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Abstract Spin precession of channelled particles in bent
crystals at the LHC gives unique possibility for measure-
ments of constants determining T-odd, P-odd (CP) violating
interactions and P-odd, T-even interactions of charm, beauty
and strange charged baryons with electrons and nucleus
(nucleons), similarly to the possibility of measuring their
electric and magnetic moments. For a particle moving in
a bent crystal new effects caused by non-elastic processes
arise. In addition to the spin rotation around the effective
magnetic field B direction (the bending axis direction), due
to electromagnetic interactions and leading to changes in spin
direction in the plane orthogonal to B, the spin acquires pro-
jection along the B direction. Moreover, when spin rotates
around the direction of the electric field E or the particle
momentum k, a spin component along E or k, respectively,
is induced.

1 Introduction

The spin rotation phenomenon for particles channelled in a
bent crystal, which was theoretically predicted in [1] and
observed in [2–4], gives the opportunity to measure the
anomalous magnetic moment of high energy short-lived par-
ticles. The availability of beams with energies up to 7 TeV
at the LHC and further growth of energy and luminosity at
the FCC improve the possibility of using this phenomenon,
along spin depolarization, for measuring anomalous mag-
netic moments of positively charged, as well as neutral and
negatively charged short-lived baryons, and τ leptons [5–8].
The detailed analysis of conditions of the experiment aiming
to measure the magnetic dipole moment (MDM) of Λ+

c and
Ξ+

c charm baryons at the LHC was accomplished recently
in [9,10]. The spin rotation phenomenon of the channelled
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particle also allows to obtain information about the electric
dipole moment of short-lived baryons, which an elementary
particle can take as a result of T-invariance violation (Fig. 1)
[10,11].

Besides electromagnetic interaction a channelled particle
moving in a crystal, experiences weak interaction with elec-
trons and nuclei, as well as strong interaction with nuclei.
When analyzing particle’s spin rotation, which is caused by
electric dipole moment interaction with electric field, one
should consider both P-odd, T-even and P-odd, T-odd non-
invariant spin rotations, resulting from weak interaction with
electrons and nuclei [12,13].

This paper demonstrates that spin precession of chan-
nelled particles in bent crystals at the LHC gives unique
possibility to measure constants determining T-odd, P-odd
(CP) violating interactions and P-odd, T-even interactions of
charm,beauty and strange baryons, similarly to possibility of
measuring their electric and magnetic moments considered
in [5–11]. It is also shown that for a particle moving in a bent
crystal, in addition to the spin rotation around the effective
magnetic field B direction (the bending axis direction) that
leads to spin direction change in the plane orthogonal to field
B, the spin acquires projection in direction of B, caused by
non-elastic processes. Similarly, when spin rotates around
the direction of electric field E or the particle momentum k,
a spin component parallel to E or k, respectively, appears.
The unit vectors along directions of B, E and k will be here-
inafter denoted as Nm, NT and n respectively.

2 Spin rotation and particles scattering in a crystal

The spin rotation phenomenon for a high-energy particle
moving in a bent crystal can be described by equations simi-
lar to those for motion of particles’ spin in a storage ring with
the inner target [12,13]. The theory, which describes motion
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Fig. 1 Behavior of the spin rotation caused by magnetic moment and
EDM. The figure is reprinted from figure 2 (right) in [11]. Black arrows
represent spin rotation caused by magnetic dipole moment, red arrows
represent spin rotation caused by electric dipole moment

of the particle spin in electromagnetic fields in the storage
ring, was developed in many papers [14,18–23].

According to [14,18–23], the basic equation, which
describes particle spin motion in electromagnetic fields, is
the Thomas-Bargmann–Michel–Telegdi (T-BMT) equation.
Refinement of the T-BMT equation allowing for the possi-
ble existence of non-zero EDM was made in [24] (see more
details in [10,11,20]).

Now let us consider a particle, which moves in the elec-
tromagnetic field and possesses spin S. The term ”particle
spin” here means the expected value of the quantum mechan-
ical spin operator. Motion of high-energy particles (Lorentz
factor γ � 1) in non-magnetic crystal (B = 0) will be
considered. In this case spin motion is described by:

dS
dt

= [S × Ω], (1)

Ω = −e(g − 2)

2mc
[β × E] , (2)

where S is the spin vector, t is the time in the laboratory frame,
m is the mass of the particle, e is its charge, β = v/c, where v

denotes the particle velocity, E is the electric field at the point
of particle location in the laboratory frame, and g is the gyro-
magnetic ratio. By definition, the particle magnetic moment
is μ = (egh̄/2mc)S. The T-BMT equation describes spin
motion in the rest frame of the particle, wherein the spin is
described by the three component vector S. In practice the T-
BMT equation describes the spin precession in the external
electric and magnetic fields applied in typical present–day
accelerators. However, it should be taken into account that
particles in an accelerator or a bent crystal have some energy
spread and move along different orbits. This necessitates to
average the spin–dependent parameters of the particle over
the phase space of the particle beam, requiring to introduce
the beam polarization ξ [25]. That is why one always must
bear in mind the distinction between the beam polarization
ξ and the spin vector S. A complete description of particle
spin motion can be made by the use of spin density matrices
equation (in more details see [13,26]).

If a particle possesses an intrinsic electric dipole moment,
then the additional term, describing spin rotation induced by
the EDM, should be added to (1),

dSEDM

dt
= D

Sh̄

[
S ×

{
E − γ

γ + 1
β(βE)

}]
, (3)

where D = ed is the electric dipole moment of the particle.
As a result, motion of particle spin due to the magnetic and

electric dipole moments can be described by the following
equation:

dS
dt

= −e(g − 2)

2mc
[S × [β × E]]

+ D

h̄S

[
S ×

{
E − γ

γ + 1
β(βE)

}]
. (4)

A high-energy particle moving in a crystal is scattered by
atoms and, thus, interacts with electric and magnetic fields.
However, electromagnetic interaction is not the only one
influencing the scattering process. Particles also interact with
electrons and nuclei via strong and weak interactions, this
depending on the spin of the colliding particles.

The refractive index for a particle in matter formed by
different scatterers has the form:

n = 1 + 2πN

k2 f (0) , (5)

where N is the number of scatterers per cm3, k is the wave
number of the particle incident on the target and f (0) ≡
faa(k′ − k = 0) is the coherent elastic zero angle scatter-
ing amplitude. In this case the momentum of the scattered
particle p ′ = h̄k′ (where k′ is a wave vector) equals to the
initial momentum p = h̄k. Let the quantum state of the
atom (nucleus) to be characterized by stationary wave func-
tion Φa before interaction with the incident particle. After
interaction the atom (nucleus) will stay in the same quan-
tum state. If the energy of interaction between a particle and
a scatterer depends on spin of the particle, then the scatter-
ing amplitude f (k′ − k) also depends on spin. Consequently
refractive index operator n depends on spin as well [13]. If
matter is formed by different scatterers, then

n = 1 + 2π

k2

∑
j

N j f j (0), (6)

where N j is the number of j-type scatterers per cm3, and
f j (0) is the amplitude of the particle coherent elastic zero-
angle scattering by the j-type scatterer. The particle energy

in the vacuum E =
√
h̄2k2c2 + m2c4 is not equal to the

particle energy in the medium Emed =
√
h̄2k2n2c2 + m2c4

[13].
The energy conservation law immediately requires the

particle in the medium to have the effective potential energy
Ueff . This energy can be easily found from the following
relation:
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E = Emed +Ueff , (7)

i.e.

Ueff = E − Emed = −2π h̄2

mγ
N f (E, 0)

= (2π)3NTaa(k′ − k = 0), (8)

f (E, 0) = −(2π)2 E

c2h̄2 Taa(k
′ − k = 0)

= −(2π)2 mγ

h̄2 Taa(k′ − k = 0), (9)

where Taa(k′ − k = 0) is the matrix element of T-operator
describing elastic coherent zero-angle scattering.

Let us remind that T-operator is associated with the scat-
tering matrix S [15,17]:

Sba = δba − 2π iδ(Eb − Ea)Tba, (10)

where Ea (Eb) is the energy of scattered particles before
(after) the collision, and the matrix element Tba corresponds
to states a and b, which both have the same energy.

For the matter formed by different scatterers the effective
potential energy reads as follows:

Ueff = −2π h̄2

mγ

∑
j

N j f j (E, 0). (11)

Due to periodic location of atoms in a crystal the effective
potential energy of a particle moving in the crystal is a peri-
odic function of particle’s coordinates [13]:

Ueff(r) =
∑
τ

U (τ )eiτ r , (12)

where τ is the reciprocal lattice vector of the crystal,

U (τ ) = 1

V

∑
j

U j (τ )eiτ r j . (13)

Here, V is the volume of the crystal elementary cell, r j is
the coordinate for the atom (nucleus) of type j in the crystal
elementary cell, and

Uj (τ ) = −2π h̄2

mγ
Fj (τ ). (14)

According to (14) effective potential energy U (τ ) is deter-
mined by amplitude Fj (τ ) = Fjaa(k′ − k = τ ). In contrast
to the case of chaotic matter, for which the effective poten-
tial energy is determined by the amplitude of elastic coherent
scattering f (k′−k), in a crystal it is defined by the amplitude
F(τ ) (see [31]), which can be written as:

Fj (k′ − k) = f j (k′ − k) − i
k

4π

∫
f ∗
j (k

′′

−k′) f j (k′′ − k)dΩk′′ . (15)

where dΩk′′ means integration over all k′′ directions, with
|k′| = |k| = |k′′|.

The amplitude F(k′ − k) appears in (14) instead of the
amplitude of elastic coherent scattering f (k′ − k) due to the
fact that the wave elastically scattered in a crystal is involved
in formation of a coherent wave propagating through the crys-
tal via rescattering by the periodically located centers. This
is unlike scattering in amorphous matter.

3 Effective potential energy of a spin-particle moving
close to the crystal planes (axes)

Elastic coherent scattering of a particle by an atom is caused
by electromagnetic interaction of the particle with the atom
electrons and nucleus, as well as weak and strong nuclear
interaction with electrons and nucleus. The general expres-
sion for the amplitude of elastic scattering of a particle with
spin 1

2 by a spinless or unpolarized nuclei can be written as:

F(q) = Acoul(q) + As(q)

+(
Bmagn(q) + Bs(q)

)
σ [n × q]

+(
Bwe(q) + Bwnuc(q)

)
σNw

+(
BEDM(q) + BTe(q) + BTnuc(q)

)
σq, (16)

Here, σ = (σx , σy, σz) and σx , σy , σz are the Pauli matri-
ces, q = k′ − k, Acoul(q) is the spin-independent part of
the elastic Coulomb scattering amplitude of a particle by an
atom; and As(q) is the spin-independent part of the scattering
amplitude, which is caused by strong interaction (the similar
contribution caused by weak interaction it is negligibly small
and hereinafter is omitted).

The spin-dependent amplitude is proportional to Bmagn(q),
determined by electromagnetic spin-orbit interaction, and
Bs(q), responsible for the contribution of the spin-orbit
strong interaction to a scattering process of a baryon by a
nucleus.

The term proportional to the parity odd pseudo scalar
σNw (unit vector Nw = k′+k

|k′+k| ) includes two contribu-
tions: Bwe(q), which describes elastic scattering caused by
the parity violating weak interaction between the baryon and
electrons; and Bwnuc(q), which describes elastic scattering
caused by the parity violating weak interaction between the
baryon and the nucleus.

Finally, the term proportional to the time (T) violating (CP
non-invariant) pseudo scalar σ q includes three contributions:
BEDM(q)describes elastic scattering of the baryon with EDM
by the atom’s Coulomb field;BTe(q) describes possible short-
range T-non-invariant interaction between the baryon and
electrons; and BTnuc(q) describes scattering caused by T-
non-invariant interaction between the baryon and nucleons.

Using amplitude F(q), the potential energy Ueff(r) can
be expressed as a sum of terms that describe contributions of
different interactions:
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Ueff(r) = Ucoul(r) +Us(r) +Umagn(r) +Uso(r)

+Uw(r) +UT(r), (17)

where Ucoul(r) is the Coulomb potential energy of interac-
tion between baryon and crystal, Us(r) describes spin inde-
pendent contribution of nuclear interactions to the potential
energy of interaction with crystal; Umagn(r) describes con-
tribution to Ueff(r) caused by interaction between baryon
magnetic moment and atoms electric field;Uso(r) is the con-
tribution caused by spin-orbital nuclear interactions; Uw(r)
describes the contribution caused by parity violating weak
interactions; UT(r) describes the contribution caused by T-
violation interactions between baryon and crystal.

Further we will consider spin-rotation effect for a baryon
moving in planar channeling conditions. According to the
analysis given in appendices to this paper, contributions to
potential energy Ueff(x) can be expressed as follows (x-axis
is orthogonal to the chosen crystallographic plane),

(a) Potential energy Us(x) (see Appendix A.2),

Us(x) = − 2π h̄2

mγ dydz
Nnuc(x)As(0), (18)

where Nnuc(x) = ∫∫
Nnuc(x, y′, z′)dy′dz′ is the probability

density function at point x .
(b) Effective potential energy determined by the anoma-

lous magnetic moment (see Appendix A.3),

Umagn(x) = − eh̄

2mc

g − 2

2
σ
[
Eplane × n

]

−i
1

4dydzmc2

g − 2

2

∂

∂x
δV 2(x)σN

= −(αm + iδm)σN, (19)

where

N = [nx × n], (20)

αm = eh̄

2mc

g − 2

2
Ex , (21)

δm = 1

4dydzmc2
g − 2

2

∂

∂x
δV 2(x),

δV 2(x)=
∫ ⎧⎨

⎩
[∫

Vcoul(x, y, z)dz

]2
−
[∫

Vcoul(x, y, z)dz

]2
⎫⎬
⎭dy.

(22)

Here δV 2(x) is the mean square fluctuation of energy of
Coulomb interaction between baryon and atom (A.31), and
nx is the unit vector along axis x .

(c) Effective potential energy determined by spin-orbit
interaction (see Appendix A.4),

Uso = −(αs + iδs)σN, (23)

where

αs = − 2π h̄2

mγ dydz

∂Nnuc

∂x
B ′′,

δs = 2π h̄2

mγ dydz
B ′ ∂Nnuc

∂x
, (24)

with B ′ and B ′′ being real and imaginary parts of Bs(0).
(d) Effective potential energy Uw determined by P-odd

and T-even interactions (see Appendix A.5),

Uw(x) = Uwe(x) +Uwnuc(x) = −(αw(x) + iδw(x))σn,

αw(x) = αwe(x) + αwnuc(x),

δw(x) = δwe(x) + δwnuc(x). (25)

Using formulas adduced in Appendix A.4, αw(x) and δw(x)
read:

αw(x) = 2π h̄2

mγ dydz
(B̃ ′

we(0)Ne(x) + B̃ ′
wnuc(0)Nnuc(x)),

δw(x) = 2π h̄2

mγ dydz
(B̃ ′′

we(0)Ne(x) + B̃ ′′
wnuc(0)Nnuc(x)). (26)

(e) T-violation interactions lead to the following contribu-
tion to potential energy (see Appendix A.6):

UT(x) = UEDM +UTe +UTnuc = −(αT(x)

+iδT(x))σNT, (27)

where

αT = αEDM + αTe + αTnuc,

δT = δEDM + δTe + δTnuc.

Interaction energy between electric dipole moment and
atoms’ electric field is:

UEDM = −edEplane(x)σNT − i
d

2dydzh̄c

∂

∂x
δV 2(x)σNT,

(28)

where Eplane(x) is determined by the electric field of the
plane, Eplane(x) = ExNT. The operator UEDM can be
expressed as:

UEDM = −(αEDM + iδEDM)σNT. (29)

Similar to Umagn, energy UEDM has non-zero both real and
imaginary parts. The expression for Umagn converts to UEDM

by replacements g−2
2 → 2 d

λc
(λc = h̄

mc is the Compton
wave-length of the particle) and N → NT. Therefore,

UEDM

Umagn
= 4d

λc(g − 2)
= ed

μA
= D

μA
. (30)

Additions to UT(x), which are caused by short-range T-
violating interactions of the baryon with electrons and nuclei,
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reads as follows:

UTe(x) = i
2π h̄2

mγ dydz
B̃Te(0)

dNe(x)

dx
σNT,

UTnuc(x) = i
2π h̄2

mγ dydz
B̃Tnuc(0)

dNnuc(x)

dx
σNT,

Ne(nuc)(x) =
∫

Ne(nuc)(x, y, z)dydz. (31)

Coefficients B̃Te(0) and B̃Tnuc(0) both are complex valued:

B̃Te(nuc)(0) = B̃ ′
Te(nuc) + i B̃ ′′

Te(nuc).

As a result we have:

UTe(nuc)(x) = −(αTe(nuc) + iδTe(nuc))σNT, (32)

where

αTe(nuc) = 2π h̄2

mγ dydz
B̃ ′′

Te(nuc)
dNe(nuc)(x)

dx
,

δTe(nuc) = 2π h̄2

mγ dydz
B̃ ′

Te(nuc)
dNe(nuc)(x)

dx
.

Thus in the experiment aimed to obtain the limit for the
EDM value, the limits for the scattering amplitude, which
is determined by T(CP)-noninvariant interactions of baryons
with electrons and nuclei, will be obtained as well. It should
be emphasized that studies of electric dipole moment and
T-odd nuclear interactions in atoms and nuclei for nonrela-
tivistic energies demonstrate that in the experiments to search
for an EDM the contributions from all these interactions can
be of the same order of magnitude [28]. The obtained values
of these scattering amplitudes for different interaction types
allows to derive values of corresponding constants, too. The
simplest model enabling to describe T-odd nucleon-nucleon
interaction is the Yukawa potential [29], which has the form
VT = −dTσ r e

−�Tr

r2 . Here dT is the interaction constant,

�T ∼ 1
MT

, where MT is the mass of heavy particles, exchange
of which leads to interaction VT [29]. Using this potential
one can obtain the equations for αTe(nuc) with replacement in
(A.29) of Vcoul + VEDM by Vcoul + VT.

It should be noted that constant dT for interaction between
a heavy baryon and a nucleon can be greater than that for
nucleon-nucleon interaction. This effect can be explained by
the reasoning similar to that explaining the expected EDM
growth for the heavy baryon. T-odd interaction mixing of
stationary states with different parity for a heavy baryon is
more effective then that for light baryons due to probably
smaller spacing between energy levels corresponding to these
states.

Let’s note that since the scattering amplitude F is a com-
plex value, thus the potential energy U is also a complex
value. The real part of this energy describes changes in par-
ticles’ energy as a result of interaction with matter, while the
imaginary part describes absorption.

Every spin dependent contribution to U has the following
structure:

A = −(α + iβ)σζ , (33)

where ζ is the unit vector. Comparing this expression with
the interaction energy between magnetic moment μ and mag-
netic field B:

Umagn = −μσ B. (34)

It can be seen that terms proportional to α in A causes spin
rotation around N . The imaginary part shows that absorption
in matter depends on spin orientation with respect to N . As
a result a spin component directed along N appears (spin
dichroism arises [13]).

The analogy between (33) and (34) leads us to the conclu-
sion that a particle in matter is affected by the pseudomag-
netic fields caused by strong and weak interactions (for low
energy neutrons the effects determined by such fields were
discovered and have been investigated for many years, see
[13]).

Let’s now consider a particle moving in a straight (unbent)
crystal. The expression for U contains terms proportional to
either the electric field projection onto x axis or derivatives

of density of electrons
dNe(x)

dx
and nuclei density

dNnuc(x)

dx
.

As a result, particles moving between the planes are affected
by pseudomagnetic fields, which change their sign due to
transverse oscillations of the channelled particles. This leads
to suppression of spin rotation in such fields (suppression
decreases with growth of particle energy). The exceptions
are the spin rotation and the spin dichroism effects caused
by weak P-odd T-even interaction, those both increase with
growth of crystal thickness; these effects also occur in amor-
phous medium [13].

4 P and CP violating spin rotation in bent crystals

Expressions for the interaction energy between a baryon and
a crystal plane (axis), obtained above, allow us to find the
equation describing evolution of the particle polarization
vector in a bent crystal. These equations differ from those
describing spin evolution in external electromagnetic fields
in vacuum, by the presence of additional contributions from
P and T (CP) noninvariant interactions between electrons and
nuclei. Moreover, a new effect, which is caused by non-elastic
processes, arises: along with the spin precession around vec-
tors Nm, NT and n, spin components parallel to these vectors
appear, thus spin dichroism occurs.

Equations, which describe spin rotation in this case, can be
obtained by the following approach [13]. Spin wave function
|Ψ (t)〉 meets the equation as follows:

123



350 Page 6 of 15 Eur. Phys. J. C (2019) 79 :350

ih
∂|Ψ (t)〉

∂t
= Ueff |Ψ (t)〉. (35)

Baryon polarization vector ξ can be found via |Ψ (t)〉:

ξ = 〈Ψ (t)|σ |Ψ (t)〉
〈Ψ (t)|Ψ (t)〉 . (36)

Thus the equation for spin rotation of a particle (γ � 1),
which moves in a bent crystal, reads as follows:

dξ

dt
= −e(g − 2)

2mc
[ξ × [n × E]] − 2

h̄
δm{Nm − ξ(Nmξ)}

− 2

h̄
αso[ξ × Nm] − 2

h̄
δso{Nm − ξ(Nmξ)}

+2ed

h̄
[ξ × E] + 2

h̄
δEDM{NT − ξ(NTξ)}

+ 2

h̄
(αTe + αTnuc)[ξ × NT]

+ 2

h̄
(δTe + δTnuc){NT − ξ(NTξ)}

+ 2

h̄
αw[ξ × n] − 2

h̄
δw{n − ξ(ξn)}. (37)

Let us note that vector [n × E] is parallel to vector Nm =
[n × nx ] and Nm = −N (see (19), (23) and (A.28)), vector
E is parallel to NT = nx , nx ⊥ n. Equation (37) can be also
expressed as:

dξ

dt
= −

(
e(g − 2)

2mc
Ex (x) + 2

h̄
αso(x)

)
[ξ × Nm]

− 2

h̄

(
δm(x) + δso(x)

){
Nm − ξ(Nmξ)

}

+ 2

h̄

(
edEx (x) + αTe(x) + αTnuc(x)

)[ξ × NT]

+ 2

h̄

(
δEDM(x) + δTe(x) + δTnuc(x)

){
NT − ξ(NTξ)

}

+ 2

h̄
αw[ξ × n] − 2

h̄
δw

{
n − ξ(ξn)

}
. (38)

For further comparison let us use the rearranged Eq. (4).
The electric field E can be decomposed as E = E⊥ + E‖,
where E⊥ is an electric field component perpendicular to the
particle velocity, E‖ is an electric field component parallel to
the particle velocity. In the considered case of high energies
(γ � 1) contribution of E‖ component to spin evolution
(according to (4)) is noticeably suppressed. This contribution
in the second term is proportional to 1 − β2 = 1/γ 2 � 1.

Following [16] let us introduce polarization vector ξ = S
S .

Equations for baryons with S = 1
2 are considered further. For

high-energy particles β can be considered equal to unit vector
n. As a result, Eq. (4) can be rewritten as:

dξ

dt
= −e(g − 2)

2mc

[
ξ × [n × E⊥]

]

+2D

h̄

[
ξ × E⊥

]
. (39)

Fig. 2 Spin rotation caused by magnetic moment and T-reversal vio-
lation interactions (including EDM). Black arrows represent spin rota-
tion about effective magnetic field (about bent axis, direction Nm),
red arrows represent spin component caused by rotation of EDM about
direction NT, purple arrows represent the new effect – appearance of the
spin component directed along Nm owing to the spin dichroism (spin
rotation and dichroism in direction NT owing to T-reversal violation
and P-violating interactions, is not shown here for simplicity)

Fig. 3 Black and red arrows show spin rotation caused by magnetic
moment, T-reversal violation interactions (including EDM), P-violation
spin rotation about direction n (orange arrow) and spin component in
direction n caused by spin dichroism (green arrow). Spin components
caused by spin dichroism in direction Nm and direction NT are not
shown for simplicity

It can be seen that in comparison with (39) expressions
(37, 38) contain new terms. According to (38), baryon spin
rotates around three axes [30]: effective magnetic field direc-
tion Nm||[n×E], electric field direction NT||E and momen-
tum direction n.

Non-elastic processes in crystals result in the new effect:
terms proportional to δ lead to appearance of the polariza-
tion vector components in directions defined by vectors Nm,
NT and n. Let’s pay attention to the fact that appearance of
the spin component directed along effective magnetic field
B∗ (Nm direction) is caused by both spin rotation around
direction of the electric field E (NT direction), due to T-
noninvariant violation, and spin dichroism processes, due
to non-elastic processes between the magnetic moment and
atoms of bent crystal. It can be seen that appearance of such
spin component imitates the result of the T-noninvariant rota-
tion (Figs. 2, 3).

From Eq. (38) the result, which was obtained in [30], can
be derived. Namely, when an unpolarized beam enters a crys-
tal, the beam polarization in direction of vectors Nm, NT and
n arises.
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Contributions to Eq. (38), which are caused by the inter-
action between a baryon and nuclei, depend on distribu-
tion of nuclei density Nnuc(x) (see terms proportional to
αso(x), δso(x), αTnuc(x), δTnuc(x)). As a result, for positively
charged particles, moving in the channel along the trajecto-
ries located in the center of the channel, such contributions
are suppressed.

Thus, according to (38), when conducting and interpret-
ing experiments aimed for EDM, it should be considered that
measurement of spin rotation provides information about the
sum of contributions to T-noninvariant rotation. The men-
tioned rotation is determined by both EDM and short-range
CP-noninvariant interactions.

Let’s evaluate the most important new effects described
by the Eq. (38) and consider the contribution to spin rotation
caused by spin dichroism in direction of Nm. According to
(19) coefficient δm reads as follows:

δm = 1

4dydzmc2

g − 2

2

∂

∂x
δV 2(x)

= 1

4dydz
mc2 g − 2

2

∂

∂x

×
∫ {[∫

Vcoul(x, y, z)dz

]2

−
[∫

Vcoul(x, y, z)dz

]2
}
dy, (40)

where Vcoul(x, y, z) = ∑
i Ve(x − xi , y − yi , z − zi ) −

Vnuc(x − η f x , y − η f y, z − η f z), xi , yi , zi are the coordi-
nates of the i-th electron in atom, η f x , η f y , η f z are the coor-
dinates of the atom nucleus. Let us choose the position of
equilibrium point for the oscillating nucleus as the origin of
coordinates. The overline denotes averaging of electrons’ and
nuclei’ positions over electron density distribution and nuclei
oscillations; in other words, averaging with wave-functions
of atoms in crystal. By means of these functions, the density
distribution can be expressed as follows:

N (r1, r2 . . . r z, η) = Ne(r1, r2 . . . r z, η)Nnuc(η), (41)

where Ne is the density distribution of electrons in atom, Nnuc

is the density distribution of nucleus oscillations.
Let’s introduce the function W (x, y) = ∫

V (x, y, z)dz.
From (40) we have:

W (x, y) =
∑
i

∫
Ve(x − xi , y − yi , ξ)dξ

−
∫

Vnuc(x − ηx , y − ηy, ξ)dξ

=
∑
i

We(x − xi , y − yi ) − Wnuc(x − ηx , y − ηy),

(42)

W 2(x, y) =
∫ [∑

i

We(ρ − ρi ) − Wnuc(ρ − η⊥)

]2

×Ne(ρ1 − η1, . . . ρz − η⊥)Nnuc(η⊥)d2ρ1d
2ρzd

2η⊥,

(43)

where ρ = (x, y), η⊥ = (ηx , ηy), Z is the number of elec-
trons in atom. In other words:

W 2(ρ) =
∫ {[∑

i

We(ρ − ρi )
]2

−2
∑

We(ρ − ρi )Wnuc(ρ − η⊥) + W 2
nuc(ρ − η⊥)

}

×Ne(ρ1 − η1, . . . ρz − η⊥)Nnuc(η⊥)d2ρ1d
2ρzd

2η⊥.

(44)

The result of averagingW 2(ρ) includes two contributions:
that for density distribution of a single electron in atom and
one dependent on coordinates of two electrons in the atom,
which describes pair correlations in electrons positions in
the atom. However, the influence of pair correlations will be
ignored during the estimations. As a result the expression
(44) can be represented as follows:

W 2(ρ) =
∫

d2η⊥
{
Z
[〈W 2

e (ρ, η⊥)〉e − 〈We(ρ, η⊥)〉2
e

]

+Z2〈We(ρ, η⊥)〉2
e − 2Z〈We(ρ, η⊥)〉Wnuc(ρ − η⊥)

+W 2
nuc(ρ − η⊥)

}
, (45)

where

〈We(ρ, η⊥)〉e =
∫

We(ρ − ρ′)Ne(ρ
′ − η⊥)d2ρ′,

〈W 2
e (ρ, η⊥)〉e =

∫
W 2

e (ρ − ρ′)Ne(ρ
′ − η⊥)d2ρ′. (46)

That means

W 2(ρ) =
∫
d2η⊥

{
Z [〈W 2

e (ρ, η⊥)〉e − 〈We(ρ, η⊥)〉2
e ]+

+(Z〈We(ρ, η⊥)〉e − Wnuc(ρ − η⊥))2
}
Nnuc(η⊥).

(47)

According to (40, 42–44) the function
∫ [

W 2(ρ) − W (ρ)
2
]
dy

determines the expression for δm. It should be noted that when
fluctuations of Coulomb interaction of a baryon with atoms,
caused by nuclei oscillations, are neglected, only those fluc-
tuations, which are determined by distribution of electrons’
coordinates in the atom, remain.
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As a result, the following equation for δm can be obtained:

δm = 1

4dydz
mc2 g − 2

2

∂

∂x

∫ {
W 2(x, y) − W (x, y)

2
}
dy,

(48)

where

W (ρ) =
∫ {

ZWe(ρ, η⊥)
e − Wnuc(ρ − η⊥)

}

×Nnuc(η⊥)d2η⊥,

We(ρ, η⊥)
e =

∫
We(ρ − ρ′)Ne(ρ

′ − η⊥)d2ρ′.

Let us neglect nuclei oscillation to estimate the δm value.
In this case contribution to the meansquare fluctuation of the
energy of Coulomb interaction between a baryon and an atom
is caused by fluctuations of positions of electrons in the atom.
As a result the expression for δm reads as follows:

δm = 1

4dydz
mc2 g − 2

2

× ∂

∂x

∫ {
z[〈W 2

e (x, y)〉e − 〈We(x, y)〉2
e]
}
dy, (49)

where function We(x, y) = ∫
V (x − x ′, y − y′, z)dz. In

expression (49) averaging of electrons distribution in the
atom is conducted over variables x ′, y′ (see explanations for
expression (45)).

The shielded Coulomb potential is used to estimate fluc-
tuations of Coulomb interaction of a baryon with atoms.
Let’s suppose that electrons are distributed uniformly over
the area, which size is determined by the shielding radius. In
this case, the following estimation for δm can be obtained:
δm ∼ 108 ÷109 s−1 depending on the position of the baryon
trajectory in the planar channel. According to [10,11] the
expected sensitivity for the EDM measurement experiments
is ed ∼ 10−17e cm . Spin rotation frequency ΩEDM = 2edE

h̄ .
The field E affecting baryons in a bent crystal can be obtained

from the expression E = mγ c2

eR , where R is the radius of the
crystal curvature. Therefore ΩEDM = 2 d

R
W
h̄ , where W is the

baryon energy. For R = 30 m, d ∼ 10−17 cm and W = 1
TeV we have ΩEDM 
 107 s−1. As a result, the non-elastic
processes, which are caused by magnetic moment scatter-
ing, can imitate the EDM contribution. Surely, more detailed
computer simulation is needed.

The contributions of P-odd and T-even rotation to the gen-
eral spin rotation effect can be evaluated by the following
way. Precession frequency Ωw is determined by the real part
of the amplitude of baryon weak scattering by an electron
(nucleus). This amplitude can be evaluated by Fermi theory
[27] for the energies, which are equal or smaller than those

necessary for W and Z bosons production:

B ′
we(nuc) ∼ GFk = 10−5

m2
p
k = 10−5 h̄

mpc

m

mp
γ

= 10−5λcp
m

mp
γ, (50)

where GF is the Fermi constant, mp is the proton mass, λcp

is the proton Compton wavelength. For particles with energy
from hundreds of GeV to TeV, B ′

we(nuc) ∼ GFk = 10−16 cm.
For different particle trajectories in a bent crystal the

value of precession frequency Ωw could vary in the range
Ωw 
 103 ÷ 104 s−1. Therefore, when a particle passes 10
cm in a crystal, its spin undergoes additional rotation around
momentum direction at angle ϑp 
 10−6 ÷ 10−7rad. For a
heavy baryon this effect grows as a result of the mechanism
similar to that causing the EDM growth (see the explanation
for the growth of constant dT hereinabove).

Absorption caused by parity violating weak interaction
also contributes to change of spin direction (see in (37,38)
the terms proportional to δw). This rotation is caused by the
imaginary part of the weak scattering amplitude and is pro-
portional to the difference of total scattering cross-sections
σ↑↑ and σ↓↑ [30]. This difference is proportional to the fac-
tor, determined by interference of Coulomb and weak inter-
actions for baryon scattering by an electron, as well as by
interference of strong (Coulomb) and weak interactions for
baryon scattering by nuclei [30]:

σ↑↑(↓↑) =
∫

| fcoul(nuc) + B0w ± Bw|2dΩ, (51)

σ↑↑ − σ↓↑ = 2
∫ [

( fcoul(nuc) + B0w)B∗

+( fcoul(nuc) + B0w)∗B
]
dΩ. (52)

When baryon trajectory passes in the area, where colli-
sions with nuclei are important (this occurs in the vicinity of
potential barrier for positively charged particles), the value
δw ∼ 106 ÷ 107 s−1. Similar to the real part B ′

we(nuc) for the
case of heavy baryons the difference in cross-sections grows.
Multiple scattering also contributes to spin rotation and depo-
larization [8,13,26,30,31]. Particularly, due to interference
of magnetic, weak and Coulomb interactions, the root-mean-
square scattering angle appears changed and dependent on
spin orientation with respect to vectors Nm, NT and n. More-
over, study of spin characteristics of particles, which are scat-
tered on different angles by axes (planes), even when the
crystal is unbent, gives the opportunity to derive the scatter-
ing amplitude (16) both for charged and neutral short-lived
particles [30].

When measuring MDM and T-odd spin rotation in a bent
crystal, one can eliminate parity violating rotation by the
following way. Turning the crystal 180◦ around the direc-
tion of incident baryon momentum leaves P-odd spin rotation
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unchanged, while the sign of MDM and T-odd spin rotations
changes due to change of the electric field direction. Subtract-
ing results of measurements for two opposite crystal positions
the angle of rotation, which does not depend on P-odd effect,
could be obtained. Summation of rotation angle measure-
ments provides opportunity to measure P-odd spin rotation
angle and suppress the contribution of MDM and T-odd spin
rotation. Such measurement is similar to the one proposed in
[10] to control systematic uncertainties: two crystals (with
up and down bending) should be used to induce opposite
spin precession to channelled baryons. Separation of contri-
butions caused by MDM and T-odd spin rotation becomes
possible when comparing experimental results for two dif-
ferent initial orientations of polarization vector ξ . Namely,
ξ ‖ Nm and ξ ‖ NT, i.e. the initial ξ is parallel to the bending
axis of the crystal or to E direction.

5 Conclusion

Besides electromagnetic interaction, channelled particles
moving in a crystal experience weak interaction with elec-
trons and nuclei, as well as strong interaction with nuclei.
When analyzing particle’s spin rotation, which is caused by
electric dipole moment interaction with electric field, one
should consider non-invariant spin rotations both P-odd, T-
even and P-odd, T-odd, resulting from weak interaction with
electrons and nuclei. As demonstrated hereinabove, spin pre-
cession of channelled particles in bent crystals at the LHC
gives unique possibility for measurement of constants deter-
mining T-odd, P-odd (CP) violating interactions and P-odd,
T-even interactions of baryons with electrons and nucleus
(nucleons), similarly to the possibility of measuring elec-
tric and magnetic moments of charm, beauty and strange
charged baryons. For a particle moving in a bent crystal a
new effect, which is caused by non-elastic processes, arises:
in addition to the spin precession around three directions
Nm, NT, n, the spin dichroism effect causes the appearance
of the spin components in directions of Nm, NT, n. To sep-
arate P-noninvariant rotation from the MDM- and EDM-
induced (T-odd) spin rotations the method of turning crystal
by 180◦ or the one proposed in [10], using two crystals with
up and down bending to control systematic uncertainties, can
be used.To separate contributions caused by MDM and T-odd
interactions, two crystals placed perpendicular to each other
can be used.
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A Appendices

A.1 Scattering amplitude

According to the analysis provided in section (2), coherent
rescattering of the particle by periodically spaced atoms in
crystal leads to elastic scattering of waves in crystal which
doesn’t cause absorption of these waves (unlike in amorphous
matter). As a result effective potential energy of the particle
in crystal is determined not by the amplitude of the elastic
coherent scattering f , as in amorphous matter, but by some
more complicated amplitude F which imaginary part does
not contain contribution of elastic coherent scattering section.
Features of the amplitude F are considered in this section.
Following (15) we have:

Fj (0) = f j (0) − i
k

4π

∫
f ∗
j (k

′′ − k′) f j (k′′ − k)dΩk′′ .

(A.1)

The integral in (A.1) is equal to the total cross-section of the
elastic coherent scattering by a nucleus (atom). According to
the optical theorem:

Im f j (0) = k

4π
σtot = k

4π
σelast + k

4π
σnon−elast. (A.2)

In contrast to the case of matter with chaotically distributed
scatterers, the amplitude Fj (0) in crystal is expressed as fol-
lows:

Fj (0) = f̃ j (0), f̃ j (0) = f j (0) − k

4π
σelast. (A.3)

In other words, the cross-section of elastic coherent scatter-
ing in crystal does not contribute to the imaginary part of
amplitude Fj (0). This imaginary part is solely determined
by the cross-section of non-elastic processes:

Fj (0) = ReFj (0) + i ImFj (0) = ReFj (0)

+i
k

4π
σnon−elast. (A.4)

The nonzero-angle scattering possesses similar features.
This fact becomes clear when one uses the equality, which is
correct for elastic scattering [16]:
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Im felast(k′ − k) = k

4π

∫
f ∗
elast(k

′′ − k′) felast(k′′

−k)dΩk′′ , (A.5)

and subtracts the elastic scattering contribution from the
imaginary part of f (k′ − k) using (15).

The same result can be obtained by considering the inter-
action with the scatterer in terms of the perturbation theory. In
case when the first Born approximation is used, the scattering
amplitude f (1)(k′ − k) has zero imaginary part:

Im f (1)
aa (k′ − k) = 0. (A.6)

The non-zero imaginary part arises when using the second-
order Born approximation.

Let us remind that T-operator, which determines the scat-
tering amplitude (see (9)), satisfies the following equation
[15,17]:

T = V + V
1

E − H0 + iη
T, (A.7)

whereV is the interaction energy, H0 is the Hamilton operator
of colliding systems located at large distance from each other.

As a result, for the elastic coherent scattering amplitude
faa with the accuracy up to the second order terms over the
interaction energy, one gets:

faa(k′ − k) = −(2π)2 mγ

h̄2

(
〈Φk′a |V |Φka〉

+〈Φk′a |V
1

Ea(k) − H0 + iη
V |Φka〉

)
,

(A.8)

where Φka is an eigenfunction of Hamilton operator H0,

Φka = 1

(2π)3/2 e
ikrΦa, (A.9)

Φa is the wave function of a scatterer stationary state and
H0Φka = Ea(k)Φka . Using the completeness of function
Φka and replacing “1” in (A.8) by∑
k′′b

|Φk′′b〉〈Φk′′b| = 1, (A.10)

one obtains the sum over the intermediate states b, which
includes states with b = a. This term contains the following
expression:

1

Ea(k) − Ea(k′′) + iη

= P
1

Ea(k) − Ea(k′′)
− iπδ(Ea(k) − Ea(k′′)). (A.11)

The “P” symbol means principal-value integrals. This real
part contribution is small as compared to the first Born
approximation, therefore, it will not be further considered.
The imaginary term in (A.11), which is proportional to the δ

function, leads to occurrence of an imaginary part in ampli-
tude f (k′−k). Substitution of the expression with δ-function
into (A.8) makes it obvious that the term in the sum, in which
b = a, is equivalent to the term subtracted from the ampli-
tude faa(k′ − k) in (15). As a result only the terms caused by
non-elastic processes and reactions with b �= a make con-
tributions to the imaginary part of the amplitude in crystal.
To simplify the consideration below, when expressing F , the
contribution from the elastic coherent scattering to the imag-
inary part of the amplitude faa will not be considered and
the second term in (15) also will not be written explicitly.

A.2 Effective potential energy of a spin-particle moving
close to the crystal planes (axes)

Suppose a high energy particle enters into a crystal at a small
angle to the crystallographic planes (axes), close to the Lind-
hard angle. This motion is determined by the plane (axis)
potential Ueff(x) (Ueff(ρ)), which can be obtained from
Ueff(r) by averaging over the distribution of atoms (nuclei)
in a crystal plane (axis). Similar result can be obtained
by removing from the sum (12) either all the terms with
τy �= 0, τz �= 0 for the case of planes or τz �= 0 for the case
of axes.

As a consequence for the potential of periodically placed
axes one can write:

Ueff(ρ) =
∑
τ⊥

U (τ⊥, τ z = 0)eiτ⊥ρ, (A.12)

where the z axis of the coordinate system is directed along
the crystallographic axis.

For periodically placed planes the potential reads as fol-
lows:

Ueff(x) =
∑
τ x

U (τx , τy = 0, τz = 0)eiτx x , (A.13)

with y, z planes of the coordinate system parallel to the
crystallographic planes of chosen family. Let’s remind that
according to (13–14) the magnitude U (τ ) is expressed in
terms of amplitude F(τ ).

Let’s express the amplitude F(q) as Fourier transforma-
tion of function F(r):

F(q) =
∫

F(r ′)e−iqr ′
d3r ′. (A.14)

We perform summation of τx and τ⊥ in (A.12, A.13) using
the following expression:

∑
τx

eiτx x = dx
∑
l

δ(x − Xl), (A.15)
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where dx is the lattice period along axis x ; Xl are coordinates
of plane l, and

∑
τx ,τy

eiτ⊥ρ = dxdy
∑
l

δ(ρ − ρl), (A.16)

where ρl is a coordinate of the axis, located in point ρl ; dx , dy
are the lattice periods along axes x and y, respectively.

As a result, one obtains the following expression for the
effective interaction potential energy between the incident
particle and the plane (axis) (the lattice is assumed to consist
of atoms of one kind):

U (x) = −
∑
τx

2π h̄2

mγ V
F(qx = τx , qy = qz = 0)eiτx x

= − 2π h̄2

mγ Vdydz
F(x, qy = qz = 0), (A.17)

U (ρ) = −2π h̄2

mγ V

∑
τx ,τy

F(qx = τx , qy = τy, qz = 0)eiτ⊥ρ

= − 2π h̄2

mγ dz
F(ρ, qz = 0), (A.18)

where dz is the lattice period along axis z.
According to (A.12, A.13, A.17, A.18) the contributions

to the effective potential energy are caused by interactions of
different types including short-range and long-range inter-
actions. In the presence of several types of interaction, to
describe their different contributions to the scattering ampli-
tude, it is convenient to separate scattering caused only by
long-range interactions and to present amplitude in the fol-
lowing form:

f (q) = flong(q) + fshort−long(q), (A.19)

where flong(q) is a scattering amplitude determined by the
long-range Coulomb and magnetic interactions (assuming
that the short-range interactions are absent), fshort−long(q) is
the scattering amplitude determined by the short-range inter-
actions (for calculation of this amplitude the waves scattered
by long-range interactions were used as the incident waves).
For general scattering theory in the presence of several inter-
actions see, for example, [15,17].

When several types of interactions influence on the scat-
tering amplitude, it can be easily studied with the help of
perturbation theory. Let interaction energy V be a sum of sev-
eral interactions: V = ∑

i Vi . Then at the first Born approx-
imation the scattering amplitude is a sum of the scattering
amplitudes f1(Vi ), each caused by the particular interaction:
f = ∑

i f1(Vi ). But at the second Born approximation the
additional term f2, which is determined by the following
expression, appears in the scattering amplitude (see [15–17]):

f2 = V
1

E − H0 − iη
V =

∑
p

Vp
1

E − H0 − iη

∑
l

Vl .

(A.20)

As one can see, (A.20) contains interference of contributions
to f proportional to VpVl .

Let us now consider how the different terms included in
(16) contribute to the effective potential energy of particle
interaction with the crystal.

The Coulomb amplitude, described by the first term in
(16), leads to the conventional expression for potential energy
of interaction between a charged particle and a plane (axis).

The second term As(q) is caused by the short-range inter-
action. Amplitude As(q) can be written as:

As(q) = Anuc(q)Φosc(q), (A.21)

where Anuc(q) is the spin independent part of the amplitude
of elastic scattering by a resting nucleus, Φosc(q) is the form-
factor caused by nucleus oscillations in crystal.

Owing to the short-range kind of strong interactions,
amplitude Anuc(q) is equal to zero-angle scattering ampli-
tude A(0) within the range of scattering angles ϑ ≤ 1

kRosc
�

1.
Form-factor Φosc(q) has the form [16]:

Φosc(q) =
∑
n

ρn〈ϕn(r)|e−iqr |ϕn(r)〉

=
∫

e−iqrNnuc(r)d3r, (A.22)

where ϕn(r) is the wave function describing vibrational state
of nuclei in crystal, summation

∑
n ρn means statistical aver-

aging with the Gibbs distribution over the vibrational states
of a nucleus in a crystal. The squared form-factor Φosc(q)

is equal to Debye-Waller factor, and Nnuc(r) is the den-
sity of probability to find the vibrating nuclei in point r ,∫
Nnuc(r)d3r = 1.
As a result, according to (A.17), this contribution to the

effective potential energy of a plane can be written as follows:

Unuc(x) = − 2π h̄2

mγ dydz
Nnuc(x)Anuc(0), (A.23)

where Nnuc(x) = ∫∫
Nnuc(x, y′, z′)dy′dz′ is the probability

density to find the vibrating nuclei in point x (in direction
orthogonal to the chosen crystallographic plane).

Similarly, for the axis we have:

U (ρ) = − 2π h̄2

mγ dz
Nnuc(ρ)Anuc(0), (A.24)

where Nnuc(ρ) = ∫
Nnuc(ρ, z′)dz′.
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A.3 Effective potential energy determined by the
anomalous magnetic moment

According to (16) the scattering amplitude, which is deter-
mined by baryon’s anomalous magnetic moment, has the
form:

Fmagn(q) = Bmagn(q)σ [n × q]. (A.25)

Defining the scattering amplitude at the first step one
could solely consider magnetic scattering and its interference
with Coulomb scattering (see (A.19)), and at the second step
add the term caused by interference between magnetic and
nuclear interactions.

For first step the perturbation theory can be used. In the
first order the interference of the magnetic moment scattering
by the Coulomb field with the Coulomb scattering of baryon
electric charge by the Coulomb field is absent. The amplitude
F (1) reads as follows:

F (1)
magn(q) = i fcoul(q)

h̄

mc

g − 2

2

1

2
σ [n × q], (A.26)

where fcoul(q) is the amplitude of Coulomb scattering of a
baryon by an atom in the first Born approximation, m is the
baryon mass.

It should be noted that the coefficient, by which σ is mul-
tiplied, in the expression for amplitude F (1)

magn(q) is purely
imaginary. After substitution of (A.26) into (A.17) and sum-
mation over τx one obtains the expression for effective inter-
action energy as follows:

Umagn(x) = − eh̄

2mc

g − 2

2
σ [Eplane(x) × n], (A.27)

where Eplane(x) denotes the electric field, produced by the
crystallographic plane in point x . In axis case Umagn(ρ) can
be obtained by replacement of x by ρ in (A.27) and Eplane(x)
by Eaxis(ρ), respectively.

Using (A.27) and Heisenberg equations for spin operator,
the motion equation for ether spin or vector polarization (1),
(2) can be obtained for B = 0 and γ � 1.

The effective interaction energy (A.27) can be rewritten
as follows:

Umagn = − eh̄

2mc

g − 2

2
Eplane x (x)σN, (A.28)

where N = [nx × n] is the unit vector, nx ⊥ n, unit vector
n is parallel to the crystallographic plane.

The term for the effective potential energy, which is in
front of σ in expression (A.28) is purely real. However, the
coefficient in the expression for scattering amplitude F(q),
by which σ is multiplied, has non-zero both real and imagi-
nary parts. Due to this fact, the effective potential energy U
also has non-zero both real and imaginary parts.

In the second order of perturbation theory this coefficient
in amplitude F(q) is not purely imaginary as well. By means

of (15), (A.8)–(A.11) the following expression for contribu-
tion F̃ (2)(q) to amplitude F(q) can be obtained:

F̃ (2)(q = τ ) = i
k

4π h̄2c2

×
{

〈Φa |
∫∫

e−iτ r⊥
[∫

V (r⊥, z)dz

]2

d2r⊥|Φa〉

−
∫∫

e−iτ r⊥
[∫

〈Φa |V (r⊥, z)|Φa〉dz
]2

d2r⊥

}

= i
k

4π h̄2c2

∫∫
e−iτ r⊥

{
〈Φa |

[∫
V (r⊥, z)dz

]2

|Φa〉

−
[∫

〈Φa |V (r⊥, z)|Φa〉dz
]2

}
d2r⊥

= i
k

4π h̄2c2

∫∫
e−iτ r⊥

{[∫
V (r⊥, z)dz

]2

−
[∫

V (r⊥, z)dz

]2
}
d2r⊥, (A.29)

where V (r⊥, z) = Vcoul(r⊥, z) + Vmagn(r⊥, z), z axis of
the coordinate system is directed along the unit vector n,
Vmagn(r⊥, z) = −μa σ [E(r⊥, z) × n], μa is the anomalous
magnetic moment of the particle μa = eh̄

2mc (
g−2

2 ).
When deriving (A.29), it was considered that the particle

energy is much greater than the electrons’ binding energy in
atoms and the atoms’ binding energy in crystal. As a result,
it is at first possible to examine scattering by electrons and
nuclei, which rest in points r i , and then to average the result
over the electrons and nuclei positions with wave functions
|Φa〉 (impulse approximation, for example see [15]). The
overline in (A.29) and hereinafter denotes such kind of aver-
aging. The contribution caused by interference between mag-
netic and nuclear scattering, and the contributions determined
by the squared magnetic moment of a particle should com-
plete the expression mentioned above. For positively charged
particles, moving far from the top of the potential barrier, the
contribution caused by interactions with nuclei is suppressed
and will be omitted in consideration hereinafter. Contribu-
tions proportional to the particle’s squared magnetic moment
are smaller then those caused by the interference between
magnetic and Coulomb scattering and will, thus, be also omit-
ted. After substitution of (A.29) into (A.17) and summation
over τx the following expression for the contribution to the
effective potential energy caused by amplitude F̃magn(τ ) can
be obtained:

U (2)
magn(x) = −i

1

4dy dz mc2 (
g − 2

2
)

∂

∂x
δV 2(x)σN, (A.30)

where N = [nx × n], nx ⊥ n, nx is the unit vector along
axis x ,
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δV 2(x) =
∫ {[∫

Vcoul(x, y, z)dz

]2

−
[∫

Vcoul(x, y, z)dz

]2
⎫⎬
⎭dy. (A.31)

Similarly for the case of axial channeling it can be
obtained:

U (2)
magn(ρ) = −i

1

dzmc2

g − 2

2
σ [∇ρδV 2(ρ) × n]. (A.32)

For the axisymmetric case:

U (2)
magn(ρ) = −i

1

4dzmc2

g − 2

2

∂

∂ρ
δV 2(ρ)[nρ × n], (A.33)

where δV 2(ρ) = [∫
Vcoul(ρ, z)dz

]2 −
[∫

Vcoul(ρ, z)dz
]2

,

nρ = ρ
ρ

is the unit vector, nρ ⊥ n.
In the planar channelling case Umagn is determined by the

expression (19).

A.4 Effective potential energy U determined by spin-orbit
interaction

According to (16) the part of the scattering amplitude caused
by strong spin-orbit interaction has the form:

Fso(q = τ ) = Bs(τ )σ [n × τ ]. (A.34)

The coefficient Bs(τ ) can be expressed similar to (A.21) as
follows:

Bs(τ ) = Bs(τ )Φosc(τ ), (A.35)

where Bsnuc(τ ) describes scattering by a resting nucleus,
Φosc(τ ) is the form-factor determined by nucleus oscillations
in crystal.

In the considered case, similar to the approach used when
deriving (A.23), the short-range character of the nuclear
forces and small (as compared to the amplitude of nucleus
oscillations) nucleus radius enables assumption Bnuc(τ ) ≈
Bnuc(0). It is important that the coefficient Bnuc(0) has non-
zero both real and imaginary parts:

Bnuc(0) = B ′
nuc + i B ′′

nuc. (A.36)

This is similar to the case of amplitude, which describes
scattering of the magnetic moment by the atom (nucleus).
To obtain the expression for the effective potential energy
the summation over τx should be conducted in (A.17). The
resulted expression is similar to that for Umagn. For example,
for the crystal plane case see expression (23) for Uso. Let us
remind that the contribution determined by elastic scattering,
which is described by the second term in (A.1), is negligi-
bly small in comparison with non-elastic contributions to the
amplitude and, therefore, can be omitted.

A.5 Effective potential energy U determined by P-odd and
T-even interactions

The next group of terms, which are proportional to Bw, is
determined by weak P-odd and T-even interactions. Accord-
ing to (16) the corresponding terms in the scattering ampli-
tude can be written as:

Fw(q) = (
Bwe(q) + Bwnuc(q)

)
σNw. (A.37)

Contribution Bwe(q) caused by the parity violating weak
interaction between a baryon and electrons can be expressed
as follows:

Bwe(q) = B̃we(q)Φe(q), (A.38)

where B̃we is the coefficient defining the amplitude of baryon
elastic scattering by a resting electron fwe(q) = B̃weσNw,
Φe(q) = ∫

e−iqrNe(r)d3r ,
∫
Ne(r)d3r = Z , Z is the

nucleus charge. Minor corrections caused by the thermal
oscillations of atoms’ centers of gravity will not be con-
sidered below. To take them into consideration one should
multiply Φe(q) by Φosc(q), which is the form-factor defined
by oscillations of atoms nucleus.

Term Bwnuc(q) (see (A.37)), which is caused by parity
violating weak interaction between a baryon and a nucleus,
reads as follows:

Bwnuc(q) = B̃wnuc(q)Φosc(q), (A.39)

where B̃wnuc is the coefficient defining the amplitude of
a baryon elastic scattering by a resting nucleus fwnuc =
B̃wnucσNw.

Due to the short-range character of P-violating interac-
tions, when angle ϑ 
 τ

k � 1, coefficients B̃we(q) 

B̃we(0) and B̃wnuc(q) 
 B̃wnuc(0), Nw 
 n. As a result, the
following expressions can be obtained for effective poten-
tial energy Uw of P-violating interaction of a baryon with a
crystal plane (axis):

Uw = Uwe +Uwnuc (A.40)

(a) for the case of plane:

Uwe(x) = − 2π h̄2

mγ dydz
B̃we(0)Ne(x)σn,

Uwnuc(x) = − 2π h̄2

mγ dydz
B̃wnuc(0)Nnuc(x)σn,

Ne(nuc)(x) =
∫

Ne(nuc)(x, y, z)dydz. (A.41)
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(b) for the case of axis:

Uwe(ρ) = − 2π h̄2

mγ dz
{B̃we(0)Ne(ρ)

+B̃wnuc(0)Nnuc(ρ)}σn,

Ne(nuc)(ρ) =
∫

Ne(nuc)(ρ, z)dz. (A.42)

As a result for planar channelling case see expression (25).

A.6 Effective potential energy U determined by the electric
dipole moment and other T-nonivariant interactions

Let us consider now the electric dipole moment and other
T-nonivariant contributions to the spin rotation. According
to (16) the corresponding terms in the scattering amplitude
can be written as:

FT(q) = (BEDM(q) + BTe(q) + BTnuc(q))σq. (A.43)

Let’s consider the term FEDM(q) = BEDM(q)σq. The coef-
ficient BEDM(q) has non-zero both real and imaginary parts
BEDM(q) = B ′

EDM+i B ′′
EDM. By the approach used for deriv-

ing Fmagn(q), for FEDM (q) one can obtain:

FEDM(q) = −i
mγ d

2π h̄2 Vcoul(q)σq + k

4π h̄2c2

×
∫∫

e−iq⊥r⊥

{[∫
V (r⊥, z)dz

]2

−
[∫

V(r⊥, z)dz

]2
}
d2r⊥, (A.44)

where V (r) = Vcoul(r) + VEDM(r), VEDM = −Dσ E is
the energy of interaction between electric dipole moment D
and electric field E, D = ed, e is the electric charge of the
particle.

Using (A.17) one can obtain expressions (28) and (29) for
the potential energy of interaction between a particle and a
crystal plane.

Let’s remind that amplitude FT(q) contains terms both
caused by the EDM and determined by the short-range T-
noninvariant interactions of a baryon with electrons and
nuclei BTe(q) and BTnuc(q). Contributions caused by these
terms should also be added to the effective potential energy
of the interaction between the baryon and nuclei of the crystal
UT(x):

UT(x) = UEDM +UTe +UTnuc

= −(αT(x) + iδT(x))σNT, (A.45)

where αT = αEDM + αTe + αTnuc, δT = δEDM + δTe + δTnuc,
unit vector NT is orthogonal to the plane.

Expressions for coefficients αTe(nuc) and δTe(nuc) can be
evaluated in terms of scattering amplitude by the following

way. Let’s define the form-factor determined by electrons
distribution in atom and nucleus oscillations.

BTe(q) = B̃Te(q)Φe(q),

BTnuc(q) = B̃Tnuc(q)Φosc(q), (A.46)

where Φe(q) = ∫
e−iqrNe(r)d3r , Ne(r) is electrons distri-

bution density in atom,
∫
Ne(r)d3r = Z , Z is the nucleus

charge, Φosc(q) is determined by (A.22), B̃Te is the coef-
ficient defining amplitude of baryon scattering by resting
electron fTe = B̃Te(q)σq, B̃nuc(q) is the coefficient defin-
ing amplitude of baryon scattering by a resting nucleus
fTnuc = B̃nuc(q)σq. Let’s remind that in compliance with
(15) the contribution caused by elastic coherent scattering
should be subtracted from the amplitude BT. However, at
high energies this contribution is negligibly small in com-
parison with non-elastic contributions to the amplitude and,
therefore, can be omitted.

Due to the short-range character of T-noninvariant inter-
actions at angle ϑ 
 τ

k � 1 coefficients B̃Te(q) 
 B̃Te(0)

and B̃nuc(q) 
 B̃nuc(0). As a result, expression (31), (32)
can be obtained.
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