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Abstract Higher derivative scalar field theory in curved
space-time belongs to the GLPV theory coupled non-
minimally to the Maxwell field is considered. We will show
that the theory admits two independent exact de Sitter solu-
tions in the FRW background, one driven by the cosmological
constant and the other by the GLPV scalar field. The dynam-
ical system analysis of the theory shows that these two exact
solutions are stable fixed points. Also, cosmological pertur-
bations over these solutions shows that the cosmological con-
stant based solution is healthy at linear level but the GLPV
based solution suffers from a gradient instability in the scalar
sector. This proves that the cosmological constant is needed
in the GLPV-Maxwell system in order to have a healthy de
Sitter solution.
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1 Introduction

Modifying Einstein’s general relativity has a long history.
Perhaps the first modification, can be attributed to the addi-
tion of the cosmological constant to the gravitational field
equation by Einstein himself [1]. From then, infinite number
of modifications have come out, concentrating on both ultra-
violet/infrared limits of the Einstein’s field equations [2–4].
Cosmology however, suffers from many problems, one of the
most important is the accelerated expansion of the universe
at late times. This can be explained by introducing some
light degree of freedom (dof) to the Einstein’s field equa-
tions, which can be responsible for the IR modification of
gravity. Many proposals have been suggested so far in the
literature, including the addition of some extra field to the
Einstein’s theory, which can be a scalar/vector/tensor field
[5], or enriching the gravitational action itself like higher
order derivative theories [6–8], Weyl-Cartan theories [9–11]
or massive gravity theories [12]. Also one can assume some
non-trivial matter-geometry coupling to explain the acceler-
ated expansion of the universe.

Among all, addition of a scalar field may be the minimal
modification of the theory. This adds one additional dof to
the Einstein’s theory (with two dof) if the Lagrangian for
the scalar field is healthy. In order for the scalar interactions
to becomes healthy, the scalar field should not have more
than two time derivatives at the level of equations of motion,
and the interaction terms should have a form which avoid
gradient/tachyonic instabilities. The scalar field theories is
then divided into two major classes; those which produce
accelerated expansion from the kinetic interactions [13], and
those which do that from non-trivial potential terms [5].

One the most interesting scalar field theories for the above
goal, is the so-called Galileon theory [14]. Galileons are
scalar fields which has more than second order time deriva-
tives in the action but due to the special form of the inter-
actions, it has at most second order time derivatives in the

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-019-6960-8&domain=pdf
mailto:s.shahidi@du.ac.ir


448 Page 2 of 10 Eur. Phys. J. C (2019) 79 :448

equations of motion. This makes the theory free from Ostro-
gradski instability. Galileon terms has an internal symmetry
under which the interaction terms remain invariant if one
shift the scalars as

φ → φ + bμx
μ + c,

where φ is the Galileon scalar and bμ and c are constants.
Many works has been done in the literature, considering
cosmological [15–22], balck holes [23–25], quantum nature
[26–31] and some generalizations of the Galileon scalars
[32–35]. However, one of most interesting facts about the
Galileons is that they can be interpreted as a position of the
4D brane world embedded in the 5D flat space [36]. This
suggests that the Galileon interaction terms can not have an
arbitrary form and as a result we have a finite number of
Galileon interaction terms in any dimension [14].

Upon generalizing the Galileon interactions to curved
space time, one immediately find out that higher order time
derivatives come back to the equations of motion [37]. This
is due to the fact that in curved space time, partial derivatives
do not commute. This problem can be solved by adding to the
action some higher order derivative terms which compensate
the higher order time derivatives in the equations of motion.
However, these terms breaks the Galileon invariance [37].
The most general scalar-tensor interactions in curved space
time which has the property that the equations of motion
are healthy is called the Horndeski theory [38]. Among all
the Horndeski terms, four terms bring more attention in the
sense that any combination of these terms have a consistent
self-tuning mechanism on FRW background. These terms are
well-known as the Fab-four [39] an can be written as

L john = √−gVjohn(φ)Gμν∇μφ∇νφ,

Lgeorge = √−gVgeorge(φ)R,

Lpaul = √−gVpaul(φ)Pμναβ∇μφ∇αφ∇ν∇βφ,

Lringo = √−gVringo(φ)G, (1.1)

where Pμναβ is the double dual of the Riemann tensor and
G is the Gauss-Bonnet invariant.

Also it is proposed that the Horndeski theory can be gener-
alized further to contain terms proportional to the Levi-Civita
tensor [40]

L4 ⊇ εμγαβε
β

νδρ ∇μφ∇νφ∇γ ∇δφ∇ρ∇αφ, (1.2)

where L4 is the fourth Horndeski Lagrangian (there is also a
similar term for the fifth Horndeski Lagrangian [40]). These
term will produce third-order derivative terms in the equa-
tions of motion but it can be shown that the extra ghost dof
does not appear in this case. The Fab-four terms can be fur-
ther generalized in the sense that the potentials for John and
Paul terms can depend on φ and also on X = ∂μφ∂μφ. The

resulting theory is called beyond Fab-four [41]. This new
theory however is a subclass of the GLPV theory, as will be
reviewed in the next section.

In this paper, we will investigate cosmological conse-
quences of a scalar field theory coupled to a Maxwell field.
The procedure of defining the action is that we write an
Einstein-Maxwell system in the presence of the cosmologi-
cal constant, and then couple the energy momentum tensor
of this theory with the kinetic term of the scalar field [42].
This will construct the John term of the GLPV theory coupled
non-minimally to the Maxwell field. It is well-known that the
Fab-four can not satisfy the gravitational wave observations
which indicate that the speed of a gravitational wave should
be luminal [43–46]. We will then add to the action a term
proportional to (1.2) to overcome this difficulty. The result is
that the gravitational waves will propagate with the speed of
light. We will also see that the theory allow us to have two
different exact de Sitter solutions which we will separately
investigate the cosmological implications in this paper.

2 The action

In this section we will introduce the model and construct
the action. This was first done in [42]. Let us begin with a
gravitational action minimally coupled to the Maxwell field

S =
∫

d4x
√−g

[
κ2R − 2� − 1

4
FμνF

μν

]
, (2.1)

where we have introduced the cosmological constant � and
Fμν = ∂μAν − ∂ν Aμ is the strength tensor related to the
electromagnetic potential Aμ. Now variation of each term in
(2.1) with respect to the metric tensor gives the Einstein’s
tensor Gμν , the metric tensor gμν and the energy momentum
tensor of the Maxwell field Tμν defined as

Tμν = 1

2
FμαF

α
ν − 1

8
FαβF

αβgμν, (2.2)

respectively. In this level we can couple a scalar field with
the theory (2.1) by multiplying f (X)∂μφ∂νφ with the terms
obtained from variation of the action (2.1). f is an arbi-
trary function of X = ∂αφ∂αφ. Note that we allow only the
dependence of f on X and not on the field φ itself, because
we want to keep the translational symmetry of the theory, i.e.
φ → φ + const. The resulting action becomes

S =
∫

d4x
√−g

[
κ2R − 2� − 1

4
FμνF

μν + f1(X)∂μφ∂μφ

+ f2(X)Gμν∂μφ∂νφ + f3(X)Tμν∂μφ∂νφ

]
, (2.3)

123



Eur. Phys. J. C (2019) 79 :448 Page 3 of 10 448

where fi are arbitrary functions. Let us consider the self
interaction term of the scalar field, i.e. the term corresponding
to f2. This is a subclass of the beyond Fab four theory [41],
which is known to be a subclass of the GLPV theory [40].
One can see that the term f2(X)Gμν∂μφ∂νφ can be reduced
to

f2,Xεμγαβε
β

νδρ ∇μφ∇νφ∇γ ∇δφ∇ρ∇αφ

+ ( f2X),X

[
(�φ)2 − ∇μ∇νφ∇μ∇νφ

]
− 1

2
f2X R, (2.4)

after some integration by parts. This is exactly the fourth
beyond Horndeski term [40] with identification

G4 = −1/2 f2X, F4 = − f2,X ,

where G4 and F4 are arbitrary functions introduced in the
beyond Horndeski Lagrangian; see [40].

As we have noted in the introduction, recent observational
data shows that the speed of the gravitational waves should
be equal to the speed of light with an error of order 10−15

[43]. In the beyond Horndeski theories, if one considers only
the fourth term, one can prove that if the condition

2G4,X − XF4 = 0, (2.5)

holds, the theory has a tensor mode propagating with the
speed of light [44–46]. For the beyond Fab four theory, it is
easy to check that the above condition leads to f2 = 0. As
a result the term corresponding to f2 in the action (2.3),
is not satisfied with the gravitational waves observations.
This shows that the scalar field self-interaction term obtained
above should be vanishes from the theory. In order to solve
this problem, let us add a term

f2,Xεμγαβε
β

νδρ ∇μφ∇νφ∇γ ∇δφ∇ρ∇αφ,

to the action (2.3). The theory then differs from the beyond
Fabfour theory but remains a subclass of the GLPV theory.
After solving the constraint (2.5) for the new action, one
can obtains f2 = βX , where β is an integration constant.
Supposing for simplicity that f1 and f3 are constants, one
can write the action as

S =
∫

d4x
√−g

[
κ2R − 2� − 1

4
FμνF

μν + α∂μφ∂μφ

+ βXGμν∂μφ∂νφ

+ βεμγαβε
β

νδρ ∇μφ∇νφ∇γ ∇δφ∇ρ∇αφ

+ γ Tμν∂μφ∂νφ

]
, (2.6)

where α and γ are some constants. In the following we will
explicitly show that the tensor modes propagate with the

speed of light in this theory. One can also rewrite the above
action in the form of the GLPV theory as

S =
∫

d4x
√−g

[ (
κ2 − 1

2
βX2

)
R − 2�

− 1

4
FμνF

μν + α∂μφ∂μφ

+ γ Tμν∂μφ∂νφ

+ 2βεμγαβε
β

νδρ ∇μφ∇νφ∇γ ∇δφ∇ρ∇αφ

+ 2βX
[
(�φ)2 − ∇μ∇νφ∇μ∇νφ

]]
, (2.7)

In order to have a canonical kinetic term for the scalar
field, one should set α = −1/2. However, we will keep it
arbitrary since there is a non-trivial background cosmological
solution for α �= −1/2.

As we have discussed above, the theory has a translational
symmetry on the scalar field φ → φ + a with a a constant.
Also the above theory has a U (1) symmetry on the Maxwell
field Aμ → Aμ + ∂μλ with λ is an arbitrary function. In this
sense, the field equations corresponding to the scalar field φ

and the Maxwell field Aμ can be written as a conservation of
the corresponding Noether charges. The metric field equation
can be written as

Gμν = Tμν − �e f f gμν − β

(
4(�φ)2∇αφ∇α∇(μφ∇ν)φ

− 1

2
X2Gμν + 2XRμανβ∇αφ∇βφ

+ 2X (∇α∇μφ∇α∇νφ + ∇α∇μ∇νφ∇αφ)

− 4∇αφ∇βφ∇α∇β∇(μφ∇ν)φ

− 8∇αφ∇α∇βφ∇β∇(μφ∇ν)φ

)

− 2
(
α − (�φ)2 + 2(∇∇φ)2 + ∇αφ�∇αφ

+ Gαβ∇αφ∇βφ
)
∇μφ∇νφ

− 1

2
γ

(
FμαFνβ∇αφ ∇βφ + 2∇(μφFν)αF

βα∇βφ

− 1

2
(∇φ)2Fμσ F

σ
ν − 1

4
∇μφ ∇νφ F2

)
, (2.8)

where we have defined

�e f f = � − αX − 2β
[
X∇αφ�∇αφ + X (∇∇φ)2

− ∇αφ∇βφ∇γ φ∇γ ∇α∇βφ

− ∇αφ∇βφ∇γ ∇αφ∇γ ∇βφ
]

+ 1

4
γ

[
1

4
XF2 − FβαF

α
τ ∇βφ ∇τ φ

]
, (2.9)
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and we have used the following notation

(∇∇φ)2 ≡ ∇μ∇νφ∇μ∇νφ, F2 ≡ FμνF
μν. (2.10)

The scalar and vector field equations can be written respec-
tively as

∇μ

[(
α gμν + β GμνX + βGαβ∇αφ∇βφgμν + γ Tμν

)∇νφ

+ 2βεμγαβε
β

νδρ ∇ρ∇αφ∇γ ∇[δφ∇ν]φ
]

= 0,

(2.11)

and

∇μ

[(
1 + 1

2
γ (∇φ)2

)
Fμν + 2γ F (μ

σ ∇ν)φ∇σ φ

]
= 0.

(2.12)

As we have discussed the last two equations of motion can be
written in the form ∂μ(

√−gJμ) = 0 which is the the con-
servation equations related to translational andU (1) symme-
tries.

3 Background cosmology

Let us now consider the cosmological consequences of the
model (2.8)–(2.12). Let us assume that the universe can be
described by the FRW ansatz with line element

ds2 = −dt2 + a2(dx2 + dy2 + dz2), (3.1)

where a = a(t) is the scalar factor. In the case of isotropic
and homogeneous space-time, the vector field Aμ should
have the form

Aμ = (A0(t), 0, 0, 0), (3.2)

and the scalar field can be written as φ = φ(t). The field
equations then reduces to

− 3κ2H2 + � − 1

2
αφ̇2 + 15

2
βH2φ̇4 = 0, (3.3)

− κ2(2Ḣ + 3H2) + � + β Ḣ φ̇4 + 3

2
βH2φ̇4 + 4βH φ̇3φ̈

+ 1

2
αφ̇2 = 0, (3.4)

2αφ̈ + 6αH φ̇ − 36βH2φ̈φ̇2 − 12βH3φ̇3

− 24βH
(
Ḣ + H2

)
φ̇3 = 0, (3.5)

where H is the Hubble parameter. Note that the vector field
equation of motion is satisfied identically in the case of homo-
geneous and isotropic universe since our theory is U (1)

invariant. Also note that in the above field equations, the
scalar field appears at most with two time derivatives, denot-
ing that the theory does not have an Ostrogradski instability.

The above set of equations has two exact solutions corre-
sponding to an accelerated expanding universe. The first one
has non-vanishing cosmological constant, with

φ = φ0, H =
√

�

3κ2 , (3.6)

where φ0 is an arbitrary constant. We refer to this solution as
�-based solution. This solution is nothing but the standard dS
solution of the Einstein–Hilbert theory with non-vanishing
cosmological constant. This happens actually because we
have assumed that the scalar field is constant and the field
equation contains at least first order time derivatives of the
scalar field. So, the scalar field will be disappeared from the
equations. Despite the fact that the background solution is
the same as in the standard Einstein’s theory we will see that
at the level of perturbations the physics becomes different
from that of Einstein’s theory.

The theory has another dS solution with vanishing cos-
mological constant � = 0 and

φ =
(

2κ2

3β

)1/4

t, H =
(

α2

24βκ2

)1/4

, (3.7)

which we will refer as the GLPV-based solution. In this
case α and β should be positive constants. This is actu-
ally the non-trivial solution of the GLPV-Maxwell system
and the accelerated expansion comes from the scalar field.
Note that the Maxwell field does not contribute to the back-
ground solutions since as noted above, we have assumed
isotropic and homogeneous universe. In order to investigate
the effects of the Maxwell field, one should consider for
example anisotropic space-times.

3.1 Dynamical system analysis

Let us write the Friedman Eq. (3.3) as

− αφ̇2

6κ2H2 + κ2�̄

3H2 + 5β̄φ̇4

2κ8 = 1, (3.8)

where we have defined dimensionless constants β̄ = κ6β

and � = κ4�̄. From the above equation one can define two
dynamical variables as

�� = κ2

3H2 , �φ = φ̇2

κ4 .
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Fig. 1 Singular points of the dynamical evolution of the theory. The
plot corresponds to the values of �̃ and λ̃ which leads to A = 0

Equation (3.8) shows that �� can be obtained as a function of
�φ so the system has only one dynamical degree of freedom.
Using Eqs. (3.4) and (3.5) one can write the autonomous
equation of this degree of freedom as

d�φ

d ln a
= −

6�φ

(
5β̄�2

φ − 2
) (

α
(

3β̄�2
φ − 2

)
+ 4β̄�̄�φ

)

α
(

15β̄2�4
φ + 4

)
− 4β̄�̄�φ

(
5β̄�2

φ + 6
) .

(3.9)

One should impose that the denominator of the above expres-
sion is non-zero in order to have a non singular cosmologi-
cal evolution. In Fig. 1, we have plotted the singular points
which should be excluded from the theory. We have defined
�̃φ =

√
β̄�φ and λ =

√
β̄�̄/α, so that the only parameter

to be discussed is λ. The figure then shows the set of values
(λ, �̃φ) which leads to the vanishing denominator.

The effective equation of state parameter ωe f f = −1 −
2Ḣ/3H2 can be obtained as

ωe f f = −1 −
2�φ

(
α

(
3β̄�2

φ − 2
)

+ 4β̄�̄�φ

) (
α

(
5β̄�2

φ + 2
)

− 20β̄�̄�φ

)
(
α�φ − 2�̄

) (
α

(
15β̄2�4

φ + 4
)

− 4β̄�̄�φ

(
5β̄�2

φ + 6
))

(3.10)

with
In order to have a non singular effective equation of state

parameter, one should exclude the points in Fig. 1 and also a
point �φ = 2�̄/α.

The above system has five fixed points as we will discuss
in the following.

3.2 de Sitter fixed points

The theory (3.9) has three fixed points corresponding to the
de Sitter expansion. The first one is

�φ = 0, �� = 1

�̄
, ωe f f = −1, (3.11)

which is exactly the �-based de Sitter solution obtained in
the previous section. The Eigenvalue corresponding to this
fixed point is −6 indicating that the fixed point is stable.

The second fixed point is

�φ = − 2α

2β̄�̄ +
√

2β̄(3α2 + 2β̄�̄2)
, ωe f f = −1,

(3.12)

with Eigenvalue −3 indicating that it is stable. Also note that
the expression under the square root is always positive. In
the limit � → 0, one obtains �� = (8β̄/3α2)1/2, which
is exactly the behavior of the GLPV-based de Sitter solution
of the previous section. As a result both de Sitter solutions
obtained analytically in the previous section are dynamically
stable. However, there is another stable de Sitter fixed point
corresponding to

�φ = − 1

3αβ

(
2β̄�̄ +

√
2β̄(3α2 + 2β̄�̄2)

)
, ωe f f = −1,

(3.13)

with

�� = − 2

3α2

(
2β̄�̄ +

√
2β̄(3α2 + 2β̄�̄2)

)

and Eigenvalue −3. One can see that the above fixed point
leads to imaginary Hubble parameter and therefore is not
well-defined.

3.3 Matter dominated fixed points

The theory (3.9) has also two unstable fixed points corre-
spond to the matter dominated universe. For both fixed points,
one has �� = 0, ωe f f = 0 and the Eigenvalues are +3.
However, these fixed points differs from the value of

�φ = ±
√

2

5β̄

In summary, one has a vast cosmological dynamics in this
model. Starting from either unstable matter dominated fixed
points and end in one of the stable de Sitter fixed points
corresponding to the �-based or GLPV-based solution.

3.4 General solutions

Before considering the cosmological perturbations of the
above exact solutions, let us solve the system (3.3)–(3.5)
numerically. Defining the dimensionless parameters

H = H0h, τ = H0t, φ = κψ, � = λκ2H2
0 , β̄ = H4

0 κ2β,

(3.14)
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Fig. 2 Plot of the Hubble parameter, the scalar field and the deceleration parameter as a function of the dimensionless time parameter τ . The values
of the parameters are α = −1.1, 1.1, 1, β̄ = 2.1, 1.7, 3.4 and λ = 4.1, 5.2, 4.9 for the dotted/dashed/solid lines respectively

one can rewrite the equations of motion as

h2 (
15β̄ψ ′4 − 6

) − αψ ′2 + 2λ = 0,

3hψ ′ (4β̄ψ ′2h′ − α
) + 18β̄ψ ′2h2ψ ′′ + 18β̄ψ ′3h3 − αψ ′′ = 0,

(2h′ + 3h2)
(
β̄ψ ′4 − 2

) + αψ ′2 + 2λ + 8β̄hψ ′3ψ ′′ = 0,

(3.15)

where prime denotes derivative with respect to τ . Figure 2
shows the behavior of the Hubble parameter, the scalar field
and the deceleration parameter defined as q = −1 − Ḣ/H2

as a function of τ . The value of the parameter α is α =
−1.1, 1.1, 1 for the dotted, dashed and solid lines respec-
tively. One can see from the figures that both positive and
negative values of the parameter α can result in the acceler-
ated expanding universe.

4 Perturbations

In this section we will investigate the cosmological perturba-
tions around the background solutions introduced in section

3. The metric perturbations around FRW background can be
written as

ds2 = −(1 + 2ϕ) dt2 + 2a(Si + ∂i B)dxi dt

+ a2((1 + 2ψ)δi j + ∂i∂ j E + ∂(i Fj) + hi j
)
dxidx j ,

(4.1)

where ϕ, ψ , E and B are the scalar perturbations, Si and
Fi are the vector perturbations with vanishing divergence
∂i Si = 0 = ∂i Fi , andhi j is the traceless and transverse tensor
perturbation, hii = 0 = ∂i hi j . Note that in our notation the
spatial indices are raised and lowered by the flat-space metric
δi j . The Maxwell field can be decomposed as

Aμ = (A0 + δA0, ξi + ∂iδA), (4.2)

where A0 is the background value of the Maxwell field. Note
that due to U (1) symmetry of the action (2.3), the Maxwell
field did not appear in the background field equations and A0

remains an arbitrary function. In this section for simplicity we
will assume that A0 is a constant. In the decomposition of the
Maxwell field (4.2), δQ0 and δQ are the scalar perturbations

123
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and ξi is a transverse vector perturbation ∂iξi = 0. The scalar
field can also be decomposed as

φ = φ0 + δφ. (4.3)

Note that φ0 is not constant in the GLPV-based solution.
Now, let us define the gauge invariant perturbation

quantities. Under the infinitesimal coordinate transformation
of the form xμ → xμ + δxμ, the scalar perturbations trans-
form as

ϕ → ϕ − ∂tδx
0, B → B + 1

a
δx0 − a∂tδx,

ψ → ψ − Hδx0, E → E − 2δx,

δA → δA − A0δx
0, δA0 → δA0 − A0∂tδx

0,

δφ → δφ − φ̇0δx
0. (4.4)

We can construct five gauge invariant scalar perturbations as

� = ϕ + ∂t

(
aB − a2

2
∂t E

)
,

� = ψ + H

(
aB − a2

2
∂t E

)
,

X = δA0 + A0∂t

(
aB − a2

2
∂t E

)
,

Y = δA + A0

(
aB − a2

2
∂t E

)
,

Z = δφ + φ̇0

(
aB − a2

2
∂t E

)
. (4.5)

Note that for the �-based solution the scalar perturbation δφ

is gauge invariant and we have Z = δφ.
For the vector perturbation we have

Si → Si − a∂tηi , Fi → Fi − 2ηi , ξi → ξi , (4.6)

and we can construct two gauge invariant vector perturba-
tions of the form

ρi = Si − 1

2
a∂t Fi , ξi → ξi . (4.7)

The tensor perturbation hi j does not transform under the
infinitesimal coordinate transformation and so it is gauge
invariant.

4.1 Tensor perturbation

Let us consider the tensor perturbation of the theory (2.3).
The tensor perturbation hi j has two polarizations which we
will denote by h× and h+. After expanding the action up to

second order in hi j and Fourier transforming the resulting
action one obtains

S(2)
tensor = 1

2

∑
+,×

∫
d3k dt κ2 a3a1

[
ḣi j ḣi j − 	k2

a2 hi j hi j

]
,

(4.8)

where a1 = 1 for �-based solution and a1 = 1/6 for GLPV-
based solution. One can see from the above expression that
the speed of the tensor modes in both solutions is equal to the
speed of light, in agreement with recent gravitational wave
observation [43].

One should note that the scalar and vector interaction
terms does not contribute to the tensor perturbation in the
�-based solution since the background values φ0 and A0 are
constant. So, tensor modes in �-based solution is equivalent
to the Einstein’s theory. However, for the GLPV-based solu-
tion where the background value of the scalar field depends
on time one has a tensor contribution from the β terms in the
action (2.3).

4.2 Vector perturbation

For the vector perturbation we have two gauge invariant quan-
tities. After Fourier transformation, one can obtain the vector
part of the second order perturbed action as

S(2)
vector = 1

2

∫
d3kdta

[
a1ξ̇

2
i − a2

	k2

a2 ξ2
i + a3κ

2	k2ρ2
i

]
,

(4.9)

where a1 = a2 = a3 = 1 for �-based solution and

a1 = 1 + γ κ√
6β

, a2 = 1 − γ κ√
6β

, a3 = 2

3

for GLPV-based solution. Note that ρi is non-dynamical with
equation of motion ρi = 0, so the third term in (4.9) vanishes
and one obtains the vector perturbation action as

S(2)
vector = 1

2

∫
d3kdt

[
a1ξ̇

2
i − a2

	k2

a2 ξ2
i

]
. (4.10)

One can see from the above relation that the �-based solution
is always healthy. For the GLPV-based solution, noting that
β > 0 from (3.7), the stable vector perturbation implies
β > γ 2κ2/6.

4.3 Scalar perturbation

For the scalar perturbation, there are five gauge invariant
scalar quantities. In what follows we will consider the scalar
perturbations over two background solutions separately.
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4.3.1 �-based solution

After Fourier transformation of the second order action, one
obtains

S(2)
scalar = 1

2

∫
d3k dt

[
�

(
8
√

3�a3κ�̇ + 8aκ2k2�
)

− 2k2aXẎ − 4�a3�2 + 4aκ2k2�2

+ a
(
k2Ẏ2 − 2αa2Ż2 − 12κ2a2�̇2

)

+ 2αk2aZ2 + ak2X 2
]
. (4.11)

One can see from the above action that � and X are non-
dynamical with equations of motion

X = Ẏ, � =
√

3κ2

�
�̇ + κ2k2

�a2 �. (4.12)

Substituting back the solutions (4.12) to the action (4.11) one
can see that Y vanishes from the action and also � becomes
non-dynamical with equation of motion � = 0. At the end
we have left with an action with one scalar dynamical degree
of freedom

S(2)
scalar = −1

2
α

∫
d3k dt a3

[
Ż2 − 	k2

a2 Z2
]
. (4.13)

In order to have a healthy scalar perturbation on top of the �-
based solution one should have α < 0. This in fact expectable
since in the �-based solution, only the α term contribute and
the kinetic term of the scalar field becomes positive only for
α < 0.

4.3.2 GLPV-based solution

In this subsection, we will concentrate on the scalar per-
turbation over the de Sitter background of the GLPV-based
solution (3.7). After Fourier transforming the second order
action, one obtains

S(2)
scalar = 1

2

∫
d3k dt

1

6a2
√

β

[√
6κ

(
γ k2Ẏ (Ẏ − 2X )

+20a2α�2 + γ k2X 2)
+ 2

√
β
(

3k2Ẏ (Ẏ − 2X ) + 12a2 (
αŻ2 − 2κ2�̇2

+4
√

ακ�̇Ż)
+ k2 (

3X 2 + 8
(
κ2�(6� + �)

−αZ2 + 2
√

ακZ(� − 2�)
)) )

+ 32(24β3κ6)1/4k2Z�̇ − 16(54βα2κ2)1/4a2�
(
κ�̇

+2
√

αŻ) ]
. (4.14)

It is evident that � and X are non-dynamical variables with
equations of motion

� = 2

15

√
6β

α2 (2
√

αZ − 3κ�)
k2

a2

+ 1

5

(
6β

α2κ2

)1/4

(2
√

αŻ + κ�̇), (4.15)

and X = Ẏ . Substituting the above equations back into the
action (4.14), one obtains

S(2)
scalar = 1

2

∫
d3k dt

[
16

5
(24βκ6)1/4ak2(2�Ż + Z�̇)

+ 48

5
a3κ(

√
α�̇Ż − κ�̇2) − 12

5
αa3Ż2

− 16κ

5α

√
2β

3

k4

a
(3κ2�2 + 4αZ2 − 4

√
ακ�Z)

+ 8

15
ak2(2κ2�2 − αZ2 + 10

√
ακ�Z)

]
. (4.16)

Upon transforming the perturbation variables � and Z as

N = � + 2κ√
α
Z, M = � −

√
α

2κ
Z, (4.17)

one can see that the variable N becomes non-dynamical.
After obtaining the equation of motion forN and substituting
back to the action (4.16), one obtains

S(2)
scalar =

∫
d3k dt

8

3
κ2a3

(
9Ṁ2 + 2

k2

a2 M2
)

, (4.18)

showing that the remaining scalar perturbation suffers
from gradient instability. This can be traced back to the
fact that the sign of the kinetic term for the scalar field is
positive.

5 Conclusions

In this paper we have considered the cosmological implica-
tions of a theory consists of a scalar field in curved space-time
coupled non-minimally to the Maxwell field. The scalar term
has a “John” self interaction form of the beyond Fab-four the-
ory and the non-minimal coupling between the scalar and the
vector field is the interaction between the kinetic term of the
scalar field with the energy-momentum tensor of the Maxwell
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field. In fact the beyond Fab-four Lagrangians do not satisfy
recent observational data on the gravitational waves indicat-
ing that the speed of the tensor perturbations should be equal
to the speed of light [43]. As a result we have added another
self-interaction term to the action which turn it to a subclass
of the GLPV theory [40] with a speed of tensor mode equal
to the speed of light. The theory has two internal symme-
tries; the translational symmetry associated with the scalar
field and the U (1) symmetry associated with the Maxwell
field. One should note that the terms appearing in the action
(2.3) can also be found in the Stueckelberg transformation of
the beyond generalized Proca theory [49,50]. However, our
theory is not a special case of the beyond generalized Proca
theory since there is no combination of beyond generalized
Proca interactions that gives the action (2.3). Cosmological
consequence of the generalized Proca theory is considered
in [51].

The theory has two independent exact de Sitter solutions;
one is driven by the cosmological constant and is equivalent
to the de Sitter solution of the Einstein–Hilbert action. The
other is driven by a non-constant, time dependent scalar field.
This solution does not need a cosmological constant but the
coupling constant α for the canonical kinetic term of the
scalar field should be positive.

The dynamical system analysis of the theory shows that
the system is one dimensional and has four fixed points. The
�-based and GLPV-based solutions coincides with two sta-
ble dS fixed points of the theory. There are also two unstable
matter dominated fixed points in which the dynamical evo-
lution of the universe can start, and end at the stable �-based
dS fixed point at late times.

The cosmological perturbations over these solutions
shows that the �-based solution is healthy at linear level for
all perturbations provided that the constant α becomes neg-
ative. This is in fact satisfactory because in this case all the
higher derivative self-interaction of the scalar field vanishes
and we left only with a standard kinetic term of the theory.
As a result for a healthy scalar perturbations around the �-
based solution one should have a correct sign for the scalar’s
canonical kinetic term. We will then have two branches of dS
solutions in this theory. For α < 0 we have just the �-based
solution and for the α > 0 we have only the GLPV-based
solution.

The GLPV-based solution has a healthy tensor perturba-
tions. Also the vector sector, put an lower bound on the values
of β. However, the scalar sector shows a gradient instability
which can be traced back to the sign of α. In fact, the pres-
ence of the GLPV interaction can not compensate the α-term
in the action and wrong sign of α affect the perturbations at
linear level. As a result, one can see that the GLPV-Maxwell
system does not have a healthy dS solution without the cos-
mological constant.
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