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Abstract We construct thought experiments involving the
perturbations of Kerr–Newman black holes by neutral test
fields to evaluate the validity of the weak form of the cosmic
censorship conjecture. We first show that neglecting back-
reaction effects, extremal Kerr–Newman black holes which
satisfy the condition (J 2/M4) < (1/3) can be overspun by
scalar fields. This result, which could not be discerned in
the previous analyses to first order, is prone to be fixed by
employing backreaction effects. However the perturbation
of Kerr–Newman black holes by neutrino fields leads to a
generic overspinning of the black hole due to the absence
of a lower limit for the frequency of the incident wave to
ensure that it is absorbed by the black hole. For this case, the
destruction of the event horizon cannot be fixed by any form
of backreaction effects. This result should not be interpreted
as a counter-example to any of the previous results which
were based on the assumption that the null energy condi-
tion is satisfied. We clarify and justify our arguments with
numerical examples.

1 Introduction

The deterministic nature of general relativity was hampered
by the development of singularity theorems by Penrose and
Hawking. According to these theorems a singularity ensues
as a result of gravitational collapse, given very reasonable
assumptions [1]. However if the gravitational collapse occurs
in the way prescribed by Hawking and Penrose, the singu-
larity is hidden behind an event horizon at the final state.
In that case, the causal contact of the singularity with dis-
tant observers is disabled. Whether this can be generalised to
include every type of gravitational collapse is an open prob-
lem. Penrose proposed the cosmic censorship conjecture to
circumvent this problem. In its weak form (wCCC), the con-
jecture asserts that the gravitational collapse always ends up
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in a black hole surrounded by an event horizon [2]. Naked
singularities must be forbidden in a physical universe. This
way, the smooth structure of the space-time is maintained at
least in the region outside the event horizon. The observers at
the asymptotically flat infinity are not in causal contact with
the singularity.

For decades, a concrete proof of the cosmic censorship
conjecture has been elusive. In the absence of a concrete
proof, Wald developed an alternative procedure to test the
validity of the conjecture. In Wald type problems one starts
with an extremal or a nearly extremal black hole with an event
horizon surrounding the singularity. Then this black hole is
perturbed by test particles or fields, which do not change the
structure of the spacetime but lead to perturbations in mass,
angular momentum, and charge parameters of the black hole.
At the final stage one checks if it is possible to drive the black
hole beyond extremality by the interaction with test particles
or fields. In the first of these experiments Wald showed that
particles which carry sufficient charge or angular momentum
to overcharge or overspin an extremal Kerr–Newman black
hole are not absorbed by the black hole [3]. The first thought
experiment starting with a nearly extremal black hole instead
of an extremal one was constructed by Hubeny [4]. There, it
was shown that a nearly extremal Reissner-Nordström black
hole can be overcharged by test particles. The same approach
was adapted to overspin nearly extremal Kerr black holes by
test particles [5]. Many similar tests of wCCC were applied to
the black holes in Einstein-Maxwell theory [6–13]. For some
cases, it was shown that the destruction of the horizon can be
prevented by employing backreaction effects [14–17]. The
possibility to destroy the horizon by quantum tunnelling of
particles was analysed [18–24]. For the asymptotically anti
de-Sitter case, Rocha and Cardoso concluded that it is not
possible to overspin a Banados, Teitelboim, Zanelli (BTZ)
black hole after an analysis which is restricted to the case of
extremal black holes [25]. Their conclusion was supported in
the following works [26–29]. However we have shown that
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overspinning is possible by using test particles and fields test
if we start with a nearly extremal black hole instead [30].

Another intriguing problem is to test the validity of wCCC
in the case of test fields scattering off black holes. After
the pioneering work of Semiz on the possibility of destroy-
ing a dyonic Kerr–Newman black hole by the interaction
with scalar fields [31], many thought experiments involv-
ing the perturbations of space-times by test fields were con-
structed [32–44]. In this work we perturb Kerr–Newman
black holes by neutral test fields and investigate if they can be
overspun into naked singularities. We first evaluate the case
of scalar fields interacting with extremal Kerr–Newman black
holes. We perform a second order analysis to show that the
extremal black holes with sufficiently low angular momen-
tum (to be made precise) can indeed be overspun by scalar
fields into naked singularities. It is not – therefore has not
been – possible to notice the overspinning of extremal black
holes in similar analyses of the first order [17,38]. However,
the destruction of extremal black holes by scalar fields can
be interpreted as an intermediate result which is likely to
be fixed by employing backreaction effects in a full second
order analysis.

In the scattering of bosonic fields, there exists a lower limit
for the frequency of the incoming field to allow its absorp-
tion. However, such a limit does not exist for fermionic fields
which allows the absorption of mode with low energy and
relatively high angular momentum. In Sect. 3 we evaluate the
interaction of Kerr–Newman black holes with neutrino fields
which leads to a generic destruction of the event horizon. We
clarify and justify our arguments with numerical examples.

2 Scalar fields, Kerr–Newman black holes and wCCC

The Kerr–Newman metric describes a black hole with an
event horizon surrounding the singularity if the mass (M),
angular momentum (J = Ma) and charge (Q) parameters
of the spacetime satisfy the inequality

M2 − Q2 − a2 ≥ 0. (1)

In Wald type problems one starts with a black hole satisfying
(1). Then the spacetime parameters are perturbed to check
if the black hole can be driven beyond extremality. In the
problems involving particles one first demands that the test
particle crosses the horizon to be absorbed by the black hole.
This condition gives us the minimum value for the energy of
the test particle, which contributes to the mass parameter of
the spacetime. The maximum value for the energy is derived
by demanding that (1) is violated at the end of the interaction
so that the spacetime parameters represent a naked singular-
ity.

In the problems involving fields we envisage a test field
that is incident on the black hole from infinity. After the inter-
action the field decays away and the spacetime parameters
attain their final values. For bosonic fields, there exists a lower
bound for the frequency of the incoming field analogous to
the minimum energy of the particle, which is the limiting
frequency for superradiance to occur. If the frequency of the
field is lower than the superradiance limit, the field will not
be absorbed by the black hole. It will scatter back to infinity
with a larger amplitude borrowing the access energy from
the angular momentum of the black hole. In this case (1)
will be reinforced rather than challenged. Similar to the par-
ticle case we derive the maximum frequency for the field by
demanding that (1) is violated at the end of the interaction.

In this section we perturb extremal and nearly extremal
Kerr–Newman black holes with neutral scalar fields that have
frequency ω and azimuthal wave number m. At the end of
the interaction the mass and angular momentum parameters
of the black hole are modified.

Mfin = M + δM

Jfin = J + δ J = J + (m/ω)δM

Qfin = Q (2)

where δM = δE is the energy of the incoming field, and
δ J is its angular momentum. The charge of the black hole is
invariant since we work with neutral fields. We investigate
if it is possible to find real values for the frequency of the
incoming scalar field so that these two conditions are simul-
taneously satisfied: (i) the field is absorbed by the black hole
(ii) the final parameters of the spacetime represent a naked
singularity violating the inequality (1).

2.1 Overspinning extremal black holes

By definition, an extremal Kerr–Newman black hole satisfies

δin ≡ M2 − Q2 − J 2

M2 = 0 (3)

where we have defined δin. We perturb this black hole with a
scalar field. We demand that (1) is violated at the end of the
interaction, i.e. δfin < 0

δfin ≡ (M + δM)2 − Q2 − (J + δ J )2

(M + δM)2 < 0. (4)

We choose δE = δM = Mε for the scalar field, where
ε � 1. We eliminate (M2−Q2) from (4) using (3). Equation
(4) takes the form

M2
(

ε2 + 2ε + J 2

M4

)
<

(
J + m

ω
Mε

)2

M2(1 + ε)2 . (5)
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We take the square root of both sides and define the dimen-
sionless variable α ≡ (J/M2). Elementary algebra yields
that the condition δfin < 0 is equivalent to

ω < ωmax−ex = mε

M
[
(1 + ε)

√
ε2 + 2ε + α2 − α

] . (6)

To ensure that δfin is negative at the end of the interaction,
i.e. the extremal Kerr–Newman black hole is overspun into
a naked singularity, the frequency should be below ωmax−ex

given in (6) if the energy of the incoming field is chosen to
be δE = Mε. However these conditions are not sufficient.
The frequency should also be above the superradiance limit
so that the scalar field is absorbed by the black hole. Since
r+ = M for an extremal black hole, the limiting frequency
for superradiance for neutral fields is given by

ωsl−ex = ma

r2+ + a2
= m

M
( 1

α
+ α

) . (7)

The frequency of the incoming field should be larger than
the superradiance limit to ensure its absorption. If the limit-
ing frequency for superradiance is lower than the maximum
frequency derived in (6) for any values of α and ε, it can be
possible to overspin an extremal Kerr–Newman black hole
into a naked singularity by using test scalar fields. The con-
dition ωsl−ex < ωmax−ex is equivalent to

ε

(
1

α
+ α

)
+ α > (1 + ε)

√
ε2 + 2ε + α2. (8)

We take the square both sides and keep the terms up to second
order in ε. This leads to

α2 <
1

3
. (9)

If the condition (9) is satisfied by an extremal Kerr–Newman
black hole, the limiting frequency for superradiance is less
than the maximum frequency that can be chosen to overspin
the black hole. Then, if we choose δE = Mε and ωsl−ex <

ω < ωmax−ex for the incoming field, the extremal Kerr–
Newman black hole will be overspun into a naked singularity
at the end of the interaction.

2.2 Comparison with previous results

Recently Natario, Queimada, and Vicente (NQV) [38], and
Sorce and Wald (SW) [17] claimed that test fields satisfy-
ing the null energy condition cannot destroy extremal Kerr–
Newman black holes. In both works the authors derive the
condition which is required to ensure that a test particle or
field is absorbed by the black hole.

δM − Ωδ J − ΦδQ ≥ 0 (10)

This condition was first derived by Needham without assum-
ing cosmic censorship [45]. Needham’s condition (10)
reduces to ω ≥ ωsl for test fields with δ J = (m/ω)δM ,
i.e. there is no contradiction with the condition imposed in
this work. We agree that the frequency of the test field should
be larger than the superradiance limit if it is absorbed by the
black hole. SW argue that a violation of cosmic censorship
will occur if the perturbation of the extremal black hole sat-
isfies

2MδM < 2(J/M)(Mδ J − JδM)/M2 + 2QδQ. (11)

However in Eq. (4), for overpinning to occur we demand that

M2
fin − Q2

fin − (J 2
fin)/(M

2
fin) < 0, (12)

which accurately determines the condition that the final state
represents a naked singularity. Eventually, we have to calcu-
late M2

fin and J 2
fin to decide whether or not the event horizon is

destroyed. For that reason even though we ignored the back-
reaction effects in this work, we did not neglect the terms
(δM)2 and (δ J )2. That is the main difference between this
work and the previous works by NQV and SW, regarding
the perturbations of extremal black holes satisfying the null
energy condition.

The main result of SW is that the conditions (10) and
(11) cannot be satisfied simultaneously. Based on this result,
they conclude that extremal black holes cannot be destroyed.
However to decide whether or not the horizon is destroyed,
one should check the validity of the condition (12), rather
than (11). Therefore, unless one ignores the second order
terms (δM)2, (δ J )2, one cannot infer that the event horizon
will be preserved from the result of SW. NQV also apply a
first order analysis to conclude that the final mass is above the
mass of a corresponding extremal black hole so that extremal
black holes cannot be destroyed. The validity of their results
is also restricted to the case (δM)2 → 0, (δ J )2 → 0, and
(δQ)2 → 0.

Let us clarify our arguments with a numerical example.
Consider an extremal black hole with M = 1, and α = 0.3.
The extremality condition yields that Q2 = 0.91. For this
black hole α2 < (1/3), so according to the analysis in this
section, the limiting frequency for superradiance should be
less than the maximum frequency derived in (6). Choosing
ε = 0.01 one numerically verifies that this is indeed the case

ωsl = 0.275229(m/M)

ωmax−ex = 0.284646(m/M). (13)

Let us perturb this black hole with a neutral scalar field with:

ω = 0.276(m/M)

δM = Mε = 0.01M
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δ J = (m/ω)δM = 0.036232M2

δQ = 0. (14)

This perturbation satisfies the Needham’s condition (ω >

ωsl), which means that it will be absorbed by the black hole.
In accord with the result of SW it does not satisfy (11), since

2MδM = 0.02

[2(J/M)(Mδ J − JδM)]/(M2) = 0.019939

⇒ 2MδM > [2(J/M)(Mδ J − JδM)]/(M2). (15)

At this stage one would conclude that wCCC cannot be
violated in a first order analysis. However, the precise calcu-
lation of δfin with the same perturbation, yields that

δfin = M2
fin − Q2

fin − (J 2
fin)/(M

2
fin)

= (1 + 0.01)2 − 0.91 − (0.3 + 0.036232)2

(1 + 0.01)2

= −0.000724. (16)

The negative sign in (16) indicates that the extremal black
hole is overspun into a naked singularity. In other words,
neglecting backreaction effects, extremal Kerr–Newman
black holes for which α2 < (1/3), can be overspun into
naked singularities by neutral scalar fields with a judicious
choice of frequency. This result cannot be discerned in a first
order analysis. However the magnitude of δfin in (16) suggests
that it can be fixed by employing backreaction effects. In fact,
for nearly extremal Kerr–Newman black holes SW derived
an inequality for second order variations which account for
backreaction effects, and showed that the event horizon can-
not be destroyed in a full second order analysis. As we have
mentioned in the introduction, the over-spinning of extremal
Kerr–Newman black holes by scalar fields is merely an inter-
mediate result the validity of which is limited to the case
where one ignores backreaction effects. One can also calcu-
late the second order variations for extremal Kerr–Newman
black holes or employ an alternative method to incorpo-
rate the backreaction effects, to restore the event horizons
of extremal Kerr–Newman black holes.

3 Neutrino fields and wCCC

It is known that the superradiance does not occur for neu-
trino fields. (see e.g. [46]). For that reason the lower limit for
the frequency to ensure the absorption of the test field does
not exist. The energy-momentum tensor for neutrino fields
does not satisfy the null energy condition, either. Therefore,
neutrino fields do not obey the Needham’s condition (10) to
be absorbed by a black hole. Either by the argument of the
absence of superradiance or by the violation of Needham’s
condition, every mode will be absorbed when neutrino fields

scatter off Kerr–Newman black holes. This leads to dras-
tic results as far as cosmic censorship is concerned. If the
absorption of modes with lower frequency is allowed, their
contribution to the angular momentum will be much larger
than the contribution to the mass parameter of the black hole.
In that case overspinning becomes robust and it also applies
to extremal Kerr–Newman black holes which does not satisfy
(9).

The scattering of neutrino fields should not be confused
with the thought experiments involving the tunnelling of a
single fermion [20–23]. The evaporation of black holes dom-
inates the effect of a single particle by many orders of magni-
tude [23,24], whereas its effect is negligible against challeng-
ing fields [39]. We argued this in detail in [40]. (See section
IV in [40])

For a numerical example, let us consider an extremal black
hole with M = 1 and α = 0.6. This black hole does not
satisfy the condition (9), therefore it cannot be destroyed by
scalar fields even if one ignores the backreaction effects. In
particular with ε = 0.01, one derives that

ωsl = 0.441176(m/M)

ωmax = 0.440767(m/M). (17)

Since ωsl > ωmax, one cannot find a frequency for the
incoming wave that will be absorbed by the black hole to
overspin it, provided that the perturbation satisfies the null
energy condition or it is subject to superradiance. However,
the lower bound for frequency does not exist for neutrino
fields. One can choose any frequency below ωmax to over-
spin the black hole. Consider a neutrino field with frequency
ω = 0.2(m/M) and energy δM = 0.01M , i.e. ε = 0.01.

ω = 0.2(m/M)

δM = 0.01M

δ J = (m/ω)δM = 0.05M2

δQ = 0. (18)

This field will be absorbed by the black hole, since superra-
diance does not occur, or the Needham’s condition (10) does
not apply. For such low energy modes, the relative contribu-
tion to angular momentum is enhanced as ω is lowered. One
can calculate δfin

δfin = (1 + 0.01)2 − 0.64 − (0.6 + 0.05)2

(1 + 0.012 = −0.034075.

(19)

The value of δfin represents a generic violation of wCCC. We
observe that |δfin| � M2ε2. This robust violation cannot be
fixed by any form of backreaction effects.
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3.1 Neutrino fields and nearly extremal black holes

As we mentioned above, SW derived an inequality for the
second order variations of nearly extremal Kerr–Newman
black holes and concluded that the event horizon cannot
be destroyed if one employs backreaction effects. However
these arguments do not apply to neutrino fields since their
energy momentum tensor does not satisfy the null energy
condition. In this section we attempt to overspin nearly
extremal Kerr–Newman black holes by neutrino fields. The
main difference from bosonic fields is the absence of a
lower limit to ensure the absorption of the incoming field.
Let us consider a nearly extremal Kerr–Newman black hole
parametrized as

δin ≡ M2 − Q2 − J 2

M2 = M2ε2 (20)

where ε � 1. We perturb this black hole with a neutrino field.
We demand that (1) is violated at the end of the interaction,
i.e. δfin < 0. Again we choose δE = δM = Mε for the
incoming field. Using (20), the condition δfin < 0 can be
expressed in the form

M2
(

2ε2 + 2ε + J 2

M4

)
<

(
J + m

ω
Mε

)2

M2(1 + ε)2 . (21)

Proceeding in the same way as the extremal case, we take
the square root of both sides and define the dimensionless
variable α ≡ (J/M2). Elementary algebra yields that the
condition δfin < 0 is equivalent to

ω < ωmax = mε

M
[
(1 + ε)

√
2ε2 + 2ε + α2 − α

] . (22)

The lower bound for frequencies does not exist for neutrino
fields, therefore any field with ω < ωmax will be absorbed
by the nearly extremal Kerr–Newman black hole to overspin
it into a naked singularity. If the frequency of the incoming
field is slightly lower than ωmax, the absolute value of δfin

will be of the order M2ε2, and the second order variations
studied by SW will be able to restore the horizon. However,
as the frequency is lowered further, the absolute value of δfin

will be of the order M2ε leading to a generic overspinning
which cannot be fixed by any form of backreaction effects.

To clarify the arguments above let us start with a nearly
extremal Kerr–Newman black hole with M = 1 and α = 0.6.
Choosing ε = 0.01, the parametrization (20) implies that
Q2 = 0.6399. To overspin this black hole the frequency of
the incoming field has to be below the maximum value given
in (22)

ω < ωmax = 0.439181(m/M). (23)

There is no lower limit for ω, as far as neutrino fields are
concerned. Let us perturb the nearly extremal Kerr–Newman
black hole with the same neutrino field described in (18). One
can calculate δfin

δfin = (1 + 0.01)2 − 0.6399 − (0.6+0.05)2

(1+0.012 =−0.033975.

(24)

The value of δfin represents a generic overspinning of the
nearly-extremal Kerr–Newman black hole, which cannot be
fixed by considering the second order variations studied by
SW or employing any form of backreaction effects. In par-
ticular, the contribution of the backreaction effects will be of
the order M2ε2, whereas |δfin| ∼ M2ε. The nearly extremal
Kerr–Newman black holes can also be generically overspun
into naked singularities by neutrino fields.

4 Conclusions

In this work we constructed thought experiments in which
neutral test fields scatter off Kerr–Newman black holes to
check whether the black holes can be overspun into naked
singularities. We first investigated the possibility of overspin-
ning Kerr–Newman black holes by scalar fields. Though we
neglected the backreaction effects, we retained the second
order terms (δ J )2 and (δM)2. Therefore our results differ
from the previous analyses to first order by SW and NQV.
We showed that –neglecting backreaction effects– extremal
Kerr–Newman black holes which satisfy α2 = (J 2/M4) <

(1/3) can be overspun by scalar fields. However, our numer-
ical calculation suggests that the overspinning of extremal
black holes by scalar fields is likely to be fixed by employing
backreaction effects. In particular SW have already proved
this for nearly extremal Kerr–Newman black holes by incor-
porating the effect of the second order variations which
account for the self-force effects.

The generic overspinning of Kerr–Newman black holes
occurs in the interactions with neutrino fields. In this case,
superradiance does not occur, and the energy-momentum ten-
sor does not satisfy the null energy condition, which implies
that the modes with very low energy and relatively high angu-
lar momentum can also be absorbed by the black hole. This
leads to a generic destruction of the event horizon. We applied
a numerical calculation to clarify this argument. The values
of δfin in (19) and (24) indicate that the backreaction effects
–which were neglected in this work– cannot compensate for
this generic overspinning. The contribution of the backre-
action effects will be in second order, whereas the absolute
value of δfin is in the first order in the numerical examples
(19) and (24). In fact, one can lower the frequency of the
incoming field and increase the absolute value of δfin even
further. However, the test field approximation can be dis-
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torted in the interaction with such a field which would con-
siderably increase the angular momentum parameter of the
background.

The generic destruction of the event horizon by neutrino
fields derived in this work does not constitute a counter-
example to any of the previous results which were based on
the assumption that the null energy condition is satisfied. The
absence of a lower limit for the absorption of neutrino fields
leads to analogous results in the cases of Kerr [24], BTZ [30],
Kerr-Taub-NUT [42], and Kerr-Sen [44] black holes.

We should also note that the treatment of neutrino fields
in this work is purely classical. In the classical picture, the
absorption probability is positive for all modes of neutrino
fields. (See e.g. [46] and [47] for explicit calculation of these
probabilities.) That is the main reason which leads to drastic
results as far as cosmic censorship is concerned. A quantum
analysis may well yield a different result to fix for the over-
spinning of the black holes. In the quantum picture one should
also take into account the evaporation of black holes. Both in
the form of Hawking radiation and the spontaneous emission
previously studied by Zeldovich [48], Starobiinski [49], and
Unruh [50], the evaporation of black holes work in favour of
cosmic censorship. As extremality is approached the black
holes emit particles in the modes ω < mΩ , which decreases
the angular momentum of the black hole more than its mass,
and carries the black hole away from extremality. Though,
this evaporation dominates the effect of a single particle by
many orders of magnitude [23,24], its effect is negligible
against challenging fields [39,40]. Therefore, it appears that
we should execute a quantum analysis of fermionic scatter-
ing beyond the semi-classical level, to preserve the validity
of cosmic censorship.
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30. K. Düztaş, Phys. Rev. D 94, 124031 (2016)
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41. K. Düztaş, Turk. J. Phys. 42, 329 (2018)
42. K. Düztaş, Class. Quant. Gravit. 35, 045008 (2018)
43. B. Gwak, JHEP 09, 81 (2018)
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