is disappeared. For z > 2, all critical
values are complex and one cannot obtain real valued critical
quantities. All the mentioned calculations are done for the
spherical horizon, k = 1. Since some of the critical quantities
depend on the topological factor (k), linearly, one cannot find
a nonzero critical quantity for black holes with flat horizon.
But for hyperbolic horizon, one may look for the possible van
der Waals like behavior, the same happens in massive gravity
[48]. We postpone this interesting subject to appendix.

4 Conclusion

In this paper, we have studied thermodynamic behavior of
topological black hole solutions with Lifshitz-like spacetime.
We have worked in a special class of F(R) gravity models
with constant Ricci scalar in which satisfies two simultane-
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ous conditions, F(R0) = 0 and FR = 0. We have shown
that although these solutions are asymptotically AdS with an
effective cosmological constant for nonzero Ricci scalar, for
vanishing Ricci scalar obtained solutions are not asymptoti-
cally flat unless for vanishing Lifshitz parameter.

We also calculated thermodynamic quantities and found
that the solutions of this special class of modified gravity do
not undergo the usual entropy and mass that reported in F(R)

gravity black holes, since FR = 0. We have calculated the
entropy by using the first law of thermodynamics and found
that it reduces to area law for vanishing Lifshitz parameter,
z = 0.

In addition, we investigate the phase transition in the
extended phase space thermodynamics by considering the
cosmological constant (which is proportional to the constant
Ricci scalar) as a thermodynamical pressure for the spheri-
cal horizon black holes. We have studied the van der Waals
like behavior by investigating three diagrams: isothermal
pressure-volume, isobaric Gibbs free energy-temperature,
and isobaric (isocharge) heat capacity-horizon radius. We
have found that all the mentioned diagrams have consistent
results to show three cases: completely stable state without
any phase transition, critical behavior in the critical diagrams,
and existence of a van der Waals like phase transition. We
have shown that the Lifshitz parameter has an important role
for the values of critical quantities.

We also extended our calculations to the case of hyper-
bolic horizon black holes and showed that a van der Waals
like behavior can be observed only for negative temper-
ature. In other words, for k = −1, although all physi-
cal quantities are positive, temperature is negative which
may explain based on a quantum behavior of the black
holes. Since it is a new result in the context of F(R) grav-
ity, it will be interesting to work on its nature by calcu-
lation of temperature based on statistical mechanics and
simulate it with a quantum system with negative tempera-
ture.
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5 Appendix A: van der Waals like behavior for k = −1

Here, we are going to examine the possible van der Waals like
behavior for the black hole solutions with hyperbolic hori-
zon (k = −1) . According to Eq. (33), Fig. 6 and Table 2,
we find that a van der Waals behavior for hyperbolic horizon
is observed. It is notable that although the critical volume
and pressure are positive, the critical temperature is nega-
tive. In other words, all physical quantities such as Gibbs
free energy, volume and pressure are positive in this case,
but the same as those of nuclear spins system in an exter-
nal magnetic field and population inversion in laser, tem-
perature is negative. In this regard, although the swallow-
tail shape in G − T diagram and van der Waals behavior in
P − r+ figure make sense, the interpretation of phase tran-
sition (between two stable states) based on the (positivity
of) heat capacity should change. Since negative tempera-
ture of physical system is a quantum mechanical behavior
(it is not observed in classical systems), it will be interest-
ing to investigate the thermodynamic behavior of the men-
tioned black hole solutions with the statistical mechanical
approach.

Fig. 6 Diagrams of P − r+ (left), CQ,P − r+ (middle) and G − T (right) for C+ = −1, k = −1, r0 = 1, z = 3
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Table 2 critical quantities for k = −1, r0 = 1 and C+ = −1

z Tc vc = 2rc Pc ρc = Pcvc
Tc

2.5 −0.0382 3.48 0.00009 −0.008

3.0 −0.0403 2.91 0.00020 −0.014

3.5 −0.0417 2.61 0.00030 −0.019

4.0 −0.0426 2.41 0.00038 −0.022

4.5 −0.0433 2.27 0.00044 −0.023

5.0 −0.0438 2.16 0.00049 −0.024

Table 3 QNMs (ωr − iωi ) for C+ = 0.25, C− = 0.25, k = 1, z = 0,
R0 = 1, and r0 = 1

n l = 1 l = 2 l = 3

0 0.9514 − 0.4385i 1.622 − 0.4218i 2.281 − 0.4173i

1 − 1.510 − 1.294i 2.197 − 1.267i

2 − − 2.051 − 2.144i

6 Appendix B: Dynamical stability

Here, we consider a massless scalar perturbation in the back-
ground of the black hole spacetime and obtain the quasi-
normal frequencies (QNFs) by using the third order WKB
approximation. The WKB approximation was first applied
to the problem of scattering around black holes [68], and
then extended to the third order [69]. This method can be
used for an effective potential that forms a barrier potential
and takes constant values at the event horizon and cosmolog-
ical horizon. In addition, we concentrate our attention to the

fixed values of free parameters of metric function throughout
the text.

The equation of motion for a massless scalar field is given
by

�� = 0. (38)

If we consider modes as

�(t, r, θ, ϕ) = 1

r
� (r)Yl,m (θ, ϕ) e−iωt , (39)

where Yl,m (θ, ϕ) is the spherical harmonics, the equation of
motion (38) reduces to the following wave equation

[
∂2
x + ω2 − Vl (x)

]
�l (x) = 0, (40)

where x is the tortoise coordinate

dx = dr

eα(r)B(r)
, (41)

and the effective potential Vl (x) is given by

Vl (x) = e2α(r)B(r)

[
l (l + 1)

r2 + B(r)α′ (r)
r

+ B ′ (r)
r

]
,

(42)

where l is the angular quantum number. One can obtain the
QNMs of this perturbation by considering proper boundary
conditions as follows

Table 4 The fundamental
QNMs (ωr − iωi ) for
C+ = 0.25, C− = 0.25, k = 1,
R0 = 1, and r0 = 1

z l = 1 l = 2 l = 3

−0.1 1.035 − 0.4775i 1.758 − 0.4598i 2.471 − 0.4553i

0.5 0.6881 − 0.2859i 1.180 − 0.2733i 1.661 − 0.2696i

1.0 0.5409 − 0.1941i 0.9247 − 0.1827i 1.304 − 0.1797i

1.5 0.4295 − 0.1361i 0.7396 − 0.1285i 1.045 − 0.1268i

2.0 0.3247 − 0.09380i 0.5670 − 0.09095i 0.8038 − 0.09034i

2.5 0.1978 − 0.05376i 0.3490 − 0.05331i 0.4959 − 0.05322i

Fig. 7 The effective potential (colored lines) and metric function (black line) versus the radial coordinate r
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�l (r) ∼ e−iωx as x → −∞ (r → re),
�l (r) ∼ eiωx as x → ∞ (r → rc),

(43)

which means that no wave comes from the event horizon and
cosmological horizon (re is the event horizon and rc is the
cosmological horizon). We should consider theses boundary
conditions to obtain the QNFs.

The third order WKB formula is given by

i
(
ω2 − V0

)
√

−2V ′′
0

−�2 −�3 = n+ 1

2
; n = 0, 1, 2, . . . , (44)

where V0 is the value of effective potential at its local max-
imum, n is the overtone number, and the correction terms
�2 and �3 are given in [69]. The results are given in the
Tables 3 and 4. The real (imaginary) part of the frequencies
decreases (increases) as the overtone number increases, but
the angular quantum number has opposite behavior. On the
other hand, increasing in z leads to decreasing both the real
and imaginary parts of the frequencies.

In the case of dynamical stability, the Fig. 7 shows the
behavior of the effective potential in which this poten-
tial forms a barrier potential. Since the effective potentials
are positive everywhere, then

∫ +∞
−∞ Vl (x) dx > 0 and the

obtained black hole solutions are dynamically stable under
massless scalar perturbations [70]. Therefore, it is possible to
find the dynamically stable black holes by using the obtained
black hole solutions.

7 Appendix C: Non-constant Ricci scalar

Now, we give a discussion regarding an arbitrary function of
Ricci scalar (R = R(r)). Considering the metric ansatz (7)
with an arbitrary Ricci scalar, one finds the following exact
solutions

B(r) = K−C±
rb± ± (2 + b−)(2 + b+)

(b+ − b−)rb±

∫
r1+b±λ(r)dr, (45)

where K and b± are introduced before, and following Eq.
(11), we define λ(r) = 2R(r)

z2+8z+24
. It is straightforward to

show that Eq. (45) reduces to (9) for constant Ricci scalar,
λ(r) = λ.

In order to obtain the temperature, we follow Eq. (19).
After some manipulations, we obtain

T =
{
Kb−rb++ − C+ (b+ − b−) − (2 + b+)(2 + b−)�+

4πr1+b++

}

(
r+
r0

) z
2

, (46)

in which �+ = ∫ r=r+ r1+b+λ(r)dr .

As we mentioned before, we have to calculate the entropy
via the first law of thermodynamics, (23). As one expects,
the new relation of entropy is the same as that of reported in
Eq. (24).

Now, one may looking for possible phase transition. To do
so, we have to specify the functional form of the Ricci scalar.
Specifying the Ricci scalar, one can define a suitable dynami-
cal pressure and investigate critical behavior of the solutions.
Since it is straightforward, we abandon the presentation of a
specific example, for the sake of brevity.
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