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Abstract The Spectral Action Principle in noncommuta-
tive geometry derives the actions of the Standard Model and
General Relativity (along with several other gravitational
terms) by reconciling them in a geometric setting, and hence
offers an explanation for their common origin. However, one
of the requirements in the minimal formalism, unification
of the gauge coupling constants, is not satisfied, since the
basic construction does not introduce anything new that can
change the renormalization group (RG) running of the Stan-
dard Model. On the other hand, it has been recently argued
that incorporating structure of the Clifford algebra into the
finite part of the spectral triple, the main object that encodes
the complete information of a noncommutative space, gives
rise to five additional scalar fields in the basic framework. We
investigate whether these scalars can help to achieve unifica-
tion. We perform a RG analysis at the one-loop level, allow-
ing possible mass values of these scalars to float from the
electroweak scale to the putative unification scale. We show
that out of twenty configurations of mass hierarchy in total,
there does not exist even a single case that can lead to uni-
fication. In consequence, we confirm that the spectral action
formalism requires a model-construction scheme beyond the
(modified) minimal framework.

1 Introduction

Noncommutative geometry (NCG) [1–4] reformulates con-
cepts of geometry in terms of operator algebras, in simi-
larity to the commutative case in which this reformulation
is enabled by Gelfand duality [5,6]. Gelfand duality pro-
vides a one-to-one correspondence between locally compact
Hausdorff topological spaces and commutative C∗ algebras.
Therefore, in commutative spaces, the geometric proper-
ties of a manifold M can be studied through, instead set of
points, the algebraic properties of the commutative algebra
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of smooth functions C∞(M) defined on it. This is general-
ized in NCG through an object referred to as spectral triple,
which encodes the complete information of a (noncommuta-
tive) space.

A spectral triple (A,H,D) is formed by an involutive
algebra A, a Hilbert space H on which the algebra acts as
bounded operators, and a (possibly) unbounded self-adjoint
operator D in H, referred to as (generalized) Dirac opera-
tor. (A,H,D) determines a spectral geometry, based on the
spectrum of the operator D. From this set of data on the
spectral triple, the original manifold as a metric space can
be recovered; while information on the manifold is retrieved
by the algebra, the metric is recovered by the Dirac operator.
Spacetime in this picture is extended to a product of a con-
tinuous four dimensional manifold by a finite discrete space
with noncommutative geometry.

In the spectral action formalism in the NCG frame-
work [7–13],1 for a given spectral triple (A,H,D), the action
is constructed in terms of the Dirac operator D, through the
spectral action, which depends on the spectrum of D. In the
basic version of this construction, which yields mainly the
SM and a modified gravity model, the algebra is chosen as
A = C∞(M) ⊗ AF such that the finite part of the algebra
is given as AF = C ⊕ H ⊕ M3(C), where H is the algebra
of quaternions, and M3(C) is the algebra of 3 × 3 matrices
with elements in C. H in the spectral triple is the Hilbert
space of spinors. Then, the spectral action derives the SM
action and the action of GR, the latter of which consists of
the Einstein–Hilbert and the cosmological constant terms;
additionally, it yields a non-minimal coupling term between
the Higgs boson and the curvature, the Gauss–Bonnet term,
and the Weyl (or the conformal gravity) term. The SM par-
ticle content and the gauge structure are described by this
geometry, where the Higgs boson appears as the connection
in the extra discrete dimension. The gauge transformations

1 See Refs. [5,14,15] for pedagogical reviews.
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(SM) eventuate from the unitary inner automorphisms of the
algebra A while diffeomorphisms (GR) are encoded in the
outer automorphisms.

Besides the appealing features of the spectral action for-
malism, there are various issues within the minimal construc-
tion. The most important of these is the requirement of gauge
coupling unification dictated by the spectral action. Obvi-
ously, unification of the gauge couplings, in general, is an
appealing quality in a model. However, it cannot be achieved
by the particle content of the SM in the usual renormalization
group (RG) running; assuming that the Wilsonian approach
to RG running is valid below the scale at which noncom-
mutativity becomes apparent, the RG running in the minimal
spectral action is the same as in the SM, as well as the particle
content (modulo a possible singlet scalar [12]). Therefore, an
extension to the minimal spectral action is required, which
in turn would correspond to physics beyond the Standard
Model. Indeed, a recently proposed extension to the basic
formalism accommodates (three versions of) a Pati-Salam
type model [16] with gauge coupling unification (in contrast
to the canonical Pati-Salam models in the literature in which
unification is not a requirement [17–20]).2

Recently, Lizzi and Kurkov in Ref [25], based on the anal-
ysis of Ref. [26], argue that incorporating Clifford structure
into the finite part of the spectral triple of the basic construc-
tion gives rise to five extra scalars, with the SM quantum num-
bers3 �(1, 1 − 1), S(3̄, 2,− 1

6 ), and �u,d,L(3, 1, 2
3 ), where

the � fields, although they have the same quantum numbers,
have different Yukawa couplings in the primary version of
the fermionic action. It is pointed out in Ref. [25] that the
fields S, �u , �d , and �L do not enter into the final version
of the fermionic action.4 On the other hand, since all of these
scalars appear in the bosonic part, they contribute to the RG
running of the gauge couplings, which is the focal point of
this work.

In this paper, we address the question whether these scalars
can help satisfy the unification condition in thismodified min-
imal formalism. We perform a 1-loop renormalization group
analysis by adopting the most general approach in which the
extra scalars are allowed to acquire random order of masses

2 Unification in the Pati-Salam models based on NCG can be realized
in a variety of ways, as displayed in Refs. [21–24].
3 The hypercharge normalization adopted in this paper is given as
Qem = I L3 + Y .
4 Therefore, these fields, despite of the fact that they carry right quan-
tum numbers to be called leptoquarks, are in fact by definition not
leptoquarks in this formalism. Note that the quantum number assign-
ment alone does not necessarily guarantee that the scalars couple to
lepton-quark pairs as leptoquarks by definition should do. Thus, these
scalars are not relevant to discussion of scalar leptoquarks in relation
to the ongoing LHC searches, for instance in the context of reported
B-decay anomalies [27–36], unlike the case for the scalar leptoquarks
in the Pati-Salam models from NCG [16] which can indeed be relevant
to these anomalies [24].

between the electroweak scale and the presumed unification
scale, i.e. the emergence scale of the spectral action. We show
that out of twenty possible configurations in total, depending
on mass hierarchy of these additional scalars, there does not
exist even a single case that can lead to unification of the
gauge coupling constants.

The rest of the paper is organized as follows: In Sect. 2,
we review the minimal spectral action formalism in noncom-
mutative geometry, whereas in Sect. 3 we briefly introduce
the modified framework in which the extra scalars emerge.
In Sect. 4, we present the one-loop renormalization group
analysis and display our results. Finally in Sect. 5, we end
the paper with discussion and conclusions.

2 The minimal spectral action

In this section, we briefly introduce the minimal spectral
action formalism [7,8] that derives the SM action and the
action of GR as well as various additional gravitational
terms (hence providing a modified gravity model). Interested
reader can consult to Ref. [15] for a concise review, or to
Refs. [5,14,37] for more comprehensive introductions.

Noncommutative geometry (NCG) [1–4] redefines con-
cepts of geometry in operator algebraic terms, by replac-
ing set of points in ordinary topology by (noncommutative)
algebra of functions, in similarity to the commutative case
where the link between geometry and algebra is provided by
Gelfand duality [5,6]. Gelfand duality yields a one-to-one
correspondence between locally compact Hausdorff topolog-
ical spaces and commutative C∗ algebras, leading to inter-
pretation of C∗ algebras as generalizations of topological
spaces. Since also every unital, commutative C∗-algebra is
isomorphic to C∞(M), the algebra of continuous, complex-
valued functions on a locally compact Hausdorff space M ,
the geometric information of a manifold M can be recov-
ered via the algebraic properties of the commutative algebra
C∞(M) defined on it. In the case of noncommutative geom-
etry, generalized version of this correspondence is provided
through spectral triple, which uniquely characterizes a (non-
commutative) space.

The main element in NCG that encodes the complete infor-
mation of a noncommutative space is the corresponding spec-
tral triple, (A,H,D), formed by an involutive algebra A of
operators, a Hilbert space H (of fermionic states in our case),
and a self-adjoint unbounded operator D, referred to as the
(generalized) Dirac operator, with compact resolvent such
that all commutators [D, a] are bounded for a ∈ A, inverse
of which,D−1, is the analog of the infinitesimal unit of length
ds of ordinary geometry.

In the spectral action formalism in the NCG frame-
work [7–13], the action is constructed in terms of the Dirac
operator in the spectral triple, through “the spectral action”,
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the bosonic part of which depends on the spectrum of the
Dirac operator D. In the basic version of the spectral action,
which derives mainly the SM and GR actions, the algebra is
chosen as

A = C∞(M) ⊗ AF , (1)

where C∞(M) is the algebra of complex-valued differential
functions on M , and AF is the finite dimensional section,

AF = C ⊕ H ⊕ M3(C). (2)

Here, H ⊂ M2(C) is the algebra of quaternions, and Mn(C)

is the algebra of n × n matrices with elements in C. The
three terms in A lead to the group factors of the SM gauge
symmetry, U (1), SU (2), and SU (3), respectively. The main
symmetry for the noncommutative space characterized by the
spectral triple (A,H,D) is the group Aut(A) of the automor-
phisms of the algebra A, which contains diffeomorphisms
Diff(M) of M and the gauge symmetry transformations. The
total gauge group eventuates from the inner automorphisms
of the algebra Int(A) ⊂ Aut(A), which is a subgroup of
Aut(A) of the form α(x) = bxb∗ (for a unitarity b ∈ A),
whereas diffeomorphisms correspond to the quotient group;
the outer automorphisms Out(A) ≡ Aut(A)/Int(A).

The product rule on the Hilbert space and the Dirac oper-
ator is given as

H = L2(M, S) ⊗ HF , D = /∂M ⊗ 1F + γ5 ⊗ DF , (3)

where (HF ,DF ) on AF determines the finite section of the
spectral geometry, whereas the continuous part, which is a
spin Riemannian manifold, corresponds to square integrable
spinors L2(M, S) and the Dirac operator /∂M of the Levi-
Civita spin connection (w) on M , which in terms of vierbein
(e) is given as

/∂M = √−1γ μ∇s
μ; ∇s

μ = ∂μ + 1

4
wab

μ (e)γab,

γ μ = γ aeμ
a . (4)

The noncommutativity stems from the noncommutativity
of the algebra, AF . For instance, if we turn off the finite part
of the triple, (AF ,HF ,DF ), then we get the usual commuta-
tive case in which (C∞(M), L2(M, S), /∂M ) corresponds to
the Riemannian compact spin manifold, as mentioned above.
In this case, the group Diff(M) is isomorphic to the group
Aut(C∞(M)). Information on the ordinary metric can be
recovered from this commutative case. Replacing the usual
Riemannian manifold M with the corresponding spectral
triple does not cause any information loss. Points on M are
retrieved as the characters of the algebra A = C∞(M). The
geodesic distance between points on M is retrieved by the

formula [7,8]

d(x, y) = Sup{|a(x) − a(y)| ; a ∈ A, ‖[D, a]‖ � 1}. (5)

The spectral action is constructed in terms of the covariant
Dirac operator in the spectral triple as [7,8]

S = SF + SB = (Jψ,DAψ) + Tr

[
χ

(DA

	

)]
, (6)

whose statement is referred to as the Spectral Action Prin-
ciple. The first and the second terms in Eq. (6) respectively
denote the fermionic and bosonic actions. Tr denotes the trace
in the Hilbert space H. χ is a cutoff function which serves
as a regulator that selects the eigenvalues of covariant Dirac
operator, DA, smaller than the cutoff 	. J is anti-unitary
operator on H, called the real structure on the spectral triple,
which can also be referred to as generalized charge conjuga-
tion, taking into account the presence of antiparticles. DA is
given by the following formula, which corresponds to taking
the internal fluctuations of the metric,

DA = D + A + J AJ †, A =
∑

ai [D, bi ] ,

ai , bi ∈ A, A = A∗, (7)

where D is the unperturbed Dirac operator, and A is a Her-
mitian one-form potential. The Dirac operator D, as a differ-
ential operator of order one, satisfies so-called the first-order
condition (or the order-one condition)5

[
[D, a] , JbJ−1

]
= 0, ∀a, b ∈ A. (8)

The derivative is defined as

da = [D, a] , ∀a ∈ A. (9)

Another important element in the formalism is “grading”
which is given as


 = γ5 ⊗ γF (10)

where γ5 is the usual chirality operator for the continuous
manifold, while γF is for the finite part. The grading
 divides
the Hilbert space H = sp(M) ⊗ HF into “left” and “right”,
H = HL ⊕HR , where sp(M) corresponds to spinors in the
continuous (spacetime) manifold. Because of this extra grad-
ing in the finite part, there is some over-counting of degrees
of freedom, referred to as “the fermion doubling problem” in
the literature. One way of dealing with this issue is recently
proposed in Ref. [39], which utilizes Wick rotation in order to
get rid of spurious degrees of freedom. Note that in the spec-
tral action formalism, M is initially chosen to be a compact

5 However, see Refs. [16,38] for cases without the first-order condition.
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Riemannian manifold. Reference [39] uses Wick rotation to
introduce the Lorentzian signature into the theory, while at
the same time resolving the doubling problem.

In the fermionic action, it is necessary to construct the
right form of the generalized Dirac operator, inserting the
Yukawa couplings in the appropriate spots in DF , in order to
get the correct SM fermionic terms. Here, we only focus on
the bosonic action as it is the relevant part to our discussion
in this paper.

The bosonic section of the spectral action, given in Eq. (6),
can be put in a convenient form to exploit the Heat Kernel
techniques [40,41] as

SB = Tr

[
χ

(DA

	

)]

 Tr

[
χ

(
D2

A

	2

)]
, (11)

which can be expanded in terms of moments of cut-off func-
tion χ , fn , in power series in terms of 	−1, as

SB 

∑
n

fn an

(
D2

A

	2

)
, (12)

where an are the Seeley-de Witt coefficients which vanish
for n odd. fn for n even are given as

f0 =
∫ ∞

0
xχ(x)dx, f2 =

∫ ∞

0
χ(x)dx,

f2n+4 = (−1)n∂nx χ(x)

∣∣∣∣
x=0

, for n � 0. (13)

The final version of the bosonic spectral action is given as [7–
9]

SB =
∫ (

1

2κ2
0

R + α0 CμνρσC
μνρσ + γ0 + τ0 R∗R∗

+ f0
2π2

[
g2

3 Gi
μνG

μνi + g2
2F

m
μν F

μνm + 5

3
g2

1 BμνB
μν

]

+|DμH |2 − μ2
0|H |2 − ξ0R|H |2 + λ0|H |4

+O

(
1

	2

) )√
g d4x, (14)

where R is the Ricci scalar,Cμνρσ is the Weyl tensor, R∗R∗ is
the Gauss–Bonnet term, which is topological in four dimen-
sions, and which integrates to the Euler characteristic. The
constants (κ0, α0, γ0, τ0, μ0, ξ0, λ0) in Eq. (14) are defined
in terms of combinations of the original constants in the the-
ory, whose exact definitions are not relevant to our discussion
here.

For the canonical normalization of the gauge sector of
the SM, as can be seen in the second line in Eq. (14), the
following conditions are imposed.

g2
3 f0

2π2 = g2
2 f0

2π2 = 5

3

g2
1 f0

2π2 = 1

4
, (15)

which corresponds to the condition of unification of the gauge
couplings

g2
3 = g2

2 = 5

3
g2

1, (16)

assumed to be valid at a high energy scale, MU ∼ 	.
Evidently, this condition cannot be satisfied in the mini-

mal formalism in which the renormalization group running
(below the scale at which NCG becomes apparent, MU ) is
the same as in the SM with the same particle content, where
unification is not realized. On the other hand, as we briefly
discuss in the next section, incorporating the Clifford struc-
ture into the finite spectral triple introduces five new scalars
into the picture [25], which brings up the question whether
these scalars can help satisfy the unification condition. How-
ever, the answer turns out to be negative, as displayed in this
paper.

3 Modified minimal set-up and extra scalars

In Ref. [26], D’Andrea and Dabrowski study generalizations
of the notion of spin-manifold and Dirac spinors to noncom-
mutative geometry by incorporating the Clifford structure
into the finite spectral triple, (AF ,HF ,DF ), in the sense
whether or not the finite spectral triple describes a (non-
commutative) spin manifold, and the elements in the Hilbert
space H can be characterized as “spinors” in general manner
(recall that the continuous part already knows about spin).
They argue that in order for the necessary conditions for this
generalization to be satisfied, i.e. for the finite Hilbert space
HF of the spectral triple to be a Morita equivalence bimodule
between the finite algebra AF and the associated (complex-
ified) Clifford algebra C�(M), additional terms should be
included in the Dirac operator, as well as a modification to
the standard grading in the minimal formalism. As a result
of this procedure, new scalars emerge in the theory.

Lizzi and Kurkov in [25], based on the analysis of
Ref. [26], investigate the extended scalar sector in this
Clifford-based spectral action framework. They argue that
in this modified scheme, in addition to the scalar sector of
the minimal formalism which consists of the SM Higgs (and
possibly a singlet scalar [12]), there are five new scalars,
three of which have the same quantum numbers but differ-
ent couplings. The new scalars carry the following quantum
numbers.

S

(
3̄, 2,−1

6

)
, �u,d,L

(
3, 1,

2

3

)
, � (1, 1,−1) , (17)

where the hypercharge normalization is Qem = I L3 +Y . The
subscripts (u, d, L) indicate the type of fermion couplings
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(in the Dirac operator) that the corresponding scalar �i pos-
sesses; couplings to the up-type and the down-type SU (2)

singlets, and SU (2) doublets, respectively.
It is pointed out in Ref. [25] that the fields (S, �u , �d , �L )

do not enter into the final version of the fermionic action,
although they appear in the bosonic part. Therefore, these
fields, despite of the fact that they carry right quantum num-
bers to be called leptoquarks, are in fact by definition not lep-
toquarks, in this formalism. Nevertheless, since they appear
in the bosonic action, they are relevant to our discussion of
RG running of the gauge couplings.

4 Renormalization group analysis

In this section, after we lay out preliminaries for the one-loop
renormalization group (RG) running, we move on to the RG
analysis with the aforementioned extra scalars. First, as a
simple demonstration, we start with a special case where the
masses of the scalars are split between the electroweak scale
and the unification scale, which is a common practice in the
literature in the context of Grand Unified Theories (GUTs).
Then, we investigate the most general case in which possible
mass values of these five extra scalars are allowed to float
between these two scales and show that unification of the
gauge couplings cannot be realized.

4.1 Preliminaries

For a given particle content, the gauge couplings correspond-
ing to gauge group Gi in an energy interval [MA, MB] evolve
under the one-loop RG running

1

g2
i (MA)

− 1

g2
i (MB)

= ai
8π2 ln

MB

MA
, (18)

where the RG coefficients ai are given by [42,43]

ai = −11

3
C2(Gi ) + 2

3

∑
R f

Ti (R f ) · d1(R f ) · · · dn(R f )

+η

3

∑
Rs

Ti (Rs) · d1(Rs) . . . dn(Rs), (19)

and the full gauge group is given as G = Gi ⊗G1⊗· · ·⊗Gn .
The summation in Eq. (19) is over irreducible chiral repre-

sentations of fermions (R f ) and irreducible representations
of scalars (Rs) in the second and the third terms, respectively.
The coefficient η is either 1 or 1/2, depending on whether the
corresponding representation is complex or (pseudo) real,
respectively. d j (R) is the dimension of the representation R
under the groupG j �=i .C2(Gi ) is the quadratic Casimir for the
adjoint representation of the group Gi , and Ti is the Dynkin
index of each representation. For U (1) group, C2(G) = 0

and

∑
f,s

T =
∑
f,s

Y 2, (20)

where Y is the U (1) charge.
The low energy data which we use as the boundary con-

ditions in the RG running (in the MS scheme) are [44,45]

α−1(MZ ) = 127.950 ± 0.017,

αs(MZ ) = 0.1182 ± 0.0016,

sin2 θW (MZ ) = 0.23129 ± 0.00005, (21)

at MZ = 91.1876 ± 0.0021 GeV, where we use only the
central values throughout this work since the contribution
from the deviations is negligible and does not change our
results.

The obvious boundary/matching conditions to be imposed
on the couplings at MU and MZ are:

MU :
√

5

3
g1(MU ) = g2(MU ) = g3(MU ),

MZ : 1

e2(MZ )
= 1

g2
1(MZ )

+ 1

g2
2(MZ )

. (22)

4.2 Special case: TeV-scale scalars

Before moving on to the general case where the masses of
the scalars acquire values anywhere between the electroweak
scale and the unification scale, we consider here a special
case where the masses of the scalars are split between these
two scales. The general case of course covers this specific
version but we display it here anyway in part because it is
convenient to use this case to illustrate to which extent these
scalars modify the RG running of the SM, in part because
TeV-scale scalars are relevant in terms of the LHC searches
(see for instance Refs. [24,46]); thus, it is useful to inspect
whether there is an improvement towards unification in each
special case (given in Table 1), even though unification is not
achieved.

Now, we will assume in each case that at least one of these
five scalars,

S

(
3̄, 2,−1

6

)
, �u,d,L

(
3, 1,

2

3

)
, � (1, 1,−1) , (23)

are at the TeV-scale, and the rest of them are heavy at the
unification scale, MU . There are in total 15 possible config-
urations listed in Table 1.

The RG coefficients are given by ai = aSM
i + �ai , (i =

1, 2, 3) where

aSM
i =

[
41

6
,−19

6
,−7

]
, (24)
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Table 1 The field
configurations and the
corresponding modifications in
the RG coefficients in the
special case, in which we
assume that the particles are
split such that some of them
acquire masses at the TeV-scale
and the rest are heavy at the
presumed unification scale

# of fields Configuration no. Particle content (�a1,�a2,�a3)

1-p 1 S

(
1

18
,

1

2
,

1

3

)

2 �

(
4

9
, 0,

1

6

)

3 �

(
1

3
, 0, 0

)

2-p 4 S�

(
1

2
,

1

2
,

1

2

)

5 S�

(
7

18
,

1

2
,

1

3

)

6 ��

(
7

9
, 0,

1

6

)

7 ��

(
8

9
, 0,

1

3

)

3-p 8 ���

(
4

3
, 0,

1

2

)

9 ��S

(
17

18
,

1

2
,

2

3

)

10 ���

(
11

9
, 0,

1

3

)

11 ��S

(
5

6
,

1

2
,

1

2

)

4-p 12 ���S

(
25

18
,

1

2
,

5

6

)

13 ����

(
5

3
, 0,

1

2

)

14 ���S

(
23

18
,

1

2
,

2

3

)

5-p 15 ���S�

(
31

18
,

1

2
,

5

6

)

and �ai are the contributions from the new fields in each field
configuration, i.e. they are the relevant linear combinations of
�aSi , �a�

i , and �a�
i , which are, following Eq. (19), obtained

as

S : �aS1 = 1

18
, �aS2 = 1

2
, �aS3 = 1

3
,

�u,d,L : �a�
1 = 4

9
, �a�

2 = 0, �a�
3 = 1

6
,

� : �a�
1 = 1

3
, �a�

2 = 0, �a�
3 = 0. (25)

Out of 15 possible configurations listed in Table 1, unifi-
cation is realized in none of them, as displayed in Fig. 1.

4.3 The general case: scalars with random order of masses

In this section, we will now investigate the most general case
in which these five extra scalars are allowed to acquire masses
between the electroweak scale (MZ ) and the putative unifi-
cation scale (MU ). Using Eq. (19) with the low energy data

and boundary conditions given in Eqs. (21) and (22), the
following equations are obtained.

2π

[
3 − 8 sin2 θw(MZ )

α(MZ )

]

= AVI ln
M5

MZ
+ AV ln

M4

M5
+ AIV ln

M3

M4
+ AIII ln

M2

M3

+AII ln
M1

M2
+ AI ln

MU

M1
,

×2π

[
3

α(MZ )
− 8

αs(MZ )

]

= BVI ln
M5

MZ
+ BV ln

M4

M5
+ BIV ln

M3

M4

+BIII ln
M2

M3
+ BII ln

M1

M2
+ BI ln

MU

M1
, (26)

where Mi are the masses of five extra scalars, the Roman
numerals label the corresponding energy intervals, and

A ≡ 3a1 − 5a2, B ≡ 3a1 + 3a2 − 8a3. (27)
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Fig. 1 Running of the gauge couplings for each scalar field configu-
ration in the special case given in Table 1. The SM running is given
in the first plot for comparison. The vertical dotted line correspond

to the electroweak scale MZ . For α−1
1 , we plot the redefined quantity

α̃−1
1 ≡ 3

5 α−1
1 . Unification is realized in none of these cases
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Table 2 The main result of this paper. The configurations of mass hier-
archy and the corresponding equations in the general case, in which
the extra scalars acquire random order of masses between the elec-
troweak scale and the presumed unification scale, are given. The super-
script (′) indicates that the configurations belong to the general case.
The mass orderings in the second column are given in the decreasing
order from left to right. Similarly, (u, a, b, c, d, e) denote mass scales
as u = ln MU /GeV, a = ln M1/GeV..., where MU is the unification
scale in each case, and Mi is the mass of the scalar i , for i = 1, . . . , 5.

In the third column, we display the solutions of Eq. (26) for each case
in a form convenient to observe the contradictions with the condition
u � a � b � c � d � e. In none of these 20 configurations, a
positive result exits for gauge coupling unification, as detailed in the
text. In the last row, we display for comparison a hypothetical sce-
nario, in which there are (�, S, S, S,�) fields instead of our original
(�,�,�,�, S), that yields gauge coupling unification for a range of
values for (a, b, c, d, e), for which an example-set of values is given

Config. no. Mass order Solutions Contradictions

1′ ���S� u = 34 + 0.015(e − d), a = 183 − b − c + 1.3d − 0.3e umax = 34, amin = 62 ×
2′ ����S u = 34 + 0.015(d − e), a = 183 − b − c + 1.3e − 0.3d umax = 35, amin = 57 ×
3′ ��S�� u = 34 + 0.015(e − c), a = 183 − b − d + 1.3c − 0.3e umax = 34, amin = 92 ×
4′ ��S�� u = 34 + 0.015(d − c), a = 183 − b − e + 1.3c − 0.3d umax = 34, amin = 92 ×
5′ ����S u = 34 + 0.015(c − e), a = 183 − b − d + 1.3e − 0.3c umax = 35, amin = 57 ×
6′ ���S� u = 34 + 0.015(c − d), a = 183 − b − e + 1.3d − 0.3c umax = 35, amin = 80 ×
7′ �S��� u = 34 + 0.015(e − b), a = 183 − c − d + 1.3b − 0.3e umax = 34, amin = 92 ×
8′ �S��� u = 34 + 0.015(d − b), a = 183 − c − e + 1.3b − 0.3d umax = 34, amin = 92 ×
9′ �S��� u = 34 + 0.015(c − b), a = 183 − d − e + 1.3b − 0.3c umax = 34, amin = 92 ×
10′ ����S u = 34 + 0.015(b − e), a = 183 − c − d + 1.3e − 0.3b umax = 35, amin = 57 ×
11′ ���S� u = 34 + 0.015(b − d), a = 183 − c − e + 1.3d − 0.3b umax = 35, amin = 80 ×
12′ ��S�� u = 34 + 0.015(b − c), a = 183 − d − e + 1.3c − 0.3b umax = 35, amin = 92 ×
13′ S���� u = 34 + 0.015(e − a), c = 183 − b − d + 1.3a − 0.3e umax = 34, cmin = 92 ×
14′ S���� u = 34 + 0.015(d − a), c = 183 − b − e + 1.3a − 0.3d umax = 34, cmin = 92 ×
15′ S���� u = 34 + 0.015(b − a), c = 183 − d − e + 1.3a − 0.3b umax = 34, cmin = 92 ×
16′ ����S u = 34 + 0.015(a − e), c = 183 − b − d + 1.3e − 0.3a umax = 35, cmin = 72 ×
17′ ���S� u = 34 + 0.015(a − d), c = 183 − b − e + 1.3d − 0.3a umax = 35, cmin = 139 ×
18′ �S��� u = 34 + 0.015(a − b), c = 183 − d − e + 1.3b − 0.3a umax = 35, cmin = 102 ×
19′ S���� u = 34 + 0.015(c − a), b = 183 − d − e + 1.3a − 0.3c umax = 34, bmin = 92 ×
20′ ��S�� u = 34 + 0.015(a − c), b = 183 − d − e + 1.3c − 0.3a umax = 35, bmin = 102 ×
Hypotheti- �SSS� u = 35.4 + 0.011(a − b), e.g. u = a = b = 35.4,

cal positive c = −14.56 − d − e c=9.8, d=e=5.5 �
scenario +0.28a + 0.72b

Table 3 The distribution of the
new scalars among the energy
intervals and the corresponding
RG coefficients for
configuration 1′ (���S�), i.e.
MU � M�u � M�d � M�l �
MS � M� > MZ

Interval Active (extra) scalar dofs RG coefficients
[
a1, a2, a3

]

I (MU − M1) ���S�

[
77

9
,−8

3
,−37

6

]

II (M1 − M2) ��S�

[
73

9
,−8

3
,−19

3

]

III (M2 − M3) �S�

[
23

3
,−8

3
,−13

2

]

IV (M3 − M4) S�

[
65

9
,−8

3
,−20

3

]

V (M4 − M5) �

[
43

6
,−19

6
,−7

]

VI (M5 − MZ )

[
41

6
,−19

6
,−7

]
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The RG coefficients and hence the values of the combina-
tions above change accordingly each time a mass threshold
is reached.

There are in total 20 configurations of mass ordering, given
in Table 2. In none of these cases unification of couplings
can be realized as we will show below. As can be seen from
the last column in Table 2, configurations 1′ −12′, 13′ −18′,
and 19′−20′ (where we use the superscript (′) to indicate that
the configurations belong to the general case) are equation-
wise similar within themselves. Therefore, we will display
one example for each group step by step, and since the nec-
essary equations and results for each of 20 configurations are
given in Table 2, reader can easily reproduce the results in
the other cases. Besides, we for comparison include in the
last row in Table 2 a hypothetical scenario with a scalar con-
figuration different than ours that yields a positive result for
unification.

4.3.1 Case 1: configuration 1′ (���S�)

In this case, the mass ordering is given as

MU � M�u � M�d � M�l � MS � M� > MZ , (28)

where the order of three fields �u,d,l among themselves does
not matter in the context of our discussion and hence any
order combination among them is labeled as the same con-
figuration in Table 2. The intervals in Eq. (26) is labeled as

[MU − M1] ≡ I, [M1 − M2] ≡ II, . . . , [M5 − MZ ] ≡ VI,

(29)

and Mi denote the masses of the scalars from the heaviest
one to the lightest, as i = 1, . . . , 5. We also introduce the
following notation.

u ≡ ln
MU

GeV
, a ≡ ln

M1

GeV
, . . . , e ≡ ln

M5

GeV
. (30)

Using Eq. (26) with the RG coefficients given in Table 3
and definitions in Eq. (30), after some fortunate cancellations,
we obtain

3265 = 117u − 4(a + b + c) + 7d − 3e,

2289 = 67u + d − e. (31)

This system of equations does not yield a solution consistent
with the constraints coming from the hierarchy of scales, i.e.
u � a � b � c � d � e. This can be seen easily by solving
these equations for u and a, which yields

u = 34 + 0.015(e − d), a = 183 − b − c + 1.3d − 0.3e.

(32)

The maximum possible value for u is obtained with emax and
dmin , i.e. e = d, and the minimum value for a is obtained
with, (in addition to e = d = z ≡ ln MZ/GeV), bmax =
cmax = a as

umax = 34, amin = 62. (33)

Therefore, the system violates the required condition u � a,
and hence does not yield a meaningful solution.

Following the same procedure, it is straightforward to
show that the same situation occurs for the other configura-
tions. Especially, the configurations 2′ − 12′ are very similar
to configuration 1′, which we study above, with only minor
differences. For instance, the equations in case 2′ become

u = 34 + 0.015(d − e), a = 183 − b − c + 1.3e − 0.3d.

(34)

In this case, in order to find umax we set the maximum value
for d and the minimum value for e as dmax = u and emin = z.
In order to find amin we set bmax = cmax = a, emin = z, and
dmax = a. Finally, we obtain

umax = 34.5, amin = 57, (35)

which clearly violates the necessary condition, u � a.

4.3.2 Case 2: configuration 13′ (S����)

In the second example we display the calculations step by
step, the mass ordering is given as

MU � MS � M�u � M�d � M�l � M� > MZ . (36)

Using Eq. (26) with the RG coefficients given in Table 4,
we obtain

3265 = 117u − 4(b + c + d) + 7a − 3e,

2289 = 67u + a − e. (37)

In order to see the inconsistency in this system, let’s look at
the second equation in Eq. (37) solving for u and c, which
yields

u = 34 + 0.015(e − a), c = 183 − b − d + 1.3a − 0.3e

(38)

The maximum possible value for u can be found by setting
e = a. The condition for the minimum possible value for
c can be easily seen by putting the second equation in the
following form.

c = 183 + (a − b) + 0.3a − 0.3e − d. (39)
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Table 4 The distribution of the
new scalars among the energy
intervals and the corresponding
RG coefficients for
configuration 13′ (S����),
i.e. MU � MS � M�u �
M�d � M�l � M� > MZ

Interval Active (extra) scalar dofs RG coefficients
[
a1, a2, a3

]

I (MU − M1) S����

[
77

9
,−8

3
,−37

6

]

II (M1 − M2) ����

[
17

2
,−19

6
,−13

2

]

III (M2 − M3) ���

[
145

18
,−19

6
,−20

3

]

IV (M3 − M4) ��

[
137

18
,−19

6
,−41

6

]

V (M4 − M5) �

[
43

6
,−19

6
,−7

]

VI (M5 − MZ )

[
41

6
,−19

6
,−7

]

Table 5 The distribution of the
new scalars among the energy
intervals and the corresponding
RG coefficients for
configuration 19′ (S����),
i.e. MU � MS � M�u � M� �
M�d � M�l > MZ

Interval Active (extra) scalar dofs RG coefficients
[
a1, a2, a3

]

I (MU − M1) S����

[
77

9
,−8

3
,−37

6

]

II (M1 − M2) ����

[
17

2
,−19

6
,−13

2

]

III (M2 − M3) ���

[
145

18
,−19

6
,−20

3

]

IV (M3 − M4) ��

[
139

18
,−19

6
,−20

3

]

V (M4 − M5) �

[
131

18
,−19

6
,−41

6

]

VI (M5 − MZ )

[
41

6
,−19

6
,−7

]

In order to get minimum contribution from (a − b) we set
a = b (since a � b). The minimum contribution for the rest
of the right-hand side can be obtained for a = amin = c and
e = emax = d = dmax = c. Hence, we obtain

umax = 34, cmin = 92, (40)

which violates the necessary condition u � c and hence the
system does not yield an acceptable solution.

The configurations 14′ − 18′ are very similar to the con-
figuration 13′ and can be studied in the same way to find that
in none of them the solutions lead to a consistent picture. The
results can be read in Table 2.

4.3.3 Case 3: configuration 19′ (S����)

In the final example we display, the mass ordering is given
as

MU � MS � M�u � M� � M�d � M�l > MZ . (41)

Using Eq. (26) with the RG coefficients given in Table 5, we
obtain

3265 = 117u − 4(b + d + e) + 7a − 3c,

2289 = 67u + a − c. (42)

In order to observe the inconsistency in this system, let’s
solve these equations for u and b to find

u = 34+0.015(c−a), b = 183−d−e+1.3a−0.3c. (43)

The maximum possible value for u is obtained for a = c,
whereas the minimum possible value for b is achieved for
a = b = c = d = e, leading to

umax = 34, bmin = 92, (44)

which violates the necessary condition u � b, hence the
system does not yield a consistent solution. Configuration
20′, given in Table 2, can be examined in a similar manner,
resulting in the same situation in which there is no acceptable
solution to the corresponding system of equations.

Therefore, we conclude that out of these 20 possible mass
orderings there is not a single case where the gauge coupling
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unification can be realized at the one-loop order. Higher loop
effects are expected to be suppressed and are unlikely to
change this outcome.

5 Discussions and conclusion

The spectral action construction in the noncommutative
geometry (NCG) framework reconciles gravity and the SM in
a geometric setting, putting them on similar footings, which
could possibly be considered a step towards quantum gravity.
The robustness of GR and the SM can be understood from
this geometric perspective. Additionally, the NCG formal-
ism, due to its geometric nature, might open new (perhaps
non-Wilsonian) possibilities, such as decoupling of degrees
of freedom and UV/IR mixing, for understanding the curious
issues in the SM, such as the question of naturalness and the
hierarchy problem, which has made the high energy physics
community anticipate new physics at the TeV scale, likely to
be on false grounds.

One obvious question would be whether there is a fully
quantized UV completion to the spectral action formalism.
Without knowledge of such a completion, a spectral action
can be interpreted as a classical structure, emergent from an
underlying noncommutative geometry. Once that is estab-
lished, the usual quantum field theory methods could be
employed for the quantization and RG running for energy
scales below the scale of emergence, motivated by the fact
that these methods work quite well to describe Nature at low
energies, accessible to the current colliders. This is indeed
the approach we adopt in this paper. On the other hand, the
geometric nature of this set-up brings up the question of non-
local effects, which is yet to be investigated.

While there are appealing features of the spectral action
formalism in the NCG framework, there are also various
issues within the minimal construction. The most important
of these is the requirement of gauge coupling unification,
which cannot be achieved by the particle content of the SM
in the canonical renormalization group running. This issue
is not really an indicative of a problem with the idea of the
spectral action itself, but with its minimal version. After all,
the spectral action formalism is not a model; it is a geo-
metric framework that provides a toolbox for building mod-
els. Therefore, an extension to the minimal model construc-
tion is required, in similarity to BSM physics but, in this case,
in the NCG framework. Indeed, a recently proposed exten-
sion to the basic formalism accommodates (three versions
of) a Pati-Salam-type model [16], which is investigated from
phenomenological perspective in Refs. [22–24].

In a recent paper [25], which is primarily based on the
analysis of Ref. [26], it is argued that incorporating Clifford
structure into the finite part of the spectral triple in the basic
framework gives rise to five extra scalars. In this paper, we

investigate whether these scalars can help satisfy the unifica-
tion condition in this modified minimal formalism. We study
the one-loop renormalization group running in the most gen-
eral case in which the extra scalars are allowed to acquire
random order of masses between the electroweak scale and
the presumed unification scale. We show that out of twenty
possible configurations in total, depending on mass hierarchy
of these additional scalars, there does not exist even a single
case that can lead to unification of the gauge couplings, as
displayed in Table 2. Higher order loop effects are expected
to be suppressed further and are unlikely to change this out-
come, so are the higher order contributions in the spectral
action [47].

In conclusion, the issue of unification in the minimal spec-
tral action formalism is not remedied in this slightly modi-
fied scheme. Therefore, a model construction based on the
spectral action principle is required to extend beyond the
(modified) minimal framework with a resulting gauge sec-
tor possibly different than the one in the SM, an example
of which is proposed in Ref. [16], as previously mentioned.
Evidently, this outcome is valid provided that the standard
perturbative quantum field theory methods are appropriate
to be employed all the way up to the scale of emergence of
the corresponding spectral action. In case of a possible UV-
complete version of the spectral action formalism, it would
be conceivable to anticipate departures from the canonical
RG running at scales close to the scale of emergence, which
could possibly yield a self-consistent picture even with the
SM field content.
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