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Abstract We analyze the cosmological implementation of
Palatini f (R) theories, constructed with a Nieh–Yan term
and solved with respect to the torsion. We consider the rele-
vant case of the quadratic correction to the Hilbert–Palatini
action in the Ricci scalar, mimicking the Starobinsky model
of the metric formulation. We point out the emergence of
peculiar cosmological scenarios, depending on the sign of
such correction, able to reproduce bouncing settings and to
restore the standard Universe dynamics in the late asymp-
totic limit. Furthermore, we outline the settling of Little-Rip
dynamics, which calls for a deeper investigation in order to
be regularized via matter creation. Finally, we also show that
in our model the Immirzi field is asymptotically frozen in
time, resembling the morphology of Loop Quantum Gravity
standard formulation.

1 Introduction

General Relativity is a very rigorous and self-consistent con-
struction for the geometrical representation of the gravita-
tional interaction, from the point of view of the kinematic
theory. In this sense, the tensor language arises as the math-
ematical implementation of the General Relativity Principle
and the geodesic motion as the natural implication of the
Equivalence Principle [1].

However, the Einsteinian dynamics, associated to the
Einstein-Hilbert action is physically grounded only from the
point of view of being the simplest choice, leading to equa-
tions which contain second derivatives of the metric ten-
sor field. Indeed, simple generalizations of the gravitational
action can be easily constructed by adding other scalar invari-
ants to the Ricci scalar [2], and of particular impact over the
last two decades it has been the so-called f (R) gravity, where
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the Ricci scalar is replaced by a generic function of it [3,4].
Moreover, the success of this revised gravitational theory
must be also attributed to the possibility of a Brans–Dicke
reformulation [5] of the f (R) theory in the so-called Jordan
frame.

Besides the peculiar form of the action, another non-trivial
ambiguity concerning the gravitational interaction is the pos-
sibility to consider a priori the affine connection as an inde-
pendent variable with respect to the metric field (Palatini or
first order formulation) [6]. Indeed, if the metric is related to
the local causal structure of the space-time, the connection
is in general a different geometric object, responsible for the
transport of tensorial quantities across the space-time mani-
fold. In general relativity, taking the affine connection as an
independent entity leads to a dynamically equivalent descrip-
tion as it can completely solved in terms of the metric, i.e. one
simply recovers the Levi-Civita connection. However, when
the Palatini formalism is implemented for a f (R) model,
although the connection could be still considered an auxil-
iary field devoid of a proper dynamics, its form is affected by
the specific form of the function f (·) [3]. Especially, it can
be seen that the additional contribution due to the function
f (·) allows to recast Palatini f (R) theories into metric ones
endowed with torsion [7]. This means that the affine connec-
tion is equipped with an antisymmetric component depend-
ing of the function f (·), and we deal with a Riemann–Cartan
space-time [8–14].

Now, since in Palatini f (R) models torsion naturally
emerges, in [15] we proposed the idea that for formulating
f (R) gravity in the connection language we have to include
torsional contribution already into the Lagrangian. In partic-
ular, also in relation with features of Loop Quantum Gravity
(LQG) formalism [16–21], we considered in the Lagrangian
density a Nieh Yan term [22–24] with the Immirzi parameter
promoted to be a field [25–29].

This choice allowed to fully solve torsion in terms of the
function f (·) and the Immirzi field, reducing the original
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model to a scalar-tensor theory, characterized by an interest-
ing phenomenology for the gravitational waves polarizations
[30].

Here, we explore the cosmological implementation of the
theory proposed in [15] for a flat Friedman Universe, in order
to shed light on the dynamical and physical implications that
our revised Palatini f (R) theory can have on the Universe
history.

Specifically, we analyze the f (R) = R + αR2 model,
outlining very different evolutionary scenarios according the
sign of the parameter α, ruling the correction term to the
Palatini–Hilbert part of the action [31–33].

For α > 0 we obtain a modified Friedman dynamics,
marked by an effective gravitational constant depending on
the matter content considered, and restoring the general rel-
ativity framework in the asymptotic limit.

Much more intriguing turns out to be the case α < 0,
where we stress the settling of bouncing cosmologies as
a purely classic effect, due to the non minimal coupling
between the Immirzi field and the extended gravity sector
of the theory. In this case our analysis also points out the
existence of closed Universe solutions, even in the absence
of spatial curvature, still affected by the singularity and where
general relativity is never restored. Eventually, it is worth not-
ing that in our model the Immirzi field can be dynamically
relaxed to a constant by the Universe expansion, recovering
the standard LQG perspective.

The paper is structured as follows. In Sect. 2 we discuss
Palatini f (R) gravity and the role played by torsion in this
framework; in Sect. 3 we briefly recall the main features of
our model in the general case, and in Sect. 4 we specialize
to the isotropic and homogeneous background. In Sect. 5
we consider the implications of the correction term in the
Universe evolution. Finally, in Sect. 6 conclusions are drawn.

2 The role of torsion in Palatini f (R) theories

The action for generic f (R) models in Palatini formulation
is given by1

S = 1

2χ

∫
d4x

√−g f (R) + SM [gμν, ψ], (1)

where SM represents the matter action andψ collects globally
the matter fields, which minimally couples to the metric field
only. The function f (R) depends on the Ricci scalar R, which
according a first order analysis reads as

R = gμνRμν(Γ, ∂Γ ) = gμνRρ
μρν (Γ, ∂Γ ), (2)

1 We set χ = 8πG and c = 1.

the Riemann tensor Rμ
νρσ being function of the affine con-

nection and its derivative, i.e.

Rμ
νρσ = ∂ρΓ μ

νσ −∂ρΓ μ
νρ +Γ μ

τρ Γ τ
νσ −Γ μ

τσ Γ τ
νρ . (3)

It is worth remarking that the form of the connection is not
established in the well-know Levi-Civita solution, as in the
metric approach, but is determined properly by the equation
of motion obtained from (1). Indeed, if we assume the affine
connection to be symmetric in its lower indices, which a priori
could be not guaranteed, the variation of (1) with respect to
the metric field leads to

f ′(R)R(μν) − 1

2
f (R) = χTμν, (4)

with a prime denoting differentiation with respect to the argu-
ment and brackets symmetrization on the indices. The equa-
tion for the connection is given instead by

∇ρ

(√−g f ′(R)gμν
) = 0, (5)

where ∇μ is the covariant derivative from Γ
ρ
μν and the

stress-energy tensor Tμν is defined as

Tμν ≡ − 2√−g

δSM
δgμν

. (6)

Eventually, condition (5) can be still restated as the Levi-
Civita definition for the connection Γ

ρ
μν , provided we per-

form a conformal transformation of the metric gμν , that is

g̃μν ≡ f ′(R)gμν. (7)

Then, a solution for (5) is given by

Γ ρ
μν = 1

2
g̃ρσ

(
∂ν g̃μσ + ∂μg̃νσ − ∂σ g̃μν

)

= 1

2
gρσ

(
∂νgμσ + ∂μgνσ − ∂σ gμν

)

+ 1

2
(δρ

μ∂ν ln f ′(R) + δρ
ν ∂μ ln f ′(R)

− gμν∂
ρ ln f ′(R)). (8)

However, if we do not impose at the very beginning any par-
ticular symmetries properties on the form on the connection,
solution (8) is not the most general form the connection we
can have [7]. In fact, before variation of the action be per-
formed, we expect that connection could be endowed with
an antisymmetric component, i.e. torsion tensor might be
present:

T ρ
μν ≡ 1

2

(
Γ ρ

μν − Γ ρ
νμ

) �= 0, (9)
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and explicit calculations show that the solution (8) has to be
enlarged to include a vector-like contribution, namely

Γ ρ
μν → Γ ρ

μν − 2

3
δρ

μVν . (10)

Now, since the symmetric part of the Ricci tensor R(μν) is
not affected by (10), neglecting or considering any torsional
contribution due to Vν seems to be dynamically equivalent
and we always recover the metric field equation (4). However,
by the inspection of (8) it is clear that also the function f (R)

is responsible for the vector part

−2

3
δρ

μV
f (R)

ν = 1

2
δρ

μ∂ν ln f ′(R), (11)

so we can imagine to fix Vν = −V f (R)
ν , in order to deal with

a total vanishing vector component in the connection. This
choice allows us to recast (8) in the more suitable form

Γ ρ
μν = Γ̄ ρ

μν + K ρ
μν , (12)

where Γ̄
ρ
μν is the ordinary Levi-Civita connection, defined

in terms of the metric field gμν , and K ρ
μν the so-called con-

torsion tensor related to torsion by:

K ρ
μν = 1

2

(
T ρ

μν − Tμρν − Tνρμ

)
, (13)

that from (8) is recognized in

Kρμν = 1

2

(
gρν∂μ ln f ′(R) − gμν∂ρ ln f ′(R)

)
. (14)

Then, since the contorsion in general still depends on f ′(R),
the definition (14) (or (8) itself), is well-posed only if one
is able to express R as a function of quantities which do
not depend on the connection. With this regard, if we trace
the equation for the metric field (4), we obtain the structural
equation:

f ′(R)R − 2 f (R) = χT, (15)

which in principle can be solve algebraically for R = R(T ),
allowing us to completely determine the connection in terms
of the metric field and the matter source. Now, taking into
account (12), the equation for the gravitational field can be
rearranged as:

Ḡμν(g) = χ

f ′(R)
Tμν − 1

2
gμν

(
R − f (R)

f ′(R)

)

− 3

2 f ′(R)2

(
∇̄μ f ′(R)∇̄ν f ′(R) − 1

2
gμν(∇̄ f ′(R))2

)

+ 1

f ′(R)
gμν

(∇̄μ∇̄ν − gμν�̄
)
f ′(R), (16)

where Ḡμν is the Einstein tensor constructed via the met-
ric field gμν only, the d’Alambert operator defined by �̄ ≡
gμν∇̄μ∇̄ν , and

(∇̄ f ′(R)
)2 ≡ ∇̄μ f ′(R)∇̄μ f ′(R).

In (16), being ultimately f ′(R) a function of T , derivatives
of the stress-energy tensor appear, changing how the mat-
ter source generates space-time curvature. Moreover, when
T = 0, as in vacuum, relation (15) may admit a set of con-
stant solutions R = R(i)

0 and in this case equation (16) simply
reduces to GR equation with an effective cosmological con-
stant

Λ0 = 1

2

(
R0 − f (R0)

f ′(R0)

)
. (17)

Therefore, the scenarios offered by Palatini formulation of
f (R) theories depart significantly from standard predictions
just in the presence of matter, where the connection is not an
independent variable, but an auxiliary field affecting the way
metric and matter interact. Furthermore, by virtue of (12), we
see that first order f (R) models can equivalently restated as
metric theories endowed with torsion, primarily given by the
specific form of the function f . However, if torsion is present
at very fundamental level, it seems reasonable to include
torsional contributions already into the Lagrangian. In this
respect, a simple way for achieving that in a LQG-oriented
analysis is offered by f (R) extensions of the well-known
Nieh–Yan action, which represents the starting point of our
work.

3 The Nieh–Yan f (R) model

Let us consider the following extension of the action (1) (see
[15]), where the so-called Nieh–Yan term is considered in
the presence of a dynamical Immirzi field β(x):

SNY = 1

2χ

∫
d4x

√−g f (R)

+ 1

4χ

∫
d4x

√−g β(x)εμνρσ
(
gτλT

τ
μν T

λ
ρσ − Rμνρσ

)

+ SM [gμν,ψ].
(18)

When f (R) = R, action (18) resembles for β constant the
Nieh–Yan action usually adopted in Loop Quantum Grav-
ity, and the Immirzi parameter rules a total divergence that
does not affect classically the equations of motion. How-
ever, as stressed in [26,29,30], if β is space-time depen-
dent, it behaves as a source of torsion and the theory can be
reformulated as General Relativity in the presence of a min-
imally coupled massless scalar field. Therefore, if we keep
f (R) �= R generic, we expect that both types of torsion could
generate a dynamic larger framework with respect to (16), by
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virtue of the non trivial coupling between the Immirzi field
and the gravitational degrees of freedom (d.o.f).

Then, following the analysis of [15] that here we are
widening for including matter as well, with a bit of algebra
action (18) can be rewritten in the more convenient scalar-
tensor form:

SNY = 1

2χ

∫
d4x

√−g
(
φ R̄ − gμνΠμν(φ, β) − V (φ)

)

+ SM [gμν,ψ], (19)

where φ ≡ f ′(R) and R̄ represents the metric Ricci scalar,
depending only on metric variables. In particular, we intro-
duced the quantities

Πμν(φ, β) = 3

2φ

(∇̄μβ∇̄νβ − ∇̄μφ∇̄νφ
)

(20)

V (φ) ≡ φR(φ) − f (R(φ)). (21)

By analogy with (14), dealing at the effective level with (19)
means having a contorsion tensor given by

Kρμν = 1

2φ

(
gρν∇̄μφ − gμν∇̄ρφ

) − 1

2φ
ερμνσ ∇̄σ β, (22)

which for β constant boils down to (14).
Then, varying (19) with respect to gμν carries out:

Ḡμν = χ

φ
Tμν − 1

2φ
gμνV (φ)

+ 1

φ

(
Πμν(φ, β) − 1

2
gμνΠ

ρ
ρ (φ, β)

)

+ 1

φ

(∇̄μ∇̄ν − gμν�̄
)
φ, (23)

while the equations for φ and β are given by, respectively:

R̄ = − 3

2φ2

(∇̄μβ∇̄μβ + ∇̄μφ∇̄μφ
) + 3�̄φ

φ
+ V ′(φ) (24)

and

�̄β(x) = ∇̄μβ(x)∇̄μφ

φ
. (25)

Substituting in (24) the trace of (23), we get the modified
structural equation (see (15) for comparison):

2 V (φ) − φ V ′(φ) = χT − 3∇̄μβ∇̄μβ

φ
. (26)

That once we chose the specific f (R) model, allows us to
solve for φ = φ((∇̄β)2, T ). We point out that still in vacuum
relation (26) admits a larger set of solutions for φ, which is not
compelled to relax to a constant value as in original formula-
tion. The reason for this is the non trivial coupling between

the Immirzi field and the enlarged gravitational sector, which
makes the vacuum configuration never actually devoid of
matter content. In particular, the Immirzi term in (26) only
partially resembles the contribution to the structural equation
of scalar fields in ordinary Palatini f (R) gravity, where we
would expect a standard kinetic term deprived of the coupling
with φ. Furthermore, we note that the requirement of recov-
ering to some extent a proper vacuum state, as it is described
by (15) for T = 0, raises the issue about the relaxation of the
Immirzi field on a constant configuration, able to reproduce
standard LQG theory as well. In this respect, these problems
can be properly addressed in cosmology, where we can ask
for the asymptotically freezing of the Immirzi field during
the expansion of the Universe. Of course, such a mechanism
does not accounts for local fluctuations δβ(x) (see [15,30]),
but it can be considered responsible for the evolution of the
background value βB , where β = βB + δβ, which we may
demand to match with independent LQG estimates [34,35].

4 Modified Friedmann equation

A simple model for analyzing the role played by βB is
represented by the homogeneous and isotropic Universe,
described by the Friedman–Robertson–Walker (FRW) line
element2

ds2 = −dt2 + a2(t)

(
dr2

1 − kr2 + r2(dθ2 + sin2 θdφ2)

)
,

(27)

the scale factor a(t) being the only metric dynamical degree
of freedom and k the curvature of space. Within such a frame-
work, the background value for the Immirzi field can be con-
sidered function of the cosmological time t only, namely
βB = βB(t). Now, be Tμν the stress-energy tensor for a per-
fect fluid, i.e.:

Tμν = (ρ + P) uμuν + gμνP, (28)

where ρ and P are the energy density and the pressure,
respectively, and uμ = (−1, 0, 0, 0). Then, in the presence of
the energy density ρ the Friedman equation stemming from
(23) can be rearranged as

H2 =
(
ȧ

a

)2

= χ

3φ

(
ρe f f + ρ

) − k

a2 , (29)

with dot denoting time derivative, while combining the equa-
tion for the i i component with (29) we get the acceleration

2 We set the lapse function N (t) = 1.
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equation

ä

a
= − χ

6φ

(
ρ + ρe f f + 3(P + Pef f )

)
, (30)

where we introduced the effective energy density and pres-
sure given by, respectively:

ρe f f ≡ 1

χ

[
3

4φ

(
β̇2
B − φ̇2

)
+ 1

2
V (φ) − 3

ȧ

a
φ̇

]
(31)

and

Pef f ≡ 1

χ

[
3

4φ

(
β̇2
B − φ̇2

)
− 1

2
V (φ) + φ̈ + 2

ȧ

a
φ̇

]
. (32)

Deriving Eq. (29) with respect to time and plugging (30) in
it, we can obtain the relation

ρ̇ + 3

(
ȧ

a

)
(ρ + P)

+ ρ̇e f f − φ̇

φ

(
ρe f f + ρ

) + 3

(
ȧ

a

) (
ρe f f + Pef f

) = 0.

(33)

Then, in order the standard continuity equation be preserved,
that is:

ρ̇ + 3
ȧ

a
(ρ + P) = 0, (34)

the following condition has to be fulfilled

ρ̇e f f − φ̇

φ

(
ρ + ρe f f

) + 3
ȧ

a

(
ρe f f + Pef f

) = 0. (35)

By virtue of (31) and (32) this relation can be rewritten as

φ̇

2

(
V ′(φ) − R̄ + 3φ̇2

2φ
− 3β̇2

B

2φ2 + 3�̄φ

φ

)
− 3β̇B�̄βB

2φ
= 0,

(36)

where we used the expressions of the Ricci scalar and the
d’Alambert operator for the background (27). Hence, using
(25), relation (36) takes the form

φ̇

2

(
V ′(φ) − R̄ + 3φ̇2

2φ
+ 3β̇2

B

2φ2 + 3�̄φ

φ

)
= 0, (37)

which is identically satisfied given (24).
Therefore, if the equation of state P = wρ holds, where

w is the polytropic index, from (34) the standard solution can

be obtained, namely

ρ(a) = μ2

a3(w+1)
, (38)

with μ a constant.
Furthermore, we note that the Eq. (25) for βB can be actu-

ally solved analytically for β̇B . Indeed, for a FRW back-
ground, (25) simply reads as:

β̈B(t) +
(

3
ȧ

a
− φ̇

φ

)
β̇B = 0, (39)

whose solution is given by:

β̇B(t) = C0
φ(t)

a3(t)
, (40)

where we defined the integration constant C0 ≡ β̇B (t0)a(t0)3

φ(t0)
for a fiducial instant t0. Thus, inserting (38) and (40) in (26)
yields:

2V (φ) − φV ′(φ) = χμ2 3w − 1

a3(w+1)
+ 3C2

0

a6 φ, (41)

that, once a peculiar f (R) model has been fixed, allows us
to express φ as a function of the scale factor a(t), by virtue
of (21). Moreover, given (40), this implies in turn that β̇B(t)
depends on time only by means of the scale factor. Therefore,
the requirement that the Immirzi field relaxes on a constant,
can be equivalently restated as

lim
a→+∞ β̇B = 0. (42)

Now, taking into account (40), the Friedman equation can be
reformulated as:

H2 = χ

3φ

μ2

a3(w+1)
+ C2

0

4a6 + V (φ)

6 φ
− 1

4

φ̇2

φ2 − ȧ

a

φ̇

φ
− k

a2 .

(43)

We note that, since now φ has to be understood by means
of (41) as a function of the scale factor a, the terms in the
R.H.S. of (43) depending on the time derivative of φ always
give rise to terms proportional to H2, regardless the f (R)

model considered. Therefore, it is possible to rearrange (43)
in the following way:

H2 =

(
χρ(a)

3φ
+ C2

0
4a6 + V (φ)

6 φ
− k

a2

)
φ=φ(a)

F1(a)2 , (44)
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where F1(a) is a function of the scale factor that has the
general form

F1(a) =
(

1 + a

2

d ln φ(a)

da

)
, (45)

and the term depending on the time derivative of the Immirzi
field appears, by virtue of (40), as a sort of scalar field energy
density.

We note that the behaviour of F1(a) and φ(a) can remark-
ably affect the evolution of the scale factor. Indeed, in the
presence of any polos and zeros for F1(a), the function H
can vanish or diverge, giving rise to peculiar cosmological
scenarios. Similarly, by virtue of the coupling with the energy
density content and the potential term, also φ(a) can be in
principle responsible for analogous frameworks.

5 The model f (R) = R + αR2

In the following, we will restrict our attention on a specific
Lagrangian, including a correction term quadratic in the total
Ricci scalar R, i.e.:

f (R) = R + αR2. (46)

It is worth noting that with respect to the metric approach
(the well-established Starobinsky model [36–39]), in Palatini
formulation there are no issues concerning possible instabil-
ities of the solution [7,40], being that ultimately due to the
non dynamical nature of the field φ. For this reason, the real
parameter α is not compelled a priori to be positive, and also
negative values represent a suitable choice.

Then, when the model (46) is taken into account, the
potential V (φ) can be easily found, that is

V (φ) = 1

α

(
φ − 1

2

)2

, (47)

which inserted in (41) gives us:

φ = a6 f (a)

a6 + 6αC2
0

, (48)

being f (a) a function of the energy density, i.e.

f (a) = 1 − 2αχ(3w − 1)ρ(a). (49)

Eventually, setting k = 0, by means of (47) and (48) the
Friedman equation can be rearrange as

H2 =
(a6 + 6αC2

0 )

(
4χρ + 3C2

0 f (a)

a6+6αC2
0

+ 2α
(
χ(3w−1)a6ρ+3C2

0

)2

(a6+6αC2
0 )2

)

12a6 f (a)

(
a6+24αC2

0
a6+6αC2

0
+ a f ′(a)

2 f (a)

)2 .

(50)

By first inspection of (50), we see that according the sign
of α the parameter C2

0 , related to the Immirzi energy den-
sity, is crucial in determining the critical points of the Fried-
man equation. In particular, with the aim of investigating the
possible emergence of bouncing cosmologies ruled by the
Immirzi field [41–43], it can be instructive to consider the
vacuum case ρ = 0, where f (a) = 1 and (50) takes a very
simple form. More complex examples, even if still feasible
for analytic studies, are represented both by the cosmological
constant case, where ρ is constant and the term f ′(a) in (50)
vanishes, and by the radiation one, where the trace of Tμν is
zero and f (a) = 1 as in vacuum.

5.1 The vacuum case

The vacuum model constitutes a very useful tool for study-
ing the effects, on the space-time structure, of the Immirzi
coupling to gravitational d.o.f. In this case relation (48) is
simply

φ(a) = a6

a6 + 6αC2
0

(51)

and (50) boils down to

H2 = C2
0

4a6

(a6 + 6αC2
0 )(a6 + 12αC2

0 )

(a6 + 24αC2
0 )2

. (52)

When α > 0, Eq. (51) does not exhibit critical points and it
can be recast into the form

H2 = χβ(a)

3
ρβ, (53)

which represents the Friedman equation for the scalar field

energy density ρβ ≡ 3C2
0

4χa6 . It is characterized by an effective
gravitational constant

χβ(a) ≡ (a6 + 6αC2
0 )(a6 + 12αC2

0 )

(a6 + 24αC2
0 )2

χ, (54)

and General Relativity is recovered for a → +∞, where
χβ → χ and φ → 1 in agreement3 with (51).

When instead α < 0, the presence ofC2
0 affects drastically

(51). Indeed, in order the condition H2 ≥ 0 be preserved,
the scale factor a cannot assume arbitrary values in R

+, but
is constrained into domains

D1 : a ∈ [0, (−6αC2
0 )1/6],

D2 : a ∈ [(−12αC2
0 )1/6,+∞).

(55)

3 The value φ = 1 corresponds to f ′(R) = 1.
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Therefore, we deal with two disconnected branches, denot-
ing two different kind of Universe. In particular, the region
D1 defines a closed Universe, even for k = 0, bounded by
the turning point aT = (−6αC2

0 )1/6, where the General Rel-
ativity limit is never reached (φ = 0 for a = 0 and φ → −∞
for a → aT ) and it can be disregarded since unphysical.

Instead, the branch D2 is endowed with the critical point
aB = (−12αC2

0 )1/6 where H2 = 0 and a bounce occurs,
driven by the Immirzi energy density. That can be further
proved by evaluating (30) at the bounce, where it can be
recast into the form

ä

a
= −χ(1+3w)

6φ
ρ − C2

0
2a6 + V (φ)

φ
− 1

2 H
2F2(a)

F1(a)
, (56)

with F2(a) given by

F2(a) ≡ a2 d2

da2 ln φ + a
d

da
ln φ. (57)

Now, since φ is not singular at a = aB , at the bounce (H2 =
0) relation (56) simply gives

ä

a

∣∣∣∣
a=aB

= − 1

32α
, (58)

which is positive for α < 0.
Remarkably, in this case (53) can be put in the LQC-like

form

H2 = χ

3
ρβ

(
1 − ρβ

ρvac
cri t

)
, (59)

where we introduced the critical density

ρvac
cri t ≡ (a6 + 24αC2

0 )2

8αχa6(5a6 + 84αC2
0 )

. (60)

With respect to [41,42], where analogous results were dis-
cussed, we stress that in our case we are able to reproduce
bouncing cosmology for (46) also in the presence of stiff-
like matter (w = 1) (properly mimicked by the Immirzi field
contribute) when α < 0. Moreover, requiring that the bounce
occurs for Planckian energy density, allows to set the order
of magnitude of the parameter α. Indeed, if at the bounce

ρβ = ρvac
cri t (aB) = − 1

16αχ
∼ ρPlanck, (61)

where4 ρPlanck = c7/h̄G2, then it follows that α can be
estimated by

|α| ∼ h̄G

128πc3 = l2P
128π

, (62)

where lP is the Planck length

4 For the sake of clarity here we show explicitly the speed of light c,
that in the rest of the work we set to unity.

We note that the branch D2 is marked by another peculiar
point, namely a = aR = (−24αC2

0 )1/6 where the function
H2 diverges, and we have a vanishing Hubble radius for a
finite scale factor [44,45]. We expect that this type of singu-
larity could be regularized taking into account the gravita-
tional particle creation [46–48], related to the presence of a
cosmological horizon, or the non-equilibrium nature of the
involved thermodynamic processes [49–51], like bulk vis-
cosity effects [52–54]. In particular, particle creation can be
described by means of additional terms in the Friedman equa-
tion, able to stabilize the singular behaviour of the Hubble
parameter [55]. Therefore, we hypothesize that the Universe
might evolve smoothly through the critical point aR , reach-
ing asymptotically the General Relativity regime (53), where
we also require that the Immirzi field relaxes on a constant
value. That can be easily checked combining (48) and (40),
namely

lim
a→+∞ β̇B(a) = lim

a→+∞
a3(1 − 2αχ(3w − 1)ρ)

a6 + 6αC2
0

C2
0 = 0,

(63)

which, providing w ≥ −2, holds irrespective of the specific
energy density content ρ.

5.2 The cosmological constant case

For w = −1 the energy density does not depend on the
scale factor and we can formally set ρ = Λ/χ , where Λ is a
cosmological constant term. Then, relation (48) reads as

φ(a) = a6(1 + 8αΛ)

a6 + 6αC2
0

, (64)

and (50) takes the form

H2 = (a6 + 6αC2
0 )(4Λa12 + 3C2

0a
6 + 36αC4

0 )

12a6(a6 + 24αC2
0 )2

. (65)

By close analogy with (53), for α > 0 it can be simply recast
as

H2 = Λβ(a)

3
+ χβ(a)

3
ρβ, (66)

with the effective cosmological constant Λβ given by

Λβ(a) ≡ a6(a6 + 6αC2
0 )

(a6 + 24αC2
0 )2

Λ, (67)

and for a → +∞, the dynamical term Λβ asymptotically
reaches the constant value Λ and the standard de Sitter phase
is recovered. On the other hand, near the singularity the Λ
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term is negligible, i.e. Λβ → 0 and the Immirzi field is the
leading contribution to the dynamics.

If instead α < 0, the requirement of having a positive
Hubble parameter compels once again the scale factor into
specific regions of R+. Specifically, assuming the value of
Λ fixed, as for instance by current data [56], it is possible to
distinguish two separate cases, labelled by the size of α with
respect to Λ, i.e.:

8Λα < −1 ⇒
{

DΛ
1 a ∈ [0, aΛ],

DΛ
2 a ∈ [(−6αC2

0 )1/6,+∞);

−1 < 8Λα < 0 ⇒
{

DΛ
3 a ∈ [0, (−6αC2

0 )1/6],
DΛ

4 a ∈ [aΛ,+∞);

(68)

where aΛ =
(

− 3C2
0

8Λ

(
1 − √

1 − 64αΛ
))1/6

.

Analogously to the vacuum case, the domainsDΛ
1,3 always

designate closed Universes, which do not admit General Rel-
ativity as limit, and they can be overlooked. Instead, branches
DΛ

2,4 describe bouncing cosmologies, with the Big Bounce
point critically depending on the value of α. Especially, when
−1 < 8Λα < 0 holds, the bounce takes place for values cor-
responding to the turning point aT of the vacuum case (see
(55)), while if 8Λα < −1 the Big Bounce point is determined
by aΛ and also the cosmological constant term is involved
in fixing its value. Moreover, it is easy to see that in both
cases the bounce occurs for scale factor values lower than in
vacuum, being aΛ < aB = (−12αC2

0 )1/6 always satisfied
for α < 0. However, if we assume α fixed by (62) and Λ

reproducing the current dark energy phase (Λ ∼ 10−18l−2
P ),

then we see that the condition 8αΛ < −1 cannot be satisfied,
and DΛ

4 is the only valid branch.
Finally, the critical point aR = (−24αC2

0 )1/6, where H
diverges, is not removed since for negative values of α it is
always contained in the DΛ

2,4 domains.

5.3 The radiation case

When w = 1/3 the trace of the stress-energy tensor vanishes
and relation (51) is unaltered, whereas the Friedman equation
(52) is slightly modified and reads as:

H2 = C2
0

4a6

(a6 + 6αC2
0 )(a6 + 12αC2

0 + 4χμ2
R

3C2
0

(a6+6αC2
0 )2

a4 )

(a6 + 24αC2
0 )2

.

(69)

Following (66), when α > 0 it can be rewritten as

H2 = χR(a)

3
ρR + χβ(a)

3
ρβ, (70)

where with analogy with (67) we defined the effective grav-
itational coupling

χR(a) = (a6 + 6αC2
0 )3

a6(a6 + 24αC2
0 )2

χ. (71)

In particular, by virtue of (54)–(71), we see that near the
singularity the Immirzi energy density is negligible and the
Friedman equation behaves like H2 ∼ a−10, corresponding
to an effective superluminal index w = 7/3. We observe
that such results are quite common in ekpyrotic theories (see
[57] and references therein for an introduction), where it is
in general requested w 
 1 in order to solve the fine tuning
issues of standard cosmological model.

When α < 0, it can be demonstrated with bit long cal-
culations that the effect of the radiation energy density is
twofold: It endows the Hubble function of an additional zero
aB1 with respect to the vacuum case and displaces the critical
point aB = (−12αC2

0 )1/6 in a new root aB2 . Even if such two
new zeros cannot be analytically evaluated, they may be still
algebraically estimated by

aB1 ∈
(

0; (−6αC2
0 )1/6

)

aB2 ∈
(
(−6αC2

0 )1/6; (−12αC2
0 )1/6

)
.

(72)

Accordingly, the regions where relation H2 ≥ 0 is valid are
changed into the following new domains:

D R
1 : a ∈ [aB1 , (−6αC2

0 )1/6],
D R

2 : a ∈ [aB2 ,+∞),
(73)

and we see that the unphysical branch D R
1 is now turned in a

cyclic Universe equipped with a proper bounce point. Con-
cerning instead D R

2 , we note that the Big Bounce is shifted to
lower values, as for the cosmological constant case, whereas
the point of divergence aR is unaffected.

6 Concluding remarks

The analysis above provided the cosmological implementa-
tion of the Palatini f (R) model discussed in [15], where a
Nieh–Yan term was included in the presence of an Immirzi
field. The peculiarity of that approach was the possibility to
completely solve torsion in terms of the Immirzi and gravi-
tational d.o.f., so obtaining a non-minimally coupled scalar-
tensor theory.

In particular, we considered a specific class of f (R) theo-
ries, mimicking the well-established Starobinsky model in
metric formalism, by means of a quadratic correction to
the Palatini-Hilbert action. In this regard, we clearly distin-
guished two different cosmological scenarios, depending on
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the sign of such a correction. Indeed, for α > 0 the analysis
outlined a slightly modified Friedman dynamics, approach-
ing in the asymptotic limit the standard description of general
relativity and characterized by effective gravitational cou-
plings, according the type of energy density considered. For
α < 0 instead, we pointed out the existence of radically
different solutions, consisting in closed and bouncing Uni-
verses, respectively. Especially, the former were obtained
even for vanishing spatial curvature, but in general they
turned out to be still singular, and they were ruled out because
of the absence of the general relativity limit. Concerning the
latter, we were able to identify in the non minimal coupling
of the Immirzi field with the gravitational d.o.f. the cause of
the classical removal of the initial singularity. In this respect,
it is worth stressing that when a radiation energy density was
taken into account, the combined effect of the Immirzi and
radiation field was to introduce a further bouncing point in the
closed solution, resulting in a cyclic model. We mention that
this kind of solutions, even if a priori disregarded, they could
represent a Planckian state of the Universe, from which the
bouncing branch could originate as the result of a quantum
tunneling phenomenon.

Moreover, we pointed out that in general the reliable clas-
sical solutions are always endowed with critical points asso-
ciated to little rip dynamics, where the Friedman equation
diverges for specific values of the scale factor. Of course, they
must be regularized by reducing to a finite value the expan-
sion rate, as effect of matter creation, as well as non equi-
librium thermodynamics implications, mainly associated to
bulk viscosity effects.

Eventually, we shown that the Immirzi field can asymptot-
ically relaxed to a constant by the expansion of the Universe,
newly recovering the LQG vision of an Immirzi parameter.

Data Availability Statement This manuscript has no associated data or
the data will not be deposited. [Authors’ comment: This is a theoretical
study and no experimental data has been listed.]
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