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Abstract We show that quantum gravity yields exponen-
tially growing gravitational waves. Without a mechanism
to stop these modes from growing, the universe would go
through a gravitational collapse. For Minkowski background,
we propose a solution by choosing an integration contour in
Fourier space that does not enclose the problematic modes,
thus preventing them from showing up in the effective the-
ory. It turns out that this is only possible when the modes
are removed altogether. For an expanding universe, we argue
that the runaway modes can be managed accordingly to the
dynamics of the Hubble constant, leading to important impli-
cations for astrophysics.

1 Introduction

Of all fundamental interactions, gravity is probably the most
challenging one. Even though it is the oldest of the forces
and the only one that is part of everyone’s daily lives, it is
still the one lacking a full quantum treatment. Attempts of
quantizing gravity has led to inumerous difficulties over the
years, with partial success obtained only in the low-energy
regime.

One of the issues that remains unsolved concerns the vac-
uum stability. In the semi-classical limit, where the gravi-
ton is not quantized, instabilities are plagued in the form of
exponentially growing fields. It has been shown that massive
and massless scalar fields coupled to classical gravity ren-
ders instability in the Minkowski spacetime [1,2]. Quantum
general relativity at finite temperatures was also shown to
produce instabilities in the flat spacetime [3]. Further studies
were performed in [4–6]. Similar studies were also made for
the de Sitter spacetime [7–13].

In this brief paper, we will investigate one-loop correc-
tions to general relativity using effective field theory tech-

a e-mail: ibere.kuntz@ufabc.edu.br
b e-mail: roldao.rocha@ufabc.edu.br

niques and we will show that linear perturbations around
Minkowski and de Sitter spacetimes render exponentially
growing solutions of the wave equation, indicating that these
backgrounds suffer from instabilities due to quantum gravity.
Our approach builds up on the literature in two different ways
as: (1) we take into account the quantization of the graviton
as well as of massless matter fields and (2) we show that
instabilities arise even for self-interacting gravitons, with no
matter present. We also propose a solution whereby we pick
up a suitable contour of integration without including the
runaway modes to the theory.

After integrating out the graviton fluctuations with the
background field method, one obtains both local and non-
local contributions to the quantum gravitational effective
action [14,15]. However, to make the presentation of this
article simpler and without loss of generality, we will focus
only on the non-local contribution to the Einstein-Hilbert
action. The only effect of the inclusion of the local part is to
change the position of the roots (9) and (10) below, without
changing their complex nature [16]. The quantum effective
action then reads

� =
∫

d4x
√−g

(
M2

p

2
R − c1R log

�
μ2 R

−c2Rμν log
�
μ2 R

μν − c3Rμνρσ log
�
μ2 R

μνρσ

)
, (1)

where Mp = (8πG)−1/2 is the reduced Planck mass, G is
the Newton’s constant, μ is the renormalization scale and
the kernel R denotes the Riemann tensor and its contractions
(Ricci tensor and Ricci scalar) depending on the number of
indices it carries. The signature (+ − −−) will be adopted.
The coefficients ci are predictions of the infra-red theory and
depend only on the field content under consideration (see
Table 1 in [15] for their precise values).

To study the stability of a background, we will linearize
(1) using gμν = ḡμν + hμν , where hμν stands for perturba-
tions around the background metric ḡμν . It is the behavior
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of hμν that will tell us about the spacetime stability. After
linearization, the equation of motion obtained from (1) is
[17]

F(�ḡ)hμν = 0, (2)

where

F(�ḡ) ≡ �ḡ + NG

120π
log

(�ḡ

μ2

)
�2

ḡ (3)

and �ḡ = ḡμν∇̄μ∇̄ν . Here N = Ns + 6N f + 12NV + 42
and Ns , N f and NV denote the number of scalar, spinor and
vector fields in the theory, respectively. The numerical value
42 represents the graviton contribution [15]. Symbols with
bar indicate that they are defined using the background metric
ḡμν .

This paper is organized as follows. In Sect. 2, we solve
the equation of motion (2) for hμν around Minkowski back-
ground ημν and we show that the most general solution in
empty space contains both damped and exponentially grow-
ing solutions. The latter signs an instability of Minkowski
spacetime. We argue that this issue can only be solved by
choosing a contour of the fourier transform that does not
enclose any mode. This implies that the only possible solu-
tion is the trivial one hμν = 0. In Sect. 3, we solve the
equation of motion for a de Sitter background and we also
find exponentially growing modes. In this case, however, an
alternative solution exists as the growing solutions are neg-
ligible for a large Hubble constant H � Mp√

N
. We draw the

conclusions in Sect. 4.

2 Stability of Minkowski spacetime

In this section we take ḡμν = ημν . Let us write hμν in terms
of its Fourier modes

hμν(x) =
∮
C

d4q e−iqx h̃μν(q), (4)

where C stands for a contour of integration in the complex
plane to be chosen. As we are working within the realm of
effective field theory, we are allowed to choose the contour
C as we wish. It is precisely this freedom of picking up the
integration contour that will permit us to remove the insta-
bilities from the theory. The pseudo-differential operator (3)
acts on (4) as [18]

F(�η)hμν =
∮
C

d4q e−iqx F(−q2)h̃μν(q), (5)

where

F(−q2) = −q2
[

1 − NG

120π
q2 log

(
− q2

μ2

)]
. (6)

Thus the equation of motion (2) becomes
∮
C

d4q e−iqxq2
[

1 − NG

120π
q2 log

(
− q2

μ2

)]
h̃μν(q) = 0.

(7)

To solve this equation, we make use of Cauchy’s integral
theorem which states that a contour integral vanishes if its
integrand is analytic everywhere inside C. Thus the solution
h̃μν(q) must only develop poles that are canceled by the zeros
of F(−q2), which are given by [19]

q0 = 0, (8)

q±
1 = ±

√√√√120π

NG

1

W
(−120π

μ2NG

) , (9)

q±
2 = ±

√
(q2

1 )∗, (10)

where W (x) denotes the Lambert W-function. The exact
position of these zeros depends on the renormalization scale
μ. For practical purposes, we pick up μ so that the argument
of the Lambert W-function is −1:

μ =
√

120π

NG
. (11)

The important point is that there will always be zeros with
positive and negative imaginary parts.

Naively, one would think that all these zeros of F(−q2)

lead to wave solutions in the position space. However, there
is a subtlety regarding the contour of integration C of the
Fourier transform that we shall now explain. The most natural
contour, from a mathematical viewpoint, would be one that
encloses all of the zeros of F(−q2). However, the pole at
the origin coincides with the branch point of the logarithm.
To make the logarithm a single-valued function, we must
take a branch cut connecting the origin to a point at infinity.
Consequently, it is impossible to find a contour that encloses
the pole q0 = 0 without crossing the branch cut. In fact, while
the branch cut is artificial and can be chosen in infinitely many
different ways, the branch point is not. No matter how one
decides to take the branch cut, the branch point will always
be at the origin and it cannot be removed. Therefore, the
massless mode cannot be a solution of Eq. (7). Even if we
try to go around this fact by shifting the pole at the origin by
a small number ε

∮
C

d4q e−iqx (q − ε)2
[

1 − NG

120π
q2 log

(
− q2

μ2

)]
h̃μν(q) = 0,

(12)

we would not be able to get consistent results. In fact, as a
consequence of Sokhotski–Plemelj theorem, the limit when
ε → 0 does not commute with the integral sign, thus taking
that limit in the end does not recover the theory in which
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q0 = 0. This is just a manifestation of the well-known vDVZ
discontinuity as ε acts as a mass for the mode q0.

Another thing to consider when choosing the contour C
is causality. The quantum effective action (1) is obtained
performing the standard in-out formalism. Thus its resulting
propagator is the Feynmann one whose behaviour is acausal.
This is not an issue when calculating scattering amplitudes,
but should be taken care of when dealing with dynamical
equations as in (2). We shall enforce causality by properly
choosing the contour C so that (2) satisfies retarded bound-
ary conditions. This is equivalent to replacing the Feynmann
propagator by the retarded one as performed in [14,20]. Fig-
ure 1 shows the contour C that ensures a causal evolution. For
t < 0, the contour is chosen so that no poles are enclosed
which yields a vanishing integral due to the Cauchy’s inte-
gral theorem. For t > 0, the contour encloses all poles while
avoiding the branch cut.

Having chosen the contour of integration, we now need
to find the h̃μν(q) that is able to cancel out all the zeros of
F(−q2) that are enclosed by C. But since F(−q2) is not
a polynomial, the task of factorizing it becomes a bit more
involved. Fortunately, according to Weierstrass factorization
theorem,1 F(−q2) can be decomposed as [21]

F(−q2) = q2eg(q
2)

∞∏
n=1

(
1 − q2

q2
n

)

× exp

{(
q

qn

)2
+ 1

2

(
q

qn

)4
+ · · ·+ 1

λn

(
q

qn

)2λn
}

,

(13)

where g(q2) is a holomorphic function, {λn} is a sequence of
integers and qn are the zeros of F(−q2). Therefore, the field
solution must have the form

h̃μν(q) =
2∑

n=1

∑
s=+,−

An,s
μν

q − qsn
, (14)

where An,s
μν are constant tensors, to be able to cancel out the

zeros of (13). Transforming back to the position space gives

hμν(x) =
2∑

n=1

∑
s=+,−

an,s
μν e

−iqsn x , (15)

where an,s
μν are polarization tensors. As it was previously

observed in [22], the modes q−
3 and q+

2 have negative imagi-
nary part that leads to a damping in these modes. The modes
q−

2 and q+
3 , on the other hand, have positive imaginary part,

leading to an exponential growth. Thus, after a finite time the

1 To avoid confusion, it is worth saying that this theorem only holds if
F(−q2) is an entire function. We are actually using a generalization of
this result to subsets of the complex plane where F(−q2) is holomorphic
and which is attributed to Picard and Mittag-Leffler.

damped modes will die out and the behaviour of the fluctu-
ation hμν will be dominated by the growing modes which
will continue to grow indefinitely, eventually causing a grav-
itational collapse and destroying the whole structure of the

spacetime. Note that the e-folding time is τ ∼
√
N

M2
p

and the

time for which strong dynamics kicks in isT ∼ τ log(M2
pλ

2),
where λ is the gravitational wavelength. Hence, even before
the breakdown of the effective theory (t < T ), the runaway
modes are able to grow 80 orders of magnitude for a typical
wavelength λ ∼ 103km, thus one cannot simply assume that
this problem is solved by strong dynamics above the Planck
scale.

An obvious way to cure this issue is to choose the contour
C without enclosing the poles q−

2 and q+
3 . However, energy

conservation requires that the other poles q+
2 and q−

3 are also
removed. In fact, the energy lost by the damped modes is
taken over in average by the runaway modes. In addition,
CPT invariance requires that complex modes always arise
in conjugate pairs. Therefore, the only way of consitently
curing the instability of Minkowski spacetime is by removing
the modes altogether via a suitable choice of the integration
contour. Of course that this does not mean that the spectrum
of the fundamental theory is empty as the particle spectrum
should always be read off from the fundamental action and
not from the effective one [23]. The implication, however, is
that there is no way to consistently perturb the theory without
running into instabilities. The only leftover is the non-linear
background equation of motion.

3 Stability of de Sitter spacetime

We shall now turn our attention to the case where the back-
ground is curved. For an arbritrary curved background, this
is highly non-trivial, but we can take advantage of the exis-
tence of symmetries in maximal-symmetric backgrounds in
our favor. A good example of such background is de Sitter
spacetime. It was shown that the de Sitter metric is also a
solution of the background equation enhanced with quantum
corrections [24]. Therefore, it makes sense to ask whether
such background is stable under fluctuations of the metric in
a quantum theory of gravity.

The de Sitter metric in the conformal coordinate reads2

ds2 = 1

H2τ 2 (dτ 2 − dx2
i ), (16)

where H is the Hubble constant, τ is the conformal time and
xi denotes the three dimensional space. Let us assume that the

2 Note that conformal coordinates cover only half of the entire de Sitter
space, thus the global de Sitter space is excluded from our analysis.
However, these coordinates are sufficient for cosmological applications.
The stability of the global de Sitter space has been studied in [7–9].
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(a) (b)

Fig. 1 Contour C that ensures causality, enclosing no poles for negative times. The branch cut is represented by the wavy line

fluctuations are homogeneous, thus hμν(x) = hμν(τ ). The
rescaled perturbation field h̃μν = H2τ 2hμν in the transverse-
traceless-synchronous gauge

∂i h̃i j = 0, h̃0μ = 0, h̃ii = 0, (17)

satisfies

�ḡ h̃i j = 1√−ḡ
∂μ

(√−ḡḡμν∂ν h̃i j
)

,

= (Hτ)2∂2
τ h̃i j − 2H2τ∂τ h̃i j . (18)

Observe that the d’Alembert operator �ḡ is exactly the
Laplace-Beltrami operator that acts on scalar fields even
though it is being applied to a tensor field [25–28]. Although
this is evident in the conformal patch (16) complemented
with the gauge conditions (17), it is useful to change the
coordinates to an FLRW-like chart to make contact with cos-
mology:

ds2 = dt2 − e2Htdx2
i . (19)

In these new coordinates, the d’Alembert operator reads

�ḡγi j = ∂2
t γi j + 3H∂tγi j , (20)

where γi j (t) = h̃i j (τ (t)). As the problem only involves time,
it is convenient to use Laplace transform instead of Fourier’s.
Then, Eq. (4) turns into

γi j (x) =
∮
C

ds estγi j (s) (21)

and Eq. (2) now becomes∮
C

ds est (s2 + 3Hs)

×
[

1 + NG

120π
(s2 + 3Hs) log

(
s2 + 3Hs

μ2

)]
γi j (s) = 0.

(22)

Fig. 2 Example of branch cuts starting at s = −3H and at the origin
s = 0 and extending to the infinity

This time, two branch points show up coinciding with the
zeros s0 = 0 and s1 = −3H . The corresponding branch cuts
start at s0 and s1 and goes up to infinity (Fig. 2), preventing us
from including the massless mode s0 and the Hubble friction
s1 in the theory. Therefore, γi j must only develop poles at

s±
2 = −3H

2

⎛
⎝1 ±

√
1 − 4q2

2

9H2

⎞
⎠ , (23)

s±
3 = −3H

2

⎛
⎝1 ±

√
1 − 4(q2

2 )∗
9H2

⎞
⎠ , (24)

where q2 is the pole (10) of Minkowski spacetime. Damped
(growing) modes have negative (positive) real part, thus for
the renormalization scale (11) s−

2 and s−
3 are damped while

s+
2 and s+

3 are exponentially growing, showing that de Sitter
spacetime is also unstable in quantum gravity.
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As before, we could choose a contour to eliminate the run-
away modes, but because of energy conservation and CPT
invariance, we must also eliminate the damped ones. How-
ever, in a de Sitter background there is a more attractive alter-
native solution where the contour encloses all the poles but
the ones over branch points. In the limit of large Hubble
constant |q2| ∼ Mp√

N

 H , both s±

2 and s±
3 approximately

collapses into the branch points s0 and s1, solving the insta-
bility issue. Note, however, that this is an approximation as
|q2|/H is not identically zero. Therefore, we are still able to
choose a contour that encloses s±

2 and s±
3 without crossing

the branch cuts. This way, we end up with a richer and more
interesting theory than the one with no modes. It is impor-
tant to stress that the instability is automatically solved in the
limit of a large number of fields N . Coincidentally, this limit
is also required for unitarity [29].

From a cosmology viewpoint, de Sitter is just an idealiza-
tion of the more realistic situation where the Hubble constant
is time-dependent as described by a general FLRW model.
Thus, if the Hubble constant gets large for large times, its
dynamics could trigger the existence of the growing modes
during a finite time t0 in a controlled manner, without dista-
bilizing the spacetime and leading to important implications
for astrophysics. Mathematically, in order to prevent the run-
away modes from growing indefinitely, the Hubble constant
evolution must satisfy

H(t) � |q2|, t > t0, (25)

for some reference time t0. This way, when the growing
modes start to get too large, the Hubble constant will also
become large, turning the growing modes s+

2,3 into damped

modes and the damped modes s−
2,3 into constants. In this sit-

uation, the field solution is

γi j (t) =
2∑

n=1

∑
k=+,−

an,k
i j es

k
n t (26)

≈
(
a1,+
i j +a2,+

i j

)
e−3Ht+a1,−

i j +a2,−
i j , (H � |q2|),

(27)

which is constant for large times. Note that Eq. (27) does
not violate energy conservation as the decaying exponential
exists only due to the Hubble friction.

4 Conclusions

We showed how quantum gravitational effects lead to insta-
bilities in Minkowski and de Sitter backgrounds. Even before
reaching the scale where the effective theory breaks down,
the exponentially growing modes are able to increase by 80
orders of magnitude, which is more than enough to cause

the whole universe to collapse gravitationally. This situation
is obviously unphysical as we would have observed gravita-
tional waves with huge amplitudes by now (most likely long
before LIGO). In the Minkowski background, we solved this
problem by selecting a contour that does not enclose the run-
away modes. For physical reasons, however, we were forced
to remove the modes altogether. In the de Sitter spacetime,
a more interesting alternative was given for when the Hub-
ble constant satisfies H � Mp√

N
. We argued that an FLRW

universe, being a more realistic version of de Sitter, could
provide an interesting solution to the instability problem by
triggering the existence of the runaway modes in a controlled
way, keeping them from growing indefinitely.
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