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Abstract Mimetic gravity can be described as a formula-
tion capable of mimicking different evolutionary scenarios
regarding the universe dynamics. Notwithstanding its initial
aim of producing a similar evolution to the one expected from
the dark components of the standard cosmology, a recent
association with loop quantum cosmology could also provide
interesting results. In this work, we reinterpret the physics
behind the curvature potential of mimetic gravity descrip-
tion of loop quantum cosmology. Furthermore, we also test
the compatibility of our formulation for a Higgs-type field,
proving that the mimetic curvature potential can mimic the
dynamics from a Higgs inflationary model. Additionally, we
discuss possible scenarios that emerge from the relationship
between matter and mimetic curvature and, within certain
limits, describe results for the primeval universe dynamics
obtained by other authors.

1 Introduction

Loop quantum gravity (LQG) is an attempt to quantize grav-
ity by performing a nonperturbative quantization of general
relativity (GR) [1] at kinematic level that has been showing
progress during the last few years. Mainly, its cosmological
description called loop quantum cosmology (LQC), see [2–4]
for a dedicated review. LQC overcomes the kinematic char-
acter of LQG through cosmological dynamics. Moreover, it
naturally solves the initial singularity problem by replacing
it with a bounce for, at least, the most common cosmological
models [5].

Effective LQC is a compelling proposal because it results
in regular solutions. It does not matter if we are analyzing
the primordial universe evolution from matter, curvature or
scale factor angle, the solutions do not diverge [6]. In order to
reproduce LQC results, many approaches have been tested,
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including the ones with massless fields, different potential
shapes and so on. Among them, a recent work from Langlois
et al. [7] showed how to recover the Effective LQC dynam-
ics through a class of scalar-tensor theories, in which the
Mimetic Gravity (MG) of Chamseddine and Mukhanov was
included (see, in particular, [8,9]). The remarkable feature in
this description is the treatment of curved space-times. The
strategy employed to incorporate curvature provided a new
window we intend to explore.

The MG description of LQC dynamics can be interpreted
in such a way that enables us to follow the evolution of a scalar
field whose potential is intrinsically coupled to a curved back-
ground. Because its nature and the fact that the Higgs field
is the only scalar field currently observed, a Higgs-type field
is a perfect candidate to test our approach. Furthermore, the
possibility of relating the mimetic field to the Higgs mecha-
nism presented in [10,11] fortify our idea.

In this work, we aim to emphasize how powerful and
versatile the mimetic formulation of LQC is. First, the MG
curvature potential is interpreted as the geometric response
to the presence of matter onto spacetime, which allows the
study of the universe evolution without considering the field
potential directly. Next, we analyze the implications regard-
ing the different interpretations of the curvature role in the
universe dynamics. Furthermore, once the general solution
for the Hubble parameter is obtained, we will show that the
dynamics of the universe during the inflationary period can
be described within the framework of the mimetic represen-
tation of LQC. Although it is possible through MG to mimic
any scalar field, here we will show that the potential for curva-
ture in the mimetic description of LQC can produce the same
evolution for the Hubble parameter as that derived from the
scenario known as Higgs inflation (HI).

The paper is organized as follows. In Sect. 2, we summa-
rize only the essential aspects of LQC and MG, emphasizing
the universe evolution during the early times. In Sect. 3, we
expose our interpretation of the result presented in Langlois
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et al. [7] and how we construct an alternative evolutionary
scenario by applying our formalism. We also show how the
mimetic curvature potential must behave to reproduce the HI
dynamics. Therefore, from the viewpoint of the dynamics
described by the Hubble parameter, the inflationary Higgs
phase can be perfectly mimicked by the curvature poten-
tial introduced by Langlois et al. [7]. Besides, we use this
potential to adjust the HI and effective mimetic LQC energy
scales, displaying the compatibility between them. We con-
clude Sect. 3 with two Sects. 3.3.1 and 3.3.2 that discuss
possible interpretations of the curvature potential from MG
representation of LQC. In fact, we have shown that it is pos-
sible to recover, within certain limits, previous analyzes of
[12] (for k = 0) or that studied in [13] (for k = 1). Finally,
we highlight the most relevant implications of our proposal
in Sect. 4.

2 Overview

The following computations were developed using the nat-
ural unity system. Consequently, the velocity of light c and
reduced Planck constant h̄ are unitary (c = h̄ = 1). Besides,
the Newtonian gravitational constant G, Planck length �Pl ,
Planck mass mPl and reduced Planck mass MPl are related
by mPl = �−1

Pl = (
√
G)−1 = √

8πMPl .

2.1 Loop quantum cosmology

The key element that makes LQG different from other
approaches of quantum gravity is the holonomy introduction.
The Ashtekar connection Ai

a and its conjugated momentum
Ea
i

1 are the canonical variables of LQG [7,14] whose forms
are given by

Ai
a = c(dxi )a and Ea

i = p

(
∂

∂xi

)a

, (1)

where xi refers to space coordinates and γ � 0, 2375 repre-
sents the Barbero–Immirzi parameter [15,16]. The variables
p and c are defined with respect to the scale factor a and its
time derivative ȧ as

p = a2, c = γ ȧ/N and {c, p} = 8πGγ

3
, (2)

being N the lapse function. However, instead of trying to
implement Ai

a or c as quantum operator, the holonomy (as a
function of Ai

a) is the one defined as fundamental operator
[7], resulting in the so-called holonomy corrections.

1 Meanwhile the indices a, b, c,…refer to the spatial manifold Σ , i, j,
k,…are internal indices related to the fiducial cell which is defined as
a finite region introduced to avoid integrals over the space-time infinite
region [7].

LQC incorporates the quantization scheme and techniques
from LQG and applies them for homogeneous and isotropic
space-times [7,17]. Hence, LQG can be considered a canoni-
cal quantization of gravity, meanwhile, LQC corresponds to a
canonical quantization of homogeneous and isotropic space-
times [17]. In LQC, the holonomy is considered around a
loop with square shape due to the symmetries of Friedmann–
Robertson–Walker (FRW) spacetimes. Because p is the vari-
able related to Ea

i , it is the one promoted to area operator,
presenting a discrete spectrum [7]. Thus, there is a minimum
area value, usually referred to as Δ = 2

√
3πγ �2

Pl that limits
the size of the loop as a fundamental structure of space-time.
The relation between Δ and the face physical area |p| is
described by μ̄2 = Δ/|p| [18]. This procedure determines
the loop area, being named μ̄-scheme [2,14].

In this quantum cosmological scenario, the universe
dynamics is determined by the Effective LQC version of
the Friedmann equations and continuity equation. The LQC
effective Friedmann equation can be obtained from the evo-
lution of the observable p, which corresponds to its equation
of motion, dictated by

ṗ = dp

dt
= {p,CH } =

{
p,

∫
d3xNH

}
, (3)

whereCH = ∫
d3xNH is the Hamiltonian constraint. First,

the Hamiltonian receives a classical treatment in which it
acquires the shape [7]

Heff = − 3p3/2

8πGΔγ 2 sin2 μ̄c + π2
ϕ

2p3/2 + p3/2V (ϕ), (4)

with πϕ and V (ϕ) representing the momentum and potential
of the matter content defined by the scalar field ϕ, respec-
tively. Second, as the Hamiltonian constraint is weakly equal
to zero, plugging (4) into (3) is going to result in

ṗ = 2N
p

γ
√

Δ
sin μ̄c cos μ̄c, where sin2 μ̄c = ρ

ρc
. (5)

At this point, it is clear how the sine function restricts the
relation between the matter energy density ρ and its critical
value ρc to the range 0 � ρ/ρc ≤ 1 [19]. Here, ρ presents
the classical form

ρ = π2
ϕ

2p3 + V (ϕ), (6)

and

ρc = 3

8πGγ 2Δ
� 0.82ρPl , (7)

where ρPl is the matter energy density at Planck scale.
Finally, from (5), it is straight to obtain the Hubble parameter

H2 =
(

ṗ

2Np

)2

= 8πG

3
ρ

(
1 − ρ

ρc

)
. (8)
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The Eq. (8) provides strong implications regarding the
LQC evolutionary scenario for the very early times. As we
regress in the universe history, the matter energy density
is growing more and more. In the Hot Big Bang classical
solution, ρ goes to infinite due to its inverse relationship
with time, resulting in the so-called initial singularity. How-
ever, from the LQC perspective, the universe undergoes a
bounce phase in which the matter content is compressed
until ρ achieves a value close to ρPl [18]. This can be directly
observed from Eq. (8), where the minimum point of the func-
tion H (H = 0) occurs for ρ = ρc. Thereupon, the relation
ρ/ρc = 1 defines the turn point in scale factor evolution
(ȧ = 0) that means a change in the evolution of universe
itself. Consequently, instead of a singularity characterized
by an infinite energy density, in LQC, there is a big bounce
when the energy density achieves a range close to Planck
scale determined by ρc [12,18,19].

Another key point to remember is that all physical fields
are considered regular at LQC bounce for strong curvature
singularities in FRW models. As a result, any matter field
used in LQC context must obey the usual expressions for the
state equation (EoS)

P = wρ, (9)

and Klein Gordon equation

ϕ̈ + 3H ϕ̇ + dV (ϕ)

dϕ
= 0, (10)

where P is the matter pressure and w represents the state
parameter [6,12]. Moreover, regardless of theory, the con-
tinuity equation must be satisfied, which means the matter
energy density obeys the expression

ρ̇ + 3H(P + ρ) = 0. (11)

After the bounce, the standard LQC universe undergoes
a period called super-inflation [2,6]. During this phase, the
Hubble parameter is extremely dynamical, going from H =
0 to its maximum value

H2 = ρc

12M2
Pl

, (12)

when ρ = (1/2)ρc. Nevertheless, this phase should not last
long (less than a Planck second) in order to avoid significant
changes in the evolution of a and ϕ. Furthermore, this rapid
growth implies a large friction term in (10) which takes time
to slow down until a point the potential energy is capable of
dominating the universe dynamic and producing a slow-roll-
type evolution [6].

In principle, a bounce phase could enable the field poten-
tial to climb the potential well [13], which would naturally
provide the initial condition for the field starts to roll down
as expected from the standard inflationary scenario. Indeed,

the super-inflation should end with the universe in a suit-
able state for the beginning of inflation. However, the ratio
regarding the kinetic and potential energies seems to deter-
mine the qualitative features of dynamical evolution when
the initial data is established. Depending on how greater the
kinetic energy is regarding the potential energy, the sorter the
super-inflation phase is going to be. Moreover, producing an
inflationary period with a nearly constant Hubble parameter,
in agreement with the full LQC statement Ḣ = 0 at the end
of super-inflation, requires specific adjustments for a bounce
with the kinetic energy density as the dominant component
[6] (a common assumption found in LQC literature).

The standard effective LQC Hamiltonian constraint (see
equation (4)) implies that quantum gravitational effects are
negligible for values of ρ much smaller than ρPl [18], which
enables to recover the standard Friedmann equation for flat
FRW space-time

H2 = ρ

3M2
Pl

. (13)

Once both (8) and (11) are already determined, it is straight
to obtain the acceleration equation for standard LQC by com-
puting the time derivative of (8) and summing with (8) itself,
obtaining the expression

Ḣ + H2 = 4πG

3
ρ

[
−3w − 1 + 2ρ

ρc
(2 + 3w)

]
. (14)

In summary, from Effective LQC approach, the effective
Hamiltonian results in a modified Friedmann equation that
only differs from the classical one by a quadratic term of the
energy density ρ2, besides the universe underwent a bounce
phase followed by an inflationary period regardless the mat-
ter content assumed. Notwithstanding, between these two
stages, a super-inflation period is expected to take place [17].
During super-inflation, the universe is in a super-accelerated
stage Ḣ > 0, meanwhile, along inflationary epoch, H obeys
the relation Ḣ < 0 [12]. In this scenario, the gravity presents
a repulsive behavior in the deep Planck regime due to quan-
tum geometry [18], whose effects are negligible for suffi-
ciently small values of ρ (ρ/ρc → 0), recovering the classi-
cal dynamics of standard cosmology.

2.2 Mimetic gravity description for loop quantum
cosmology

The mimetic gravity provides a unified geometric description
of the universe evolution without any extra dark component
[20]. Despite being recently proposed by Chamseddine and
Mukhanov [21] as a way to simulate the dark matter behav-
ior, MG can also overcome cosmological singularities issues
through the limiting curvature concept [8,9]. Furthermore,
the mimetic representation has been extended to reproduce a
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plethora of different frameworks (see [20,22,23] for further
discussions).

Basically, the MG formulation was built under the con-
cept of disformal transformations as a consequence of GR
invariance under diffeomorphism transformations [24,25].
This kind of transformation enables to parameterize gμν as
a function of an auxiliary metric g̃μν and a scalar field ϕ, the
mimetic field, like [20,26]

gμν = − (
g̃αβ∂αϕ∂βϕ

)
g̃μν. (15)

From (15), two fundamental features emerged. First, the
invariance of gμν under a conformal transformation of g̃μν

like g̃μν → Ω(t, x)2 g̃μν . And second, the consistence con-
dition

gμν∂μϕ∂νϕ = −1 (16)

that ϕ must satisfy. These properties can be directly related to
the two equivalent formulations of MG: Lagrange multiplier
and singular disformal transformations [27]. The first one
enables to incorporate the condition (16) at the level of the
action through a Lagrange multiplier. Meanwhile, the second
formulation highlights the mapping g → g̃, ϕ as a singular
disformal transformation in which ϕ corresponds to a new
degree of freedom in the gravitational sector [20,25].

Here, we are considering MG as a different way to write
the effective terms of LQC dynamics as implemented in [7],
which was the theme of many works in the literature (for
example [28–32]). The LQC effective Friedmann equation
(8) is reproduced by constructing an action whose dynamical
variables are a, N and ϕ. This action must satisfy the require-
ment of invariance under time reparametrization which, for a
flat FRW space-time, can be achieved through the expression
[7]

S[a, N , ϕ] =
∫

dt

[
− 3aȧ2

8πGN
+ a3 ϕ̇2

2N
+Na3L

(
a,

ȧ

N

)]
.

(17)

The MG procedure consists in setting L like a function
of the Hubble parameter F (H) whose form is defined as an
ansatz to obtain the Hamiltonian density,

H = a3

[
π2

ϕ

2a6 − 8πG

3
α2 sin2

( πa

2αa2

)]
, (18)

where N continues as a Lagrange multiplier like in LQC,2 α

is a constant and

πϕ = a3

N
ϕ̇ and πa = αa2 arcsin

(
− 3H

4πGα

)
(19)

2 From now on, the gauge N = 1 will be assumed for computations
regarding the equations of motion, which means we are evolving the
system considering the proper time [33].

are the momenta of the scalar field and scale factor, respec-
tively, satisfying

{a, πa} = {ϕ, πϕ} = 1. (20)

Note that instead of p and c, in MG description, a and πa

correspond to the pair of non-trivial canonically conjugated
variables together with the pair ϕ and πϕ [7]. Next, a sim-
ilar procedure to the one previously presented in Sect. 2.1
is applied to obtain (8). However, in this case, the energy
density and critical energy density are given by

ρ = π2
ϕ

2a6 and ρc = 8πG

3
α2. (21)

Regarding the equivalence with effective LQC dynamics, the
critical energy density from (21) and (7) will be equivalent
only if α obeys the relation

α = 3

8πGγ
√

Δ
. (22)

In [7], the generalization for curved space-times is per-
formed by adding a term related to the curvature parameter
k in the action

Sk[a, N , ϕ] =
∫

dt

[
− 3aȧ2

8πGN
+ a3 ϕ̇2

N

+3Nka

8πG
+ Na3Lk

(
a,

ȧ

N

)]
,

(23)

and expanding the flat case definition of L by introducing
the curvature dependence within Lagrangian

Lk

(
a,

ȧ

N

)
= F (H) − 3

8πG
Vk(a), (24)

as a potential term Vk(a). Consequently, the Hamiltonian
density changes and acquires the following form

H = a3
[
ρ − ρc sin2

( πa

2αa2

)
− 3k

8πGa2 + 3Vk(a)

8πG

]
,

(25)

resulting in the modified Friedmann equation for curved
space-times [7]

H2 =
[

8πG

3
ρ − k

a2 + Vk(a)

]

×
[

1 − 1

ρc

(
ρ − 3k

8πGa2 + 3Vk(a)

8πG

)]
.

(26)

It is important to note that the formulation for the cur-
vature mimetic gravity, developed by [7], was analyzed by
[32] in terms of whether the curvature is identified with a
multiple of the Planck scale. To answer this question the
authors analyze if such a relationship can hold in the con-
text of Bianchi I models. The conclusion of the authors is
that in the case of Bianchi I spacetime the Hamiltonian for
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curvature mimetic gravity cannot be interpreted as an effec-
tive Hamiltonian arising from loop quantization. However,
as emphasized by [34], it is unclear if such a limitation may
exist for a curvature potential that reproduces the cosmologi-
cal background dynamics similar to that derived in the group
field theory approach to quantum gravity.

Another key point to consider is the instability issue afflict-
ing high derivative mimetic models due to the presence of
gradient/ghost. This makes difficult to obtain a stable model
capable of reproducing the LQC equations (see, e.g., [35–
37]). Notwithstanding, it is interesting to evaluate if there
are healthy features that can emerge from the MG in order
to reproduce the universe dynamics within the scope of the
LQC. This is the direction that we intend to discuss the rein-
terpretation of the MG curvature potential in the next section.

3 Curvature mimetic gravity: possible scenarios

3.1 Reinterpreting the potential term of mimetic gravity

To begin with, from Eq. (21), the absence of a potential term
in the matter density comes from the assumption of a mass-
less scalar field and/or the simplicity argument of defining
V (ϕ) = 0 that makes easy to perform the quantization pro-
cess [7]. On the other hand, if we consider a fundamental field
non-minimally coupled to gravity, then it would naturally be
induced a mixing between the kinetic term of the scalar field
and the metric field (here represented as a curvature potential
in the MG description of LQC).

In the following computations, we will replace Vk(a) by
Vk(ϕ) in order to make clear our interpretation of the MG
curvature potential as a direct response of the matter presence
curving the space-time. Moreover, the reverse idea can also
be applied, the matter content adapting itself according to
the space-time curvature, emphasizing their intrinsic relation.
To put this in another way, Vk(ϕ) could correspond to the
signature of the non-minimal coupling of a fundamental field
to the curvature represented by Vk(a) at the level of LQC.

This way of describing the primordial universe seems to
be a natural interpretation within the scope of LQG since,
in this theory, space-time and quantum fields are not distinct
components. That is, the space-time we perceive on a large
scale is an image generated by quantum fields that ‘live on
themselves’.

Thus, we proceed by reinterpreting Eq. (26). The strategy
applied in [7] was to introduce the curvature by adding a
potential term that only depends on a and k in the gravita-
tional part of the Lagrangian. Meanwhile, the field potential
was neglected. Accordingly, we propose to change the field
potential from matter sector to gravitational sector as a dif-
ferent way of interpreting the curvature role. First, (26) is
rewritten as

H2 = 1

3M2
Pl

[
ρkin + 3M2

Pl

(
Vk(ϕ) − k

a2

)]

×
{

1 − 1

ρc

[
ρkin + 3M2

Pl

(
Vk(ϕ) − k

a2

)]}
,

(27)

where the kinetic term is

ρkin = π2
ϕ

2a6 , (28)

and Vk(ϕ) is the field potential related with curvature. After,
we define an effective energy density as

ρeff = ρkin + 3M2
Pl

[
Vk(ϕ) − k

a2

]
, (29)

returning to the primary form of the effective Friedmann
equation

H2 = ρeff

3M2
Pl

(
1 − ρeff

ρc

)
. (30)

Splitting the kinetic contribution from the potential one
could be a strange arrangement at first look. However, this
setup enables to treat the field as technically massless from
the matter Hamiltonian point of view, once its “effective
mass” contribution could be interpreted as an effect of the
non-minimal coupling to gravity. About holonomy correc-
tions that characterize space-time deformations, it will not
have any actual difference because they are computed from
both gravitational and matter sectors.

The balance among the contribution of the components
from ρeff during universe evolution needs to be adjusted. This
is performed by respecting the changes from LQC energy
range during the primordial universe evolution and the usual
requirements for the occurrence of an inflationary period.
From (25), by isolating the term with the sine function,

sin2
( πa

2αa2

)
= 1

ρc

(
ρkin + 3Vk(a)

8πG
− 3k

8πGa2

)
= ρeff

ρc
,

(31)

we conclude that ρeff is the amount to be compared to ρc.
During the bounce, (8) is recover for ρeff = ρkin, just as the
flat case. However, it could have happened an equilibrium
between the two terms related to curvature, Vk(ϕ) = ka−2,
which seems to be a reasonable assumption since the universe
motion must stop at the bounce point.

In [38], the energy range between (1/2)ρc and 0 was
pointed as the most suitable period to explore the slow-roll
approximation. A similar statement can be found in [12]
since the onset of the usual inflationary evolution is con-
sidered after the universe had achieved (1/2)ρc. Likewise,
we are considering the outset of inflationary period around
ρeff � (1/2)ρc, where we replaced the energy density from
LQC by the mimetic form ρeff . In analogy with the standard
slow-roll approach, the kinetic energy will be much smaller
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than the potential term associated with curvature, reducing
(27) to

H2 =
[
Vk(ϕ) − k

a2

]{
1 − 3M2

Pl

ρc

[
Vk(ϕ) − k

a2

]}
. (32)

Analyzing the effective energy density ρeff ≈ 3M2
Pl [Vk(ϕ)−

ka−2], we note how it decreases with expansion, like
expected.

Just as the universe evolves, the increasing scale factor
makes the universe geometry becomes flat by diluting any
signal of curvature, in agreement with current data from
Planck satellite [39]. Therefore, there had been a moment
in which the field potential reached an energy range compa-
rable with the kinetic one, sealing the inflationary epoch. At
this point, quantum corrections should be negligible, turning
(27) into

H2 ≈ 1

3M2
Pl

[
ρkin + 3M2

PlVk(ϕ)
]
. (33)

Once we obtain Eq. (33) showing the role of the mimetic
potential on the universe dynamics as described by the Hub-
ble parameter, we can choose any inflationary field to be
described through the mimetic potential Vk(ϕ) − k/a2. In
other words, since inflation under the LQC will occur in the
interval 0 � ρeff/ρc � 1/2, it is enough to choose a scalar
field able of producing inflation and to verify if the energy
scales of the inflationary field can be adequately mimicked
by LQC in terms of the formulation described by [7] for the
curvature mimetic potential.

Although it is possible to do this analysis with the inflaton,
as the scalar field responsible for producing inflation, our
choice will fall on the model called Higgs inflation. There
are two reasons for this choice: (1) the only fundamental
scalar field with experimental counterpart is the Higgs field,
(2) the inflationary version of the Higgs field corresponds to a
field not minimally coupled with gravity, a characteristic that
seems interesting within the scope of MG. It is this scenario
that we will analyze in Sect. 3.2.

3.2 Curvature potential mimicking the dynamics of Higgs
inflation

The Higgs field playing the role of inflaton, the usual scalar
field associated with the standard slow-roll inflation, is an
idea that has been discussed since the first inflationary models
were developed, as can be seen in [40]. Notwithstanding, HI
describes inflation as a chaotic scenario in which a Higgs field
is coupled with the curvature through large values of self-
coupling λ and non-minimal coupling ξ parameters [41–43].
Basically, HI reproduces the successful flat potential of slow-
roll approximation by coupling a primordial version of the
current Higgs field with the Ricci scalar. Besides, ξ , λ, and the

relation between them are only determined by cosmological
observations [43–46].

The HI universe dynamics can be expressed by the action
(see [43])

SJ =
∫

d4x
√−g

[
−1

2
(M2 + ξh2)R + gμν

∂μh∂νh

2
− V (h)

]
,

(34)

where the subscript J means Jordan frame and V (h) is the
potential of Higgs field background h constructed like

V (h) = λ

4
(h2 − v2)2, (35)

which is the usual Higgs potential from Standard Model of
Particle Physics in the unitary gauge (2H†H = h2). Mean-
while, the term ξh2R corresponds to the non-minimal cou-
pling of the scalar field to curvature.

After electroweak symmetry breaking, the scalar field
acquires a non-zero vacuum expectation value (VEV) v =
246 GeV and so M and ξ are then related by M2

Pl =
M2 + ξv2. Moreover, as discussed in [43], the term ξv is
negligible compared to M for most situations covered by the
inflationary Higgs scenario. Therefore, once the parameters
M and MPl differ for the non-zero VEV of 〈h〉 = v, we can
consider M � MPl .

Due to the complexity of working with the mixing terms
in action (34), the usual procedure is to get rid of the
non-minimal coupling to gravity by changing the variables
through a conformal transformation from Jordan’s frame (the
standard one) to Einstein’s frame. This transformation has the
following form

g̃μν = Ω2(h)gμν, (36)

where

Ω2(h) = M2 + ξh2

M2
Pl

≈ 1 + ξh2

M2
Pl

, (37)

allowing to write the action in the Einstein frame as

SE =
∫

d4x
√−g̃

[
−M2

Pl

2
R̃

+
(

Ω2 + 6ξh2/M2
Pl

Ω4

)
g̃μν

∂μh∂νh

2
− V (h)

Ω4

]
.

(38)

The conformal transformation produces a non-minimal
kinetic term for the Higgs field. Nevertheless, it is possible
to obtain a canonically normalized kinetic term through a
new field χ satisfying (see [43,47])

dχ

dh
=

√
Ω2 + 3

2 M
2
Pl(Ω

2)′2

Ω4 =
√

1 + (ξ + 6ξ2)h2/M2
Pl

(1 + ξh2/M2
Pl)

2
,

(39)
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here the apostrophe represents the derivative with respect to
h. It is important to pay attention that h does not change after
the conformal transformation, the redefinition (39) is just a
way to recover the standard form of the slow-roll action,

SE =
∫

d4x
√−g̃

[
−M2

Pl

2
R̃ + g̃μν

∂μχ∂νχ

2
− V (χ)

]
.

(40)

Where the potential described in terms of χ , V (χ) =
V (h)/Ω4, leads to a change of the Friedman equation that
can be written as

H2 = 1

3M2
Pl

V (h)

(1 + ξh2/M2
Pl)

2
. (41)

On the other hand, equation (39) can be integrated, resulting
in (see [47])

χ(h) = h

u

√
1 + 6ξ sinh−1

(√
1 + 6ξ u

)

− h

u

√
6ξ sinh−1

(√
6ξ

u√
1 + u2

)
,

(42)

with u = √
ξh/MPl .

Since HI is built under the requirement ξ 
 1, if the
non-minimal coupling is chosen to be in the range 1 � ξ �
M2

Pl/v
2 then Eq. (42) corresponds to the conformal transfor-

mation Ω2 = e2χ/
√

6MPl . Thus, the potential V (χ) is given
by

V (χ) = V0

(
1 − e

− 2χ√
6MPl

)2

, (43)

with V0 = λM4
Pl/4ξ2. Note that the potential (43) is expo-

nentially flat for large values of χ , which enables to reproduce
an evolution analogously to standard slow-roll inflation in
Einstein frame. Therefore, the Friedmann equation presents
the form

H2 � 1

3M2
Pl

V (χ) � λM2
Pl

12ξ2 , (44)

where it was assumed χ 
 √
3/2 MPl .

Furthermore, it has been shown (see, e.g., [48–50]) that HI
is also in agreement with the most recent estimates obtained
through the WMAP and Planck satellites from the cosmic
microwave background (CMB) radiation. In particular, CMB
normalization requires ξ � 50,000

√
λ. Moreover, as dis-

cussed by [49], for ξ ∼ 103, HI is a graceful way to relax to
the standard model vacuum.

In [7], they establish a link between LQC and MG. Mean-
while, the works [10] and [11] open the possibility to explore
MG with the Higgs mechanism. Here, we intend to close
this triangle by using MG as the bridge between Effective
LQC and HI. We are going to emphasize the intermediary
character of the mimetic approach as the one capable of

mimicking Effective LQC dynamics besides incorporating
the matter-curvature relation from HI. In other words, we
intend to answer the following questions: (a) Could curva-
ture mimetic gravity be used to describe the same evolution
that HI provides? (b) Are the energy scales of LQC, within
MG framework, compatible with the energy scales of HI? (c)
If we get affirmative answers to the two previous questions,
what form should the curvature potential take?

First of all, considering the equivalence between these two
approaches, we can match (12) with (44) which will result in

ρc � λM4
Pl

ξ2 , (45)

that is, we can map the behavior of Vk(ϕ) − ka−2 to mimic
the inflationary phase. In terms of energy scale, the infla-
tion occurs in the interval 0 � ρeff/ρc ≤ 1/2, thus, (45)
represents the equality at the onset of inflation.

Due to its structural construction, we are considering MG
as a LQC description in the Einstein frame. For χend �
0.94MPl , the potential V (χ) represented in (43) reduces
nearly seventy percent of its initial value. Hence, instead of
V (χ) ≈ V0 we will compute the Friedmann equation with
V (χ) ≈ 0.287 V0 and compare it to

H2 � ρeff

3M2
Pl

≈ 1

3M2
Pl

[
ρkin + 3M2

PlVk(ϕ)
]
, (46)

once the quantum gravitational effects should be negligible
at this point. As a result, the effective energy density for this
period will be determined by

ρeff

3M2
Pl

≈ 0.024
λM2

Pl

ξ2 . (47)

After, we plug (45) in (47) and obtain

ρeff ≈ 0.072
λM4

Pl

ξ2 = 0.072ρc, (48)

which is in agreement with the LQC requirement of ρeff �
ρc in order to recover the classical FRW evolution at the end
of the inflationary period.

It is important to note that in [10] was obtained a massive
graviton through a Brout–Englert–Higgs (BEH) mechanism
in which one of the four scalar fields used was the mimetic
gravity field. Notwithstanding this procedure was performed
to avoid the appearance of a ghost mode. Note that there is
a straight relation between the mimetic field and the Higgs
field once BEH is involved. Further, it was also highlighted
the strong coupling of the mimetic field with the graviton in
scales close to the Planck one, which means a non-minimal
coupling between matter and curvature as well as we have
been exploring along this work.

On the other hand, the relationships derived above show
that it is possible to describe the primordial universe evo-
lution in a unified LQC-HI scenario using as a connection
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Fig. 1 The evolution of ρeff/ρc obtained from MG as a function of the
normalized field χ . These solutions satisfy Eq. (49). Note that the black
line curve does not correspond to a physically consistent solution. The
vertical green line indicates the end of the inflationary epoch (χend �
0.94MPl )

the MG formalism. In this case, the inflationary Higgs field
could be ‘mimicked’ from the curvature potential. For that
reason, the answers to questions (a) and (b) placed above
are ‘yes’ to both. To answer the question (c), we should first
establish the relation with HI. Note that to exist a perfect
mapping between the curvature potential and V (χ) during
the inflationary phase, the equation

ρ2
eff − ρeffρc + V (χ)ρc = 0 (49)

it must be satisfied as a tracking condition. To put it another
way, since the relation (49) comes from the equality between
(30) and (44), it corresponds to a requirement of the ‘valid-
ity of the mimicry’ of the HI scenario through the curva-
ture potential of the MG. Note that Vk(ϕ) can be adjusted
to allow satisfying equation (49) throughout an inflationary
phase characterized by V (χ), while controlling ρeff to be
within the usual LQC values.

Because (49) is a second-degree equation, it has two solu-
tions whose evolution regarding χ is presented in Fig. 1.
The physical solution is in red. Meanwhile, the black line
describes the non-physical evolution in which the effec-
tive potential is growing as the value of χ decreases. Once
the relation ρeff/ρc versus χ is obtained, it is possible to
see how the mimetic potential must behave to produce a
dynamic similar to that produced by V (χ).The vertical green
line corresponds to the end of inflationary epoch defined at
χend � 0.94MPl .

Figure 2 exposes the mimetic character of Vk(ϕ) − ka−2

regarding the behavior of the Hubble parameter given by
HI. The evolution of the potential V (χ) as a function of the
Higgs field (χ ) is presented in the y1–x1 axes (in red). The
behavior that the mimetic potential must have to produce the

 0
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ρeff / ρc

V(χ)

[Vk − k/a2]

Fig. 2 The evolution of HI potential and MG curvature potential. The
behavior ofVk(ϕ)−ka−2 mimics the same dynamics, represented by the
evolution of the Hubble parameter, as that obtained by the HI scenario.
The evolution of potential V (χ) as a function of the field χ is presented
in the y1x1 axes (in red). The axes y2x2 (in blue) show the evolution of
Vk(ϕ)− ka−2 as a function of ρeff/ρc. The vertical green line indicates
χend � 0.94MPl which represents the end of the inflationary era within
the HI approach (see, for example, [41,43]). See that χend � 0.94MPl
corresponds to ρeff/ρc ≈ 0.072, value that is in agreement with the
LQC requirements for the end of inflation (see, for example, [16])

same H(t) function of the HI scenario is presented in x2–
y2 axes (in blue). The dynamic evolution of the universe is
the same in both cases so that Vk(ϕ) − ka−2 can adequately
mimic the HI scenario. During the Higgs phase, the scale
factor of the universe grows by a number of e-folds N � 60
([50]). Therefore, the term k/a2 is diluted and naturally the
mimetic potential Vk(ϕ) → V (χ) after the end of inflation.

3.3 Possible relations between matter and curvature in the
mimetic gravity representation of loop quantum
cosmology

In standard LQC, the relation between matter and curvature is
not directly explored, once the sectors are linked but they are
not analyzed together as a pair. Since holonomy corrections
arise with the area discretization of space-time in area gaps
Δ due to the discrete curvature of Ashtekar connection, the
changes affect only the gravitational part of the Hamiltonian.
A similar statement can be applied regarding the scalar field
whose possible self-interaction may not influence the gravi-
tational sector at all [13]. Therefore, in [13], they concluded
that the evolution during quantum regime is not affected by
the introduction of curvature.

Here, we will demonstrate the fundamental role played
by the curvature as an essential dynamic element of the MG
description of LQC. Considering the definition (29), we are
going to show that depending on how the energy density
is interpreted, the results can change considerably. Once,
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despite ρeff being the one to follow the LQC energy range
evolution, it may or may not be the amount chosen to satisfy
the continuity equation (11). To clarify this, it is important
to have in mind that (11) refers to the matter content. How-
ever, we need to specify what amount is playing this role,
once assuming only the kinetic term from the start will not
have any potential term to drive inflation later. Below, the
first case exposed is a straight analogy with the definition
(6), nevertheless, instead of V (ϕ), we have Vk(ϕ) as the mat-
ter component in the total energy density. In the second case,
we use ρeff directly, assuming also the curvature term ka−2

related to universe geometry as part of the total energy den-
sity. In Appendix A we provide more details about the validity
of the usual continuity equation considering terms related to
the curvature.

3.3.1 Case I: Vk(ϕ) as the effective matter potential term in
the matter energy density

First of all, we define a new variable ρ as

ρ = ρkin + 3M2
PlVk(ϕ) (50)

from which the Effective Friedmann equation (27) can be
written in the form

H2 = 8πG

3

[
ρ − 3M2

Pl
k

a2

] {
1 − 1

ρc

[
ρ − 3M2

Pl
k

a2

]}
.

(51)

Here, ρ represents the total matter energy density. We
are considering that the curvature mimetic potential term
3M2

PlVk(ϕ) mimics the dynamics of the matter field poten-
tial. Therefore, ρ must satisfy the continuity equation (11).
After, we repeat the process presented in Sect. 2.1 for (51)
which results in

Ḣ = −4πG

3

[
3ρ(1 + w) − 6M2

Pl
k

a2

]
[

1 − 2

ρc

(
ρ − 3M2

Pl
k

a2

)]
. (52)

Then we sum (51) with (52), obtaining the expression

Ḣ + H2 = 4πG

3

{
ρ(−1 − 3w)

− 2

ρc

(
ρ − 3M2

Pl
k

a2

)[
ρ(−2 − 3w) + 3M2

Pl
k

a2

]}
.

(53)

Finally, from (29) and (50) we can also write (53) as

Ḣ + H2 = 4πG

3

{
ρ(−1 − 3w)

− 2ρeff

ρc

[
ρ(−2 − 3w) + 3M2

Pl
k

a2

]}
. (54)

Despite the fact that the works [7] and [13] considered dif-
ferent versions of the LQC Hamiltonian to describe a curved
FRW space-time, they could provide similar expressions.
Indeed, from effective Friedmann equation [13]

H2 :=
[

ṗ

2p

]2

= 8πG

3

1

ρc
[ρ − ρ1(p)] [ρ2(p) − ρ] , (55)

if we replace the approximations ρ1(p) ≈ 3/(8πGa2) and
ρ2(p) ≈ ρc+3/(8πGa2) by its analog amounts considering
(26), ρ1 = 3M2

Plk/a
2 and ρ2 = ρc + 3M2

Plk/a
2, assuming

again (50) as matter energy density, we are going to recover
(51). Further, the Eq. (52) can be seen as a simplified version
of its analog expression obtained in [13], whose expression
contains more terms and includes all respective terms from
(52), except for 6M2

Plka
−2.

Thus, if we consider MG as a skillful tool to deal with
the dynamics involved with the LQC, it is possible to re-
analyze different scenarios presented in the literature, within
the scope of the LQC, obtaining their results by means of a
mimetic potential.

As previously stated, the conceptual elegance of LQG
does not come only from the way it constructs a quantum the-
ory of gravity from general relativity and quantum mechan-
ics, but also from the simplicity of considering that the uni-
verse was initially composed only of quantum fields. How-
ever, these fields do not live in space-time, they live on one
another so that the space-time that we perceive today it is
a blurred and approximate image of one of these fields: the
gravitational field. These aspects can be assessed in some way
through the mimetic formalism if we consider it as a tool that,
through the mimetic potential, allows to explore the quantum
effects on the dynamics of the primeval universe.

3.3.2 Case II: Vk(ϕ) − ka−2 as part of the total matter
energy density

In this case, the matter energy density corresponds to equa-
tion (29). Therefore, the term 3M2

Pl [Vk(ϕ) − ka−2] is the
one that describes the behavior of the matter potential. As we
maintain the structure presented in (29), the effective Fried-
mann equation is given by (30). With this in mind, the pro-
cedure is similar to the one performed in Sect. 2.1, however,
ρeff becomes the variable that needs to obey the continuity
equation,

ρ̇eff + 3H(Peff + ρeff) = 0, (56)

and also the state equation Peff = wρeff . As a result, the time
derivative of H is

Ḣ = −4πG

3
ρeff

[
3(1 + w)

(
1 − 2ρeff

ρc

)]
. (57)

An interesting aspect of this equation is that the super-
inflation regime will only depend on ρeff , in particular, within
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the range ρc/2 < ρeff < ρc. See that ρeff has two com-
ponents according to Eq. (29) that are ρkin and the curva-
ture mimetic potential. However, in this interval, the super-
inflation evolution can happen for any value w > −1, with
Ḣ > 0. These values cover a wide range of possible fields (or
combination of fields), since some Galileon fields (w > 1),
scalar fields without potential (w = 1), dust-like behavior
(w = 0), until fields with w � −1, similar to the cosmolog-
ical constant. Thus, to some extent, the super-inflation phase
lies in range ρc/2 < ρeff < ρc for the MG description of
LQC as well as the usual LQC.

On the other hand, from the sum of (30) with (57), we
have

Ḣ + H2 = 4πG

3
ρeff

[
−3w − 1 + 2ρeff

ρc
(2 + 3w)

]
. (58)

The standard inflation occurs when ä > 0 which is equiv-
alent to Ḣ + H2 > 0. When ρeff = ρc/2 we have Ḣ = 0
that set the end of the superinflationary phase (or transition
time). In the interval 0 < ρeff < ρc/2 we have Ḣ < 0 and
Ḣ + H2 > 0 and so the universe lies in the normal inflation-
ary phase.

Through Eq. (58) it is possible to verify that inflation
occurs if the condition

3w + 1 <
2ρeff

ρc
(2 + 3w) (59)

is respected. As pointed by [12], in usual LQC, even fields
with non-negative constant state parameters are capable of
driving the universe to an inflationary phase, for example,
radiation can satisfy the condition given by Eq. (59). How-
ever, in our case, the main regulator of inflation is the mimetic
potential embedded in ρeff . That is, the phase called normal
inflation is dominated by the mimetic potential term. If it has
the form given in Fig. 2, then the value of w will be adjusted
to that specific field causing inflation to occur in the usual
way.

Another point to note is that (54) and (58) are identical
for k = 0. Further, despite Eqs. (14) and (58) share the same
structure, the later contains a richer physics to be explored.
With the effective energy density, the original form of the
equations of motion related to the flat case is recovered. How-
ever, the curvature is intrinsically intricate as a fundamental
element to describe the MG version of Effective LQC.

4 Final remarks

Recently, [7] presented an interesting formulation of mimetic
gravity under fundamental aspects of loop quantum cosmol-
ogy. One of their contributions was the introduction of a
mimetic curvature potential that preserves all the healthy
properties of LQC. In this work, we discuss alternative ways

of using this mimetic potential. At first, we demonstrate that
the mimetic potential can produce the same dynamics of
the so-called Higgs inflation field. The energy scales of HI
scenario are properly mimicked and connected to the LQC
energy scales during inflation.

In a second moment, we evaluate what should be the form
of the effective mimetic potential (Vk(ϕ)− k/a2) to produce
the identical evolution as HI does. Next, we show possible
scenarios that may emerge from the relationship between
matter and curvature potential within MG framework, results
similar to those derived by other authors within the scope of
the LQC.

It is important to mention that a recent paper [51] ana-
lyzes the cosmology of the primordial universe through the
Standard Model of Particle Physics perspective. The authors
present a bounce model with the standard Higgs boson whose
contraction phase is characterized by an EoS with w > 1.
At the bounce, w reaches large negative values (w � −1),
followed by an inflationary phase for w = −1 with nearly 60
e-folds, the same number of e-folds of the HI studied here.

The MG representation offers a simpler alternative sce-
nario for the bounce phase since it preserves all the healthy
properties of the usual LQC. On the other hand, the origi-
nal formulation of MG provided an interesting alternative to
evaluate the dark matter content of the universe, since the
dark components are treated as geometric effects [20].

Our main motivation for exploring MG’s curvature poten-
tial is that it does not introduce major modifications to
the usual LQC structure, as discussed above. Just like the
mimetic dark matter-gravity model can be considered a min-
imal extension of GR [25]. Moreover, within certain limits,
it reproduces the formulation studied by [12] (k = 0) and
the scenario presented in [13] (k = 1) depending on how the
mimetic potential is considered in the dynamical equations.
This is in agreement with the statement already related to
usual mimetic gravity that discourses about obtaining differ-
ent cosmological solutions through the suitable choice of the
mimetic potential (see [20] and [26] for more details).

In a certain respect, the effective mimetic potential
Vk(ϕ) − k/a2 can be grouped in different ways into the
LQC equation, somewhat similar to the cosmological con-
stant originally introduced by Einstein on the geometric side
of the general relativity field equations and reinterpreted in
the 1980s as a fluid (and therefore moved to the side of the
energy-momentum tensor) able to produce the current accel-
eration of the universe.
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Appendix A: Energy density conservation

In Sects. 3.3.1 and 3.3.2 , we state that the usual conservation
equation given by (11) holds with the presence of mimetic
curvature potential. In order to justify this assertion, let us
define a new variable Veff named MG effective curvature
potential in the form

Veff = 3M2
Pl [Vk(ϕ) − ka−2], (A.1)

where Veff represents the mimetic potential for the case stud-
ied in Sect. 3.3.2. In this way, we can rewrite (29) as

ρeff = ρkin + Veff . (A.2)

Next, we plug (A.2) into (56) and obtain the expression

ρ̇kin + 3H(1 + w)ρkin + [V̇eff + 3H(1 + w)Veff ] = 0.

(A.3)

The first possibility for the left-hand side of Eq. (A.3) to be
equal to zero, preserving equality, is that the variables ρkin

and Veff ‘work together’ like in the usual energy density for
an ordinary scalar field since it obeys the continuity equation.
From Fig. 2, we show that Veff reproduces the behavior of
matter potential V (χ). Therefore, it is reasonable to consider
that Veff continues to reflect this behavior along the field
primordial evolution.

The second possibility for satisfying (A.3) is to consider
that

ρ̇kin + 3H(1 + w)ρkin = 0, (A.4)

which implies the following condition for the evolution of
the mimetic potential,

V̇eff + 3H(1 + w)Veff = 0. (A.5)

Using (A.1) in (A.5), it is possible to obtain

V̇k(ϕ) + 3H(1 + w)Vk(ϕ) − (1 + 3w)H
k

a2 = 0. (A.6)

Note that if the Eq. (A.6) is satisfied, then the continuity
equation expressed in (56) will be preserved.

For the case Sect. 3.3.1 the same analysis can be applied,
so that the continuity equation (11) is preserved for the same

condition expressed in (A.5). The only difference is that we
have Veff = 3M2

PlVk(ϕ), since the curvature from the term
ka−2 is considered separately. Thus, the evolution equation
for the mimetic potential becomes

V̇k(ϕ) + 3H(1 + w)Vk(ϕ) = 0. (A.7)

With conditions (A.6) and (A.7) satisfied respectively for
cases Sects. 3.3.1 and 3.3.2 , we preserve the usual con-
tinuity equation. For this second possibility, observe that if
w = −1/3, then the continuity equation and the acceleration
equation for both Case I and Case II will be identical without
considering k = 0. Moreover, w = −1/3 is in agreement
with LQC requirements Ḣ < 0, Ḣ + H2 > 0 and (59) for
the inflationary phase, as it was mentioned in Sect. 3.3.2.

It is important to note, as discussed by [52], that the slow-
roll phase during inflation is satisfied for w < −1/3. Addi-
tionally, w should have values � −1/3 for inflation to come
to an end. At this point, there follows a reheating phase where
w changes from −1/3 to some value within the range [0, 1/3]
if the inflationary phase was governed by the HI mechanism
(see [53]).

Thus, if w varies with the scale factor, the conditions
expressed in (A.6) and (A.7) should be changed in accor-
dance with the evolution of w. This is a feature that the intro-
duction of mimetic curvature potential can bring to the usual
formulation of LQC.
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