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Abstract We consider spatially homogeneous and isotropic
cosmologies with non-vanishing torsion, which assumes a
specific form due to the high symmetry of these universes.
Using covariant and metric-based techniques, we derive the
torsional versions of the continuity, the Friedmann and the
Raychaudhuri equations. These show how torsion can dras-
tically change the standard evolution of the Friedmann mod-
els, by playing the role of the spatial curvature or that of
the cosmological constant. We find, for example, that tor-
sion alone can lead to exponential expansion and thus make
the Einstein–de Sitter universe look like the de Sitter cos-
mos. Also, by modifying the expansion rate of the early uni-
verse, torsion could have affected the primordial abundance
of helium-4. We show, in particular, that torsion can reduce
the production of primordial helium-4, unlike other changes
to the standard thermal history of the universe. These theoret-
ical results allow us to impose strong observational bounds
on the relative strength of the associated torsion field, con-
fining its ratio to the Hubble rate within the narrow interval
(− 0.005813, + 0.019370) around zero. Finally, turning to
static spacetimes, we demonstrate that there exist torsional
analogues of the Einstein static universe with all three types
of spatial geometry. These models can be stable when the
torsion field and the universe’s spatial curvature have the
appropriate profiles.

1 Introduction

General relativity advocates a geometrical interpretation of
gravity, which ceases being a force and becomes a mani-
festation of the non-Euclidean geometry of the host space-
time. The theory is founded on the assumption of Rieman-
nian geometry, where deviations from Euclidean flatness are
described by the symmetric Levi–Civita connection, namely

a e-mail: tsagas@astro.auth.gr

by the Christoffel symbols. Nevertheless, there is no funda-
mental theoretical reason, apart perhaps from simplicity, for
making such an assumption. Allowing for a general asym-
metric affine connection introduces spacetime torsion and
therefore new geometrical degrees of freedom into the sys-
tem, since there is now an independent torsional field in
addition to the metric. The literature contains a number of
suggestions for experimentally testing gravitational theories
with non-zero torsion (see [1–7] for a representative though
incomplete list). As yet, however, there is no experimental
or observational evidence to support the existence of space-
time torsion. The main reason is that, typically, the effects of
torsion start becoming appreciable at extremely high energy
densities. These densities can be achieved only in the deep
interior of compact objects, like neutron stars and black holes,
or during the very early stages of the universe’s expansion.
Such environments are still beyond our experimental capa-
bilities.

Torsion does not naturally fit into highly symmetric space-
times, like the Friedmann–Robertson–Walker (FRW) models
of standard cosmology. Given the spatial homogeneity and
isotropy of the latter, the allowed torsion field must satisfy a
specific profile [8], which falls into the class of the so-called
vectorial torsion fields [9–11]. Practically speaking, space-
time torsion and the associated matter spin are fully deter-
mined by a scalar function that depends only on time. Such
choices allow us to construct and study the torsional ana-
logues of the classic Friedmann universes. In the process we
show that, despite the presence of torsion, the high symmetry
of the FRW host preserves the symmetry of the associated
Ricci curvature tensor, which implies that the correspond-
ing Einstein and energy-momentum tensors are symmetric
as well. Then, using both 1+3 covariant and metric-based
techniques, we present the three key formulae monitoring
the evolution of these models, namely the analogues of the
Friedmann, the Raychaudhuri, and the continuity equations.
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These enable us to “quantify” the torsion input to the total
effective energy density of the system, by means of an associ-
ated Ω-parameter, as well as its contribution to the kinematic
variables of the cosmological models in question, namely to
the Hubble and to the deceleration parameters.

Phenomenologically speaking, torsion can play the role
of spatial curvature and reproduce the effects of a cosmo-
logical constant, or those of dark energy. As a result, tor-
sional cosmologies (with or without matter) can experience
accelerated expansion. We find, in particular, that torsion
can force the Milne and the Einstein–de Sitter universes
into a phase of accelerated expansion analogous to that of
their de Sitter counterpart. These examples suggest that a
torsion-dominated early universe, or a dust-dominated late-
time cosmos with torsion, could go through a phase of accel-
erated expansion without the need of a cosmological con-
stant, the inflaton field, or dark energy. Analogous effects
were reported in [12–16], suggesting that torsional cosmolo-
gies might deserve further scrutiny.

Looking for observational signatures of torsion, we find
that the latter can affect the outcome of primordial nucle-
osynthesis, since it changes the expansion rate of the uni-
verse. This can be used to put observational constraints on
the allowed torsion fields. Here, we are able to calculate the
torsion effect on the amount of helium-4 produced during
primordial nucleosynthesis. Combining our theoretical result
with the currently allowed range of the primordial helium-4
abundance, leads to a very strong constraint on the strength of
the associated torsion field. In particular, the relative torsion
contribution to the volume expansion of the universe is found
to lie within the narrow interval (− 0.005813, + 0.019370)
around zero.

Finally, we turn our attention to static spacetimes with
torsion. In particular, we study the structure of the torsional
analogue of the Einstein-static universe and investigate its
linear stability. We find that there exist static models with all
three types of spatial geometry, that is Euclidean, spherical or
hyperbolic. Our last step is to use standard perturbative tech-
niques to test the linear stability of these new spacetimes. We
show that static solutions with positive curvature are unsta-
ble, while those with zero or negative 3-curvature can achieve
stable configurations.

2 Spacetimes with torsion

Riemannian geometry demands the symmetry of the affine
connection, thus ensuring torsion-free spaces. Nevertheless,
by treating torsion as an independent geometrical field, in
addition to the metric, one extends the possibilities to the
so-called Riemann–Cartan spaces.

2.1 Torsion and contortion

The torsion tensor (Sabc) of a general spacetime coincides
with the antisymmetric component of the affine connection,
namely Sabc = Γ a [bc]. Imposing the familiar metricity con-
dition, that is demanding that the metric tensor is covariantly
constant (i.e. ∇cgab = 0), splits a generalised (asymmetric)
connection as Γ a

bc = Γ̃ a
bc + Ka

bc. Here, Γ̃ a
bc defines the

Christoffel symbols and Ka
bc is the contortion tensor given

by1

Kabc = Sabc + Sbca + Scba = Sabc + 2S(bc)a, (1)

with Kabc = K[ab]c. From the geometrical point of view,
torsion prevents infinitesimal parallelograms from closing
(e.g. see [18,19]). Physically, torsion provides a link between
the intrinsic angular momentum (i.e. the spin) of the matter
and the geometry of the host spacetime.

The antisymmetry of Sabc guarantees that it has only one
non-trivial contraction, leading to the torsion vector

Sa = Sbab = −Sbba . (2)

As we will see later, the torsion vector becomes the sole
carrier of the torsion effects in spatially homogeneous and
isotropic spacetimes. Following (1), there is only one inde-
pendent contraction of the contortion tensor as well. In par-
ticular, we have Kb

ab = 2Sa = −Kab
b with Kb

ba = 0.

2.2 Field equations and Bianchi identities

In spacetimes with non-zero torsion, matter and curvature
are coupled together by means of the Einstein–Cartan field
equations, namely

Rab − 1

2
Rgab = κTab − Λgab, (3)

where Rab is the Ricci tensor, R = Ra
a is the associated

scalar and Tab is the energy-momentum tensor of the matter.
Note that R = 4Λ − κT , where T = T a

a and κ = 8πG.
Although expression (3) is formally identical to its general
relativistic counterpart, here both Rab and Tab are generally
asymmetric (i.e. R[ab] �= 0 and T[ab] �= 0) due to the presence
of torsion. The latter is typically coupled to the spin of the
matter via the Cartan field equations

Sabc = −1

4
κ (2sbca + gcasb − gabsc) , (4)

1 In the literature the definitions of the torsion and the contortion ten-
sors vary. In this study, we have adopted the conventions of [17], which
follow those of [12,13], though in the latter the metric signature is
(+,−,−,−). Also note that the tildas will always indicate purely Rie-
mannian (torsion free) variables.
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with sabc = s[ab]c and sa = sbab being the spin tensor and the
spin vector respectively. The trace of (4) gives Sa = −κsa/4,
relating the torsion and the spin vectors directly.

In the presence of torsion, the Bianchi identities acquire
a non-zero right-hand side, when compared to their Rieman-
nian analogues. More specifically, we have

∇[e Rab
cd] = 2Rab

f [eS f
cd] (5)

and

Ra [bcd] = −2∇[bSacd] + 4Sae[bSecd], (6)

where Rabcd is the curvature tensor (with Rabcd = R[ab][cd]
only). Contracting the Bianchi identities twice leads to

∇bGba = 2RbcS
cb

a + Rbcda S
dcb (7)

and

G[ab] = 2∇[a Sb] + ∇cScab − 2ScScab, (8)

respectively. Note that Gab = Rab − (R/2)gab is the tor-
sional analogue of the Einstein tensor (with G[ab] �= 0 – see
Eq. (8)). Also, condition (7) ensures that the general relativis-
tic conservation law ∇bGab = 0 does not generally hold in
the presence of torsion. Finally, taking the divergence of (8),
we arrive at

∇bGab = ∇bGba − 2
(
∇2Sa − ∇b∇a Sb + ∇b∇cScba

)

− 4∇b (
ScScab

)
. (9)

2.3 Kinematics

Introducing a timelike 4-velocity field ua (so that uaua =
− 1) facilitates an 1+3 decomposition of the host spacetime
into time and 3-dimensional space (e.g. see [20,21]). In par-
ticular, the metric tensor splits as gab = hab − uaub, where
hab is the symmetric and orthogonal to ua projection tensor
(i.e. hab = h(ab), habub = 0 and haa = 3). The kinematics
of the aforementioned 4-velocity field are decoded by split-
ting its covariant gradient as

∇bua = 1

3
Θhab + σab + ωab − Aaub. (10)

Here, Θ = Daua is the volume scalar, σab = D〈bua〉 and
ωab = D[bua] are respectively the shear and the vorticity
tensors, while Aa = u̇a is the 4-acceleration vector.2 The
volume scalar monitors the convergence/divergence of the

2 Overdots indicate temporal derivatives (along the timelike ua-field).
For instance Aa = u̇a = ub∇bua by definition. Spatial derivatives
(orthogonal to ua), on the other hand, are denoted by the covari-
ant operator Da = hab∇b. Therefore, Θ = Daua = hab∇bua ,
σab = D〈bua〉 = h〈bdha〉c∇duc, etc [20,21]. Also, round brackets
denote symmetrisation and square antisymmetrisation, while angled
ones indicate the symmetric and trace-free part of second rank tensors
(e.g. σab = D〈bua〉 = D(bua) − (Dcuc/3)hab by construction).

worldlines tangent to the ua-field, while the shear and the
vorticity describe kinematic anisotropies and rotation respec-
tively. Finally, non-zero 4-acceleration implies that the afore-
mentioned worldlines are not autoparallel curves.

The rate of convergence/divergence of a worldline con-
gruence is governed by the Raychaudhuri equation. In the
presence of torsion, the latter reads [17,22]

Θ̇ = −1

3
Θ2 − R(ab)u

aub − 2
(
σ 2 − ω2

)
+ Da A

a + Aa A
a

+ 2

3
ΘSau

a − 2S(ab)cu
aub Ac − 2S〈ab〉cσ abuc

+ 2S[ab]cωabuc, (11)

with only the symmetric part of the (generally asymmetric)
Ricci tensor contributing to the right-hand side. Analogous
propagation formulae monitor the shear and the vorticity,
supplemented by three constraints relating the gradients of
the kinematic variables [17].

3 FRW-like models with torsion

Spatially homogeneous and isotropic, Friedmann-like, space-
times cannot naturally accommodate any arbitrary form of
torsion. In what follows, we will investigate the implications
of such highly symmetric torsion fields for the evolution of
the cosmological spacetime.

3.1 The torsion field

Consider an FRW-type spacetime with non-zero torsion and
a family of observers living along a timelike congruence tan-
gent to the 4-velocity field ua , (as defined in the previous
section). The homogeneity and isotropy of the 3-dimensional
rest-space of these observers, is preserved when the torsion
tensor takes the form [8]

Sabc = 2φ ha[buc]. (12)

Due to the homogeneity of the 3-space, φ is a scalar function
of time only (i.e. φ = φ(t)). This torsion field also respects
spatial isotropy, since the associated vector

Sa = −3φua, with

{
φ > 0 ⇔ Sa ↓↑ ua
φ < 0 ⇔ Sa ↑↑ ua,

(13)

is purely timelike (see also [17]). Therefore, the sign of φ

fixes the relative orientation of the torsion and the 4-velocity
vectors (and vice versa). In particular, Sa is future-directed
for negative φ, while in the opposite case the torsion vector
becomes past-directed. Finally, relations (1) and (12) give
Kabc = 4φ u[ahb]c, which is the allowed form of the contor-
tion tensor in FRW-like universes. Then, Kb

ab = −6φua =
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2Sa = −Kab
b and Kb

ba = 0 as expected (see Sect. 2.1
previously).

Using the Cartan field equations (see (4) in Sect. 2.2), one
can recast (12) and (13) into the following expressions

κsabc = 8φhc[aub] and κsa = 12φua, (14)

for the spin tensor and the spin vector respectively. These
then combine with Eqs. (12) and (13) to guarantee that

Sabc = −1

4
κscba and Sa = −1

4
κsa . (15)

One could use the above to replace torsion with spin in our
formulae. Nevertheless, given that the two fields are simply
proportional to each other, we will focus on torsion rather
than spin.

3.2 Conservation laws

Applying relations (12) and (13) to the second of the twice-
contracted Bianchi identities (see Eq. (8) in Sect. 2.2), it is
straightforward to show that the right-hand side of the lat-
ter relation vanishes. This ensures that G[ab] = 0, which
in turn guarantees that R[ab] = 0 and T[ab] = 0 as well.
Consequently, in spatially homogeneous and isotropic space-
times, the Ricci and the energy-momentum tensors retain
their familiar (Riemannian) symmetry despite the presence
of torsion.3

Introducing our form of torsion to the Einstein–Cartan
field equations and using the first of the twice-contracted
Bianchi identities (see Eqs. (3) and (7) respectively), leads
to the constraint

∇bTab = −4φ
(
Tabu

b − κ−1Λua
)

, (16)

with the right-hand side vanishing for zero torsion. The high
symmetry of the host spacetime demands that matter is a
perfect fluid with Tab = ρuaub + phab, where ρ and p are
its energy density and isotropic pressure respectively. Then,
starting from (16), we obtain

ρ̇ = −Θ (ρ + p) + 4φ
(
ρ + κ−1Λ

)
, (17)

namely the continuity equation in Friedmann-type cosmolo-
gies with non-zero torsion. Clearly, when φ = 0, the
above immediately reduces to the familiar general relativistic
energy-density conservation law.

3 In order to show the symmetry of the Ricci and energy-momentum
tensors in FRW-like models with torsion, one needs to remember that
4-velocity split (see Eq. (10) in Sect. 2.3) reduces to ∇bua = (Θ/3)hab
and that ∇aφ = −φ̇ua (since Daφ = 0 by default) in these highly
symmetric spacetimes.

3.3 The Raychaudhuri equation

Spatial homogeneity and isotropy demand that σab = 0 =
ωab = Aa . Then, applying (12) and (13) to the generalised
Raychaudhuri equation (see (11) in Sect. 2.3), the latter reads

Θ̇ = −1

3
Θ2 − 1

2
κ (ρ + 3p) + Λ + 2Θφ, (18)

having also used the Einstein–Cartan equations with perfect
fluid. Note the last term on the right-hand side of Eq. (18),
which implies that torsion assists or inhibits the expan-
sion/contraction of the timelike congruence tangent to the
ua-field, depending on the sign of φ.

The volume scalar (Θ) of a spacetime with non-zero tor-
sion and its purely Riemannian (i.e. torsionless) counterpart
(Θ̃) are related by [17]

Θ = Θ̃ + Ka
bau

b, (19)

where Kb
ab = −6φua (see Sect. 3.1). Consequently, the

above relation simplifies to

Θ = Θ̃ + 6φ = 3

(
ȧ

a

)
+ 6φ = 3H

(
1 + 2

φ

H

)
. (20)

Here, ȧ/a = Θ̃/3 = H defines the cosmological scale fac-
tor (a = a(t)) both in torsional and in torsion-free Fried-
mannian cosmologies, with H being the associated Hubble
parameter.4 According to (20), the divergence/convergence
of worldlines in FRW-type cosmologies with torsion is not
solely determined by the scale-factor evolution. Substituting
(20) into Eq. (18), we obtain

ä

a
= −1

6
κ (ρ + 3p) + 1

3
Λ − 2φ̇ − 2

(
ȧ

a

)
φ. (21)

The latter provides an alternative expression of the Ray-
chaudhuri equation in FRW-type cosmologies with non-zero
torsion, this time in terms of the model’s scale factor.

3.4 The Friedmann equations

Treating the torsion and the metric independently, means that
the line element of the spacetime is identical to its Rieman-
nian counterpart. Therefore, in an FRW-type cosmology, we
have

ds2 = − dt2 + a2dr2

1 − Kr2 + a2r2dϑ2

+ a2r2 sin2 ϑdϕ2,

(22)

with K = 0,±1 being the 3-curvature index. The above
metric, together with Eq. (12) and the metricity condition
(i.e. ∇cgab = 0), provides the components of the generalized

4 Following (20), the dimensionless ratio φ/H measures the “relative
strength”of the torsion effects.
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connection (see Appendix A). To obtain the Ricci tensor and
subsequently the Ricci scalar, we recall that

Rab = −∂bΓ
c
ac + ∂cΓ

c
ab − Γ e

acΓ
c
eb + Γ e

abΓ
c
ec (23)

and employ a lengthy calculation (see Appendices A, B for
the details). Finally, assuming a perfect fluid and involving
the Einstein–Cartan field equations, we arrive at
(
ȧ

a

)2

= 1

3
κρ − K

a2 + 1

3
Λ − 4φ2 − 4

(
ȧ

a

)
φ (24)

and

ä

a
= −1

6
κ (ρ + 3p) + 1

3
Λ − 2φ̇ − 2

(
ȧ

a

)
φ. (25)

These are the torsional analogues of the Friedmann equa-
tions, obtained here by means of metric-based techniques.
Note that the last expression is identical to Eq. (21), obtained
via covariant methods. Additional agreement comes by
showing that the continuity equation obtained from Eqs. (24)
and (25) is identical to the one derived earlier (see relation
(17) in Sect. 3.2).

Following (24), torsion contributes to the total effective
energy-density of the system. More specifically, the torsional
analogue of the Friedmann equation recasts as

1 = Ωρ + ΩK + ΩΛ + Ωφ, (26)

where Ωρ = κρ/3H2, ΩK = −K/a2H2, ΩΛ = Λ/3H2

and Ωφ = −4[1 + (φ/H)](φ/H) are the associated density
parameters. The strength of the torsion contribution, relative
to that of the matter for example, is measured by the dimen-
sionless ratio Ωφ/Ωρ . Note that the torsion input to the Fried-
mann equation vanishes when φ/H = 0,− 1. On the other
hand, torsion dominates completely when φ/H = − 1/2,
which translates into Ωφ = 1 and vice versa. In an expand-
ing universe (where H > 0), the latter can occur only for
φ < 0 (see also Eq. (24) earlier).

Since q = −äa/ȧ2 defines the deceleration parameter of
the universe, we may rewrite (25) as

qH2 = 1

6
κ(ρ + 3p) − 1

3
Λ + 2φ̇ + 2Hφ, (27)

Therefore, torsion can either assist or inhibit accelerated
expansion. When φ is constant and negative, in particular,
the presence of torsion tends to accelerate the expansion (see
also Sects. 3.5.1 and 3.5.2 below).

3.5 Characteristic solutions

The analytical solutions presented in this section are exam-
ples aiming at demonstrating the versatility of the torsion
effects upon the FRW-like host. In order to maintain the ana-
lytical nature of our treatment, as well as for reasons of math-
ematical simplicity and physical transparency, we will do so

by assuming a simple time-invariant torsion field (i.e. one
with φ = φ0 = constant).5 Nevertheless, our formalism can
be readily extended to time-varying torsion as well.

Assuming zero cosmological constant and using relation
(20), the continuity equation (see expression (17) in Sect. 3.2)
of a barotropic medium with p = wρ, reads

ρ̇

ρ
= −3(1 + w)

(
ȧ

a

)
− 2(1 + 3w)φ. (28)

When w = constant the above integrates to

ρ = ρ0

(
a

a0

)−3(1+w)

e−2(1+3w)
∫ t
t0

φdt
, (29)

with ρ0 = ρ(t = t0) and a0 = a(t = t0). Accordingly, the
torsion effect on the energy-density evolution (carried by the
exponential term on the right-hand side of the above) also
depends on the matter equation of state. The torsion con-
tribution vanishes in media with zero effective gravitational
mass/energy (i.e. when w = − 1/3). On the other hand, the
energy-density evolution becomes essentially torsion dom-
inated in the case of a vacuum stress, when w = − 1 and
ρ = ρ0exp(4

∫ t
t0

φdt). Therefore, ρ = ρ(t) due to the pres-
ence of torsion alone, implying that media with p = −ρ are
not dynamically equivalent to a cosmological constant. Such
a behaviour, which is in direct contrast with the purely general
relativistic picture, has also been encountered in scalar-tensor
theories like the Brans–Dicke theory [23–25].

3.5.1 Vacuum and torsion-dominated solutions

General relativistic empty FRW-type spacetimes with
Euclidean spatial sections and no cosmological constant are
static. The following simple example shows that torsion can
change this. Indeed, when ρ = 0 = K = Λ, the torsional
analogue of the Friedmann equation (see expression (24) in
Sect. 3.4) recasts into the perfect square (ȧ/a + 2φ)2 = 0.
The latter ensures the following relation

φ = φ(t) = −1

2

ȧ

a
, (30)

between the torsion scalar and the cosmological scale factor.
Then, the choice φ = φ0 = constant leads to ȧ/a = constant
and subsequently to the de Sitter-like expansion

a = a0e−2φ0(t−t0), (31)

when φ0 < 0. Therefore, an early universe with non-zero tor-
sion could have undergone a phase of inflationary expansion
without the need of a cosmological constant, or the presence
of an inflaton field.

5 It goes without saying that the same solutions also (approximately)
hold in the case of slowly varying torsion.
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Let us now consider a vacuum spacetime with zero cos-
mological constant, but this time allow for hyperbolic spa-
tial geometry.6 When ρ = 0 = p = Λ, K = − 1 and
φ �= 0, we obtain what one might call the torsion analogue
of the classical Milne universe. Then, Eq. (24) factorises as
(ȧ/a + 2φ + 1/a)(ȧ/a + 2φ − 1/a) = 0, giving

φ = φ(t) = −1

2

(
ȧ

a
± 1

a

)
. (32)

Setting φ = φ0 = constant on the left-hand side, the above
integrates to

a = a0e−2φ0(t−t0) ± 1

2φ0

[
e−2φ0(t−t0) ∓ 1

]
, (33)

giving exponential expansion when φ0 < 0. Therefore,
instead of the “coasting” evolution (with a = t) of its classi-
cal counterpart, the torsional Milne universe can undergo de
Sitter inflation.

Given that in empty models torsion cannot be associated
with the spin of the matter, it would have to be treated as an
independent, generic spacetime feature (the same also holds
for the curvature). Nevertheless, to first approximation, our
vacuum solutions also govern the evolution of a Friedmann-
like universe with matter, provided that torsion dominates
over the matter (i.e. for Ωφ 
 Ωρ – see Eq. (26) in Sect. 3.4).
Put another way, the solutions obtained in this section can be
seen as limiting cases of low-density FRW-type universes
with non-zero torsion.

3.5.2 Solutions with matter

We will now allow for matter terms in our equations, assum-
ing Friedmann-like universes with zero 3-curvature and no
cosmological constant. When dealing with pressure-free
matter (i.e. dust) and torsion with φ = φ0 = constant,
Eqs. (24) and (25) combine to give

ä

a
+ 1

2

(
ȧ

a

)2

+ 4φ0

(
ȧ

a

)
+ 2φ2

0 = 0. (34)

The above accepts a solution of the form a3/2 = C1e−φ0t +
C2e−3φ0t , with C1,2 being the integration constants. When
φ0 < 0 the scale factor evolves as

a = a0e−2φ0(t−t0), (35)

at late times. Note that we have made no a priori assump-
tion on the relative strength of the torsion field. Taken at face
value, this means that the mere presence of torsion could drive
the Einstein–de Sitter universe into an accelerated regime

6 Vacuum torsional spacetimes with no cosmological constant and
spherical spatial geometry do not exist in our scheme. Indeed, in such
an environment Eq. (24) recasts into (ȧ/a + 2φ)2 = − 1/a2, which is
impossible.

analogous to that of the de Sitter model. Although it seems
premature to claim that torsion can provide a viable alterna-
tive answer to the inflaton field and/or dark energy, analogous
claims have been made by [12,13].

False-vacuum cosmologies have been typically associated
with inflation, being the driving force of the exponential
expansion. In what follows, we will consider torsional FRW-
like universes with false-vacuum barotropic index w = − 1,
Euclidean spatial geometry and zero cosmological constant.
Then, on using (29), the associated Friedmann equation (see
(24) in Sect. 3.4) recasts into

H = −2φ ±
√

κρ0

3
e2

∫ t
t0

φdt
. (36)

Torsion ensures that the Hubble parameter varies in time, in
contrast to the torsionless case where H = constant. Recall-
ing that H = ȧ/a and setting φ = φ0 = constant, Eq. (36)
integrates to

a = a0 e
−2φ0(t−t0)± 1

2φ0

√
κρ0

3

[
e2φ0(t−t0)−1

]
. (37)

When φ0 < 0 the above asymptotically reduces to solution
(31) at late times. For φ0 > 0, on the other hand, the late-
time evolution of the scale factor also allows for exponential
“deflation”.7

The solutions presented in Sects. 3.5.1 and 3.5.2 are char-
acteristic of the versatile and the occasionally nontrivial
implications of the torsion field, even when the latter takes
the very restricted form imposed by the high symmetry of
the Friedmann-like host.

4 Observational bounds on cosmic torsion

The literature contains a number of proposals for observa-
tional tests of torsion, the majority of which work within the
realm of our solar system [1–7]. Here, we will attempt to put
cosmological bounds on the torsion field, by exploiting the
fact that it “gravitates” and therefore modifies the expansion
dynamics of the host universe.

4.1 Steady-state torsion

A measure of the torsion contribution to the expansion kine-
matics is given by the dimensionless ratio φ/H . Then, setting
K = 0 = Λ and λ = φ/H , the Friedmann and the continuity

7 We can also extract graduated inflation [26], by setting φ ∝ t−1.
Indeed, substituted into Eq. (24), this choice leads to

a = a0

(
t

t0

)−2φ0t0
e
±

√
κρ0 t

2
0

3(2φ0 t0+1)2

(
t
t0

)2φ0 t0+1

. (38)
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equations (see (24) and (28)) become

H2 = κρ

3(2λ + 1)2 (39)

and

ρ̇

ρ
= −[3 + 2λ + 3w(1 + 2λ)]H, (40)

respectively (with λ �= −1/2).8 The former relation shows
that torsion changes the Hubble-flow rate, which means that
it can affect physical interactions that are sensitive to the pace
of the cosmic expansion, like the Big-Bang Nucleosynthesis
(BBN) of helium-4 for example (see Sect. 4.2 next).

When the λ-ratio decays over time, the effects of torsion on
Eq. (40) fade away. In the opposite case, on the other hand, the
right-hand side of the continuity equation becomes torsion-
dominated. Here, we will take the middle path and assume
“steady-state” torsion with λ = φ/H = constant. In other
words, we will assume that the torsion input to the universal
expansion (see Eq. (20) in Sect. 3.3) does not change in time.
Then, given that H = ȧ/a, the above two relations combine
to the solution

a = a0

(
t

t0

)2/[3+2λ+3w(1+2λ)]
. (41)

Next, we will employ this result to impose cosmological
bounds on λ and on torsion itself. In doing so, we will turn
to the early universe and to the epoch of primordial nucle-
osynthesis specifically.

4.2 BBN bounds on torsion

In the early radiation era of the universe w = 1/3 and solu-
tion (41) reduces to a ∝ t1/2(1+λ), with λ �= −1. Recall
that, when λ = φ/H = −1, the torsion input to the Fried-
mann equation vanishes (see expression (26) in Sect. 3.4).
The above, together with Eq. (39), lead to the following
expression for the radiation energy density

ρ(γ ) = 3(1 + 2λ)

4κ(1 + λ)2t2 = σT 4, (42)

where σ is the black-body constant. The presence of λ means
that the temperature evolution differs from that of the stan-
dard (torsionless) Friedmann universe (with three light neu-
trino species).

The freeze-out temperature (T f r ) of the neutron-proton
kinetic equilibrium occurs when the weak interaction rate
(Γwk ∝ T 5) for the neutron-proton exchanges (n ↔ p +
e− + ν̄e, n + νe ↔ p + e− and n + e+ ↔ p + ν̄e) equals
the Hubble rate. This yields a simple analytic expression for

8 When λ = − 1/2 we have Ωφ = 1 (see Eq. (26)), corresponding to
a purely torsional (empty) FRW-like universe.

the ratio of the freeze-out temperatures between cosmolo-
gies with torsion (T f r ≡ T f r (λ �= 0)) and torsionless ones
(T̃ f r ≡ T f r (λ = 0)). In particular, we find that

T̃ f r

T f r
= (1 + 2λ)1/3. (43)

When λ > 0 torsion will reduce the freeze-out temperature.
Then, the neutron-to-proton ratio (N = n/p) will freeze-
in at lower temperatures and the residual helium-4 abun-
dance will decrease compared to that in the standard (torsion-
free) Friedmann universe. The slowing of the expansion rate
allows neutrons and protons to remain in non-relativistic
kinetic equilibrium down to lower temperatures, with fewer
neutrons per proton surviving before the equilibrium is bro-
ken at T f r .

The above torsion effect provides a very rare (if not
unique) example of a modified early-universe model with
a reduced helium-4 abundance. All other common modi-
fications (i.e. extra light neutrino species, magnetic fields,
anisotropies, Brans–Dicke fields, etc) lead to higher freeze-
out temperatures. This increases the frozen-in n/p ratio and
therefore enhances the residual abundance of helium-4. In
the presence of torsion this happens when λ < 0.

We may quantify these arguments by recalling that the
frozen-in neutron-to-proton ratio is N f r = exp(−Δ/T f r ),
where Δ measures the neutron-proton mass difference and
we have set σ = 1. Following (43), we then arrive at the
following simple relation

N f r = Ñ (1+2λ)1/3

f r , (44)

between the torsional and the torsionless freeze-in ratios. In
the standard torsion-free universe, Ñ � 1/5 at freeze-out,
but falls to Ñ � 1/7 at nucleosynthesis due to free neutron
beta-decay. This means that the residual mass fraction of
the synthesised helium-4 is Ỹ = 2Ñns/(1 + Ñns) � 0.25.
Assuming “weak”torsion with |λ| = |φ|/H < 1 and keeping
in mind that Ñns , Nns < 1, we obtain

Y = 2Nns

1 + Nns
� Nns � Ñ 1+2λ/3

ns

= Ỹ Ñ 2λ/3
ns � 0.25 × 7 −2λ/3. (45)

Recent observational evidence for the allowed range of the
primordial helium-4 abundance (extrapolated to zero metals)
yields the range 0.2409 � Y � 0.2489. Now combining the
standard zero-torsion prediction of Y � 0.24703 [27] with
the observed range in Eq. (45), leads to a strong observational
constraint on the torsion parameter:

− 0.005813 � λ � + 0.019370, (46)

which is consistent with our |φ|/H < 1 assumption.
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5 Static spacetimes with torsion

The extra degrees of freedom that torsion introduces are
expected to relax some of the standard constraints associ-
ated with static spacetimes. We will therefore now turn our
attention to the study of static (homogeneous and isotropic)
models with torsion.

5.1 The Einstein-static analogue

Static spacetimes with non-zero torsion have been studied
in the past, assuming matter in the form of the Weyssenhoff
fluid [28]. The latter, however, is incompatible with the high
symmetry of the FRW-like models and the Einstein static
universe as well. For this reason, an unpolarised spin field
was adopted, with a spin tensor that averages to zero (e.g. see
[29–31]). Here, instead, we address the FRW-compatibility
issue by adopting a form for the torsion/spin fields that is
compatible with the spatial isotropy and homogeneity of the
Friedmannian spacetimes (see Eqs. (12) and (15) in Sect. 3.1
earlier).

In static environments the absence of evolution means that
ȧ = 0 = ä and ρ̇ = 0 = ṗ = φ̇. Then, the Friedmann
equations derived in Sect. 3.4 assume the (static) form

1

3
κρ0 − K

a2
0

+ 1

3
Λ − 4φ2

0 = 0 (47)

and

1

2
κ (ρ0 + 3p0) − Λ = 0, (48)

where ρ0, p0 and φ0 are constants. It follows that for ordinary
matter (with ρ0 > 0 and ρ0 + 3p0 > 0), the static solution
requires the presence of a positive cosmological constant,
just like in the conventional Einstein-static universe (see
Eq. (48)). However, the torsional analogue of the Einstein-
static model does not necessarily need positive spatial cur-
vature. Indeed, expression (47) guarantees that torsion can
play the role of the positive curvature and that the 3-curvature
index can take all the available values (i.e. K = 0,±1). Also,
for matter with vanishing total gravitational energy, namely
when ρ0 + 3p0 = 0, there is a static solution with Euclidean
spatial hypersurfaces, zero cosmological constant, but non-
zero torsion (i.e. K = 0 = Λ and ρ0, φ0 �= 0).

Additional constraints come after successively eliminat-
ing the cosmological constant and the matter density from the
set of (47) and (48). In particular, we arrive at the following
expressions

1

2
κρ0(1 + w) − K

a2
0

= 4φ2
0 (49)

and

(1 + w)Λ

1 + 3w
− K

a2
0

= 4φ2
0 , (50)

between the variables of the static model (with w = p0/ρ0).
Note that the last two constraints combine to reproduce (48).
Finally, when K = +1, condition (49) gives

a0 =
√

2

κρ0(1 + w) − 8φ2
0

, (51)

with κρ0(1 +w) > 8φ2
0 . Therefore, keeping the energy den-

sity of the matter fixed, the introduction of torsion increases
the radius of the Einstein-static universe. Put another way, a
torsional Einstein universe should be larger in size than its
classic counterpart. A closely analogous effect, though in that
case expressed in terms of the spin, was observed by [32].

5.2 Stability of the static model

We will test the stability of the static model, by looking at
the evolution of linear conformal perturbations (i.e. into other
FRW models so that φ is not inhomogeneously perturbed).
In particular, assuming that φ = φ0 = constant at the linear
level, we consider deviations of the form

a = a0 + δa, ρ = ρ0 + δρ and p = p0 + δp, (52)

where δa � a0, δρ � ρ0 and δp � p0. Substituting these
into Eqs. (24) and (25), we solve (24) for the matter density.
Then, using the resulting expression in (25), employing the
background relations (47)–(50), setting δ = δa/a0 � 1,
and keeping up to first-order terms, leads to the differential
equation,

a2
0 δ̈ + 2(2 + 3w)φ0a

2
0 δ̇ − (1 + 3w)K δ = 0, (53)

for the linear evolution of the scale-factor perturbation.
Assuming matter with zero pressure and Euclidean spatial
sections, namely setting w = 0 = K , the solution reads

δ = C1 + C2e−4φ0t , (54)

with C1,2 being the integration constants. This result shows
(neutral) stability when φ0 > 0 and (exponential) instability
for φ0 < 0. One can also show that (53) leads to essentially
the same solution, when matter satisfies the strong energy
condition (i.e. for 1+3w > 0). Hence, an Einstein-static uni-
verse with torsion, conventional matter and zero 3-curvature
is stable when the (timelike) torsion vector is past-directed,
but unstable when Sa is future-directed (see (13) in Sect. 3.1).

If we allow the 3-dimensional surfaces to have non-zero
curvature, but maintain our assumption of pressureless matter
(i.e. K = ±1 and w = 0), Eq. (53) solves to give

δ = C1eα1t + C2eα2t , (55)
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where

α1,2 = −2φ0 ±
√

4φ2
0 + 1

a2
0

(56)

and

α1,2 = −2φ0 ±
√

4φ2
0 − 1

a2
0

, (57)

when K = +1 and K = −1 respectively. In the former case,
solution (55), (56) contains at least one (exponentially) grow-
ing mode, regardless of the sign of φ0 (i.e. of the orientation
of the torsion vector). Note also that the nature of the solu-
tion does not change so long as 1 + 3w > 0. Therefore, an
Einstein-static universe with non-zero torsion, conventional
matter and positively curved spatial hypersurfaces is always
unstable. In models with negative 3-curvature the evolution is
more involved. Following (55) and (57), for φ2

0a
2
0 > 1/4, we

have stability when φ0 > 0 and instability for φ0 < 0. When
φ2

0a
2
0 < 1/4, on the other hand, the solution of Eq. (55)

contains an imaginary part. This translates into an oscilla-
tion with amplitude δ ∝ e−2φ0t . As before, the nature of the
solution does not change so long as 1 + 3w > 0. Thus, an
Einstein-static universe with non-zero torsion, conventional
matter and open spatial hypersurfaces can be stable provided
that φ0 > 0. An alternative method of testing the linear sta-
bility of the static solution, which arrives at the same con-
clusions but provides a different view of the issue, is given
in Appendix C.

Our stability analysis assumed homogeneous linear per-
turbations, similar to those employed by Eddington in his
classic study of Einstein’s static world [33]. This implies that
the stable configurations reported here may prove unstable
when inhomogeneous perturbations of all the three possi-
ble types (i.e. scalar, vector and tensor) are accounted for
(see [34] for such a linear-stability analysis on the classic
Einstein-static spacetime).9

6 Discussion

Allowing for an asymmetric affine connection provides the
simplest classical extension of general relativity, by incor-
porating the effects of spacetime torsion into the theory.
The latter can then be use to study a variety of theoretical
problems, ranging from singularity theorems and cosmol-
ogy, to supergravity and quantum gravity (e.g. see [40] and
references therein). However, torsion and spin are generally

9 The linear stability of the Einstein static universe against specific types
of perturbations was also investigated by [35–37]. There are also sta-
bility studies against general Mixmaster spatially homogeneous modes
[38] and of static ghost models [39].

incompatible with the high symmetry of the FRW cosmolo-
gies, which means that one needs to consider torsion/spin
fields that preserve both the homogeneity and the isotropy
of these universes. Here, we have addressed this issue by
adopting a specific profile for the torsion tensor that belongs
to the class of the vectorial torsion fields and it is monitored
by a single scalar function of time [8,11]. Nevertheless, even
this highly constraint form of torsion was found capable of
drastically altering the standard evolution of the classic FRW
cosmologies.

Using 1 + 3 covariant and metric-based techniques, we
derived the associated continuity, Friedmann and Raychaud-
huri equations. These allowed us to quantify the relative
strength of the torsion effects by means of an associated
Ω-parameter. A number of new possibilities emerged. We
found that torsion can play the role of the spatial curvature
and mimic the effects of the cosmological constant, depend-
ing on the specifics of the scenario in hand. The orientation
of the torsion vector, relative to the fundamental 4-velocity
field, was a decisive factor, since it determines whether tor-
sion will tend to decelerate or accelerate the expansion of the
host spacetime. Empty spacetimes with zero 3-curvature, no
cosmological constant and non-zero torsion are not neces-
sarily static, but can experience exponential expansion (see
also [22] for similar results). The introduction of spatial cur-
vature, or matter, did not seem to change the aforementioned
picture. So, in the presence of torsion, the Einstein–de Sit-
ter universe can experience exponential de Sitter-like infla-
tion.10 All these findings raise the possibility that universes
with non-zero torsion might have gone through an early (or
a late) phase of accelerated expansion without requiring a
cosmological constant, an inflaton field, or some sort of dark
energy.

Looking for potentially observable cosmological signa-
tures of torsion, we considered its effects on primordial nucle-
osynthesis. We found that torsion can increase, as well as
decrease, the production of helium-4, by changing the expan-
sion rate of the universe at the time of primordial nucleosyn-
thesis. Using our solution for a radiation-dominated Fried-
mann universe, we were able to calculated the expected abun-
dance of helium-4 from primordial nucleosynthesis when
torsion is present. Combining these results with the observa-
tionally allowed range of the helium-4 abundance, we were
able to impose strong constraints on the relative strength of
the torsion field.

Our study also found that there exist Einstein-static uni-
verses with torsion that are not closed, but can have all three

10 These results were obtained after assuming a time-invariant torsion
field. Nevertheless, our formalism can be readily extended to include
time-varying torsion (e.g. see footnote 7 and Sect. 4.1), which is what
we intent to do in future work. In that case, one might also have to go
beyond the analytical treatment and use numerical techniques as well.
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types of spatial curvature. Unlike the classic (torsion-free)
Einstein model, for appropriate choices of the torsion field
and of the spatial curvature, these static universes can be
stable against linear scalar perturbations even for pressure-
less (dust) matter. Overall, despite the restrictions imposed by
their high symmetry, FRW-like universes with torsion exhibit
a rich phenomenology that could distinguish them from their
general-relativistic counterparts.
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Appendix

A The generalised connection

Assuming that the indices 0,1,2 and 3 correspond to the coor-
dinates t, r, ϑ and ϕ respectively, the Christoffel symbols of
a FRW-type spacetime are (e.g. see [41])

Γ̃ 0
11 = aȧ

1 − Kr2 , Γ̃ 0
22 = aȧr2, Γ̃ 0

33 = aȧr2 sin2 ϑ,

Γ̃ 1
01 = Γ̃ 1

10 = ȧ

a
, Γ̃ 1

11 = Kr

1 − Kr2 ,

Γ̃ 1
22 = −r

(
1 − Kr2

)
, Γ̃ 1

33 = −r
(

1 − Kr2
)

sin2 ϑ,

Γ̃ 2
02 = Γ̃ 2

20 = ȧ

a
, Γ̃ 2

12 = Γ̃ 2
21 = 1

r
,

Γ̃ 2
33 = − cos ϑ sin ϑ,

Γ̃ 3
03 = Γ̃ 3

30 = ȧ

a
, Γ̃ 3

13 = Γ̃ 3
31 = 1

r
,

Γ̃ 3
23 = Γ̃ 3

32 = cot ϑ. (58)

Combining (12) with the above, the non-zero components of
the torsion tensor are

S1
01 = S2

02 = S3
03 = φ (59)

and

S1
10 = S2

20 = S3
30 = −φ. (60)

Putting (58)–(60) together and recalling that Γ a
(bc) =

Γ̃ a
bc + 2S(bc)

a (see Sect. 2.1), we find

Γ 0
(11) = aȧ + 2φa2

1 − Kr2 , Γ 0
(22) = r2

(
aȧ + 2φa2

)
,

Γ 0
(33) = r2 sin2 ϑ

(
aȧ + 2φa2

)
,

Γ 1
(01) = ȧ

a
+ φ, Γ 1

(11) = Kr

1 − Kr2 ,

Γ 1
(22) = −r

(
1 − Kr2

)
, Γ 1

(33) = −r
(

1 − Kr2
)

sin2 ϑ,

Γ 2
(02) = ȧ

a
+ φ, Γ 2

(12) = 1

r
, Γ 2

(33) = − cos ϑ sin ϑ,

Γ 3
(03) = ȧ

a
+ φ, Γ 3

(13) = 1

r
, Γ 3

(23) = cot ϑ. (61)

Finally, noting that Γ a
bc = Γ a

(bc)+Sabc and using the aux-
iliary results (60) and (61), we evaluate the non-zero compo-
nents of the asymmetric affine connection

Γ 0
11 = aȧ + 2φa2

1 − Kr2 , Γ 0
22 = r2

(
aȧ + 2φa2

)
,

Γ 0
33 = r2 sin2 ϑ

(
aȧ + 2φa2

)
,

Γ 1
01 = ȧ

a
+ 2φ, Γ 1

10 = ȧ

a
, Γ 1

11 = Kr

1 − Kr2 ,

Γ 1
22 = −r

(
1 − Kr2

)
, Γ 1

33 = −r
(

1 − Kr2
)

sin2 ϑ,

Γ 2
02 = ȧ

a
+ 2φ, Γ 2

20 = ȧ

a
, Γ 2

12 = Γ 2
21 = 1

r
,

Γ 2
33 = − cos ϑ sin ϑ,

Γ 3
03 = ȧ

a
+ 2φ, Γ 3

30 = ȧ

a
, Γ 3

13 = Γ 3
31 = 1

r
,

Γ 3
23 = Γ 3

32 = cot ϑ. (62)

B Ricci tensor and Friedmann equations

The Ricci curvature tensor has been expressed in terms of
the generalised (asymmetric) affine connection in Sect. 3.4
– see Eq. (23) there. The latter, together with (62), leads to

R00 = −3

[
ä

a
+ 2φ̇ + 2φ

(
ȧ

a

)]
,

R11 = 2a2

1 − Kr2

[
ä

2a
+ φ̇ +

(
ȧ

a

)2

+ 5φ
ȧ

a
+ 4φ2 + K

a2

]
,

R22 = 2a2r2

[
ä

2a
+ φ̇ +

(
ȧ

a

)2

+ 5φ
ȧ

a
+ 4φ2 + K

a2

]
,

R33 = 2a2r2 sin2 ϑ

×
[
ä

2a
+ φ̇ +

(
ȧ

a

)2

+ 5φ
ȧ

a
+ 4φ2 + K

a2

]
. (63)
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Given that Ra
b = gbcRac, the mixed components of the Ricci

tensor are

R0
0 = 3

[
ä

a
+ 2φ̇ + 2φ

(
ȧ

a

)]
(64)

and

R1
1 = 2

[
ä

2a
+ φ̇ +

(
ȧ

a

)2

+ 5φ
ȧ

a
+ 4φ2 + K

a2

]

= R2
2 = R3

3. (65)

Consequently, the Ricci scalar of an FRW-like spacetime with
non-zero torsion reads

R = 6

[
ä

a
+

(
ȧ

a

)2

+ K

a2 + 2φ̇ + 6φ

(
ȧ

a

)
+ 4φ2

]
. (66)

Also, the energy-momentum tensor of a perfect fluid takes
the diagonal form Tab = diag[−ρ, p, p, p]. Plugging all of
the above into the Einstein–Cartan field equations (see (3) in
Sect. 2.2), we arrive at
(
ȧ

a

)2

= 1

3
κρ − K

a2 + 1

3
Λ − 4φ

(
ȧ

a

)
− 4φ2, (67)

and

ä

a
= −1

6
κ (ρ + 3p) + 1

3
Λ − 2φ̇ − 2φ

(
ȧ

a

)
. (68)

These are the Friedmann equations of an FRW-type cosmol-
ogy with torsion (see Sect. 3.4 earlier).

C Linear stability of the static solution

We will employ the linear-stability technique of ordinary dif-
ferential equations to the static model of Sect. 5.1. In doing
so, we first recast Eq. (53) into the first-order system

ẋ = f (x, y) = y (69)

and

ẏ = g(x, y) = μy + νx, (70)

with x = δ, μ = −2(2 + 3w)φ0 and ν = (1 + 3w) K/a2
0 .

The Jacobian matrix of the above is
⎛
⎝

∂ f/∂x ∂ f/∂y

∂g/∂x ∂g/∂y

⎞
⎠

0

=
(

0 1
ν μ

)
, (71)

where the zero suffix denotes the static solution (with (x =
0, y = 0) and f (0, 0) = 0 = g(0, 0)). The eigenvalues
of matrix (71) are the roots of the associated characteristic
polynomial, namely

λ1,2 = 1

2

(
μ ±

√
μ2 + 4ν

)
. (72)

For simplicity, but without compromising generality, let us
confine to the case of pressure-free matter (with w = 0 – see
also Sect. 5.2 earlier). Then, the eigenvalues reduce to

λ1,2 = −2φ0 ±
√

4φ2
0 + K

a2
0

. (73)

When the spatial hypersurfaces have spherical geometry, the
quantity inside the square root is always positive, in which
case both eigenvalues are real. More specifically, λ1 is posi-
tive and λ2 is negative, implying that the static solution is a
saddle point. For hyperbolic spatial surfaces, the two eigen-
values are real provided that a2

0φ2
0 > 1/4. Then, both λ1

and λ2 are positive when φ0 < 0, while for φ0 > 0 the two
eigenvalues are negative. In the former case the static solu-
tion is unstable, but in the latter is stable. Alternatively, when
a2

0φ2
0 < 1/4, the eigenvalues are both complex. In particular,

Re(λ1) > 0 and Re(λ2) > 0 for φ0 < 0, which implies insta-
bility. For φ0 > 0, on the other hand, we have Re(λ1,2) < 0
and stability. The same is also true when a2

0φ2
0 = 1/4.

Note that the above analysis does not apply to spacetimes
with Euclidean spatial sections (i.e. when K = 0), because
then the first of the two eigenvalues will vanish.
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