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Abstract In this paper we consider a specific type of the
bimetric theory of gravitation with the two different metrics
introduced in the cosmological frame. Both metrics respect
all the symmetries of the standard FLRW solution and con-
tain conformally related spatial parts. One of the metric
is assumed to describe the causal structure for the matter.
Another metric defines the causal structure for the gravita-
tional interactions. A crucial point is that the spatial part of
the metric describing gravity is given by the spatial part of
the matter metric conformally rescaled by a time-dependent
factor α which, as it turns out, can be linked to the effec-
tive gravitational constant and the effective speed of light.
In the context of such a bimetric framework we examine the
strength of some singular cosmological scenarios in the sense
of the criteria introduced by Tipler and Królak. In particular,
we show that for the nonsingular scale factor associated with
the matter metric, both the vanishing or blowing up of the
factor α for some particular moment of the cosmic expan-
sion may lead to a strong singularity with infinite value of
the energy density and infinite value of the pressure.

1 Introduction

The number of the observed phenomena explained within the
framework of the standard cosmological model is growing
constantly which may indicate that it is entering the phase of
achieving its final and complete from. The standard model
properly describes the history of the universe starting form
the era of inflation up to the present moment. However, the
era containing the initial singularity has not yet been properly
incorporated into the framework of the standard cosmologi-
cal model. So far many attempts have been made in order to
include the initial singularity into the cosmological frame-
work. Among them one should mention the ekpyrotic [1,2],
the cyclic [3,4] and the pre-big-bang scenario [5] – each one
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based on the tree level low-energy-effective action of the
string theory – introducing pre-big-bang eras and this way
somehow circumventing the problem of initial singularity.
On the other hand, the discovery of the accelerated expansion
of the late time Universe, and the fact that the observational
data is insufficient to discriminate between different mod-
els of the dark energy encouraged many authors to speculate
about the future evolution of the Universe. In particular, mod-
els based on phantom matter yet not ruled out by observations
lead to scenarios terminating with a Big-Rip singularity [6].
Relaxation of the barotropic constraints on the dark energy
equation of state gave raise to many different scenarios con-
taining future singularities like a sudden future singularity
(SFS or type II) [7], generalized sudden future singulari-
ties (GSFS) [8], finite scale factor singularities (FSF or type
III) [9,10], big-separation singularities (BS or type IV) [11],
and w-singularities [12], little-rip and pseudo-rip singulari-
ties [13,14]. Since all of the abovementioned singularities are
curvature singularities and prove their geodesic completeness
(with exception for the Big-Rip) the other criterions such as
those proposed by Tipler and Królak relying on the notion of
the strength of singularity [15,16] have to be used in order
to differentiate between them. As it was founded in [17,18],
some of those singularities can be weaken by assuming the
variation of fundamental constants.

The aim of this paper is to use a variant of the bimetric
gravity theory proposed in [19] to investigate the conditions
in which some of the curvature singularities may occur. We
will use two different metrics specified in the cosmological
frame with conformally related spatial parts. One of the met-
ric introduced defines the causal structure for the matter, and
the other specifies the causal structure for the gravitational
interactions. We will show that even if the behaviour of the
matter metric is perfectly regular, the appearance of the strong
singularity in the gravitational metric in the sense of Tipler
and Królak may imprint itself in the singular behaviour of
the matter. Additionally, in the presented model, the partic-
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ular form of the conformal relation between the spatial parts
of both metrics determine the value of the effective gravi-
tational constant and the effective speed of light. The study
on the cosmological scenarios containing Big Rip and Little
Rip singularities in the context of bimetric theories was per-
formed in [20]. However, the question of the strength of the
singularities and their appearance in theories with varying
fundamental constants was not raised.

The paper is organized as follows. In Sect. 2 we discus the
peculiarities of the bimetric framework used in our paper. In
Sect. 3 we show that a singular behaviour of the matter fields
may be associated with the occurrence of the strong singu-
larity in the gravitational metric which defines the causal
structure for gravitational interactions. In Sect. 4 we give our
conclusions.

2 Dynamical fundamental constants in bimetric
approach

As it was pointed out in [19], the bimetric theories are capa-
ble to include cosmological scenarios with varying speed of
light. In such theories the light follows the causal structure
defined by the matter metric, so the speed of light may be
varying from the point of view of the spacetime with the
causal structure defined by the gravitational metric. In this
paper, we will follow a similar scheme and introduce two
different metrics – the gravitational metric ĝμν that specifies
the causal structure for the gravitational field, and the mat-
ter metric gμν that defines the causal structure for the mater
fields. It should be stressed that the formulation of our model
is restricted only to the diagonal spacetimes.

The relation between these metrics can be expressed by:

ĝμν = gμν

[
α − (α − 1)

(
δ0μδ0ν

)]2
, (1)

where α = α (t) is a dimensionless time dependent function
with the individual elements of the metric tensor given by:

ĝ00 = g00, (2)

ĝ11 = α2g11, (3)

ĝ22 = α2g22, (4)

ĝ33 = α2g33. (5)

The time components in both metrics are identical while spa-
tial elements of the matter metric are scaled by function α2

in comparison with the elements of the gravitational met-
ric. We will see that in the considered model, the dynamical
character of the relation between the two metrics will enable
variation of the speed of light and the gravitational constant.
We assume that the expansion of the Universe, as seen from
the perspective of the matter frame, can be different than that
seen from the perspective of the gravitational frame. Con-
sequently, the strength of any given singular scenario may

depend upon the chosen perspective. The relation between
the two metric also implies that the expansion may influ-
ence the propagation of the gravitational waves in a different
way than it does influence the propagation of light (the delay
between gravitational waves and the light was measured in
binary neutron stars [21,22]). The relation (1) arise naturally
in the theory of disformal gravity [23] which is a specific type
of bimetric gravity theory based on the most general map-
ping between the two metrics involving one scalar field and
preserving diffeomorphisms of spacetime. The usual form of
the mapping is given by:

g̃μν = C (φ, X) gμν + D (φ, X) ∂μφ∂νφ, (6)

where X = ∂μφ∂μφ and φ is a kinetic term of the scalar
field φ, and C (φ, X) and D (φ, X) are some general func-
tions of φ and X . In order to see that (1) can be obtained
from (6) we choose C (φ, X) ≡ φ2 and D (φ, X) = f (φ)+
g (φ) ∂μφ∂μφ where f (φ) and g(φ) are some not yet speci-
fied functions of the scalar field φ. The choice of the homo-
geneous and isotropic cosmological frame (this can only
be realized by assuming Friedmann–Lamaitre–Robertson–
Walker line element) implies the spatial constancy of the
scalar field which in the expanding setup gives that φ = φ(t).
The two assumptions above lead us to the following relation
between the diagonal (the only non-vanishing in the consid-
ered model) components of the two metrics:

g̃00 = φ2g00 + f (φ) φ̇2 + g (φ) φ̇4g00, (7)

g̃kk = φ2gkk . (8)

The formula (8) already gives the relation between spatial
components of the two metrics of the type given by Eqs. (3)–
(5). Assumption of g00 = g00 = −1 (this can always be
done by choosing the time coordinate x0 to be a proper time
of the comoving observers) leads to the relation between the
time components of the two metrics of the type given by (2),
provided that

−φ2 + f (φ) φ̇2 − g (φ) φ̇4 = −1. (9)

The total action can be written as a sum of the gravitational
action and matter field action

S = Sg + Smatter , (10)

where the action for the gravitation is

Sg = − 1

16πG0

∫
d4x R

[
ĝ
] √

−ĝ. (11)

The gravitational action is identical with the standard
Einstein–Hilbert action excluding cosmological term Λ = 0.
We assume that this action is calculated on the basis of the
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gravitational metric ĝμν . Here G0 is a constant with the same
unit as the Newton constant G, but different in its value. The
action for the matter field is given by

Smatter = − 1

2c0

∫
d4xLmatter

√−g, (12)

Bearing in mind that
√−ĝ = α3√−g, the variation of the

action (10) with respect to gμν gives

− c0
3

16πG0

∫
d4x

[
α3

[
α − (α − 1)

(
δ0μδ0ν

)]2

×
(
Rμν

[
ĝ
] − 1

2
ĝμνR

[
ĝ
])

−8πG0

c4
0

Tμν

]
√−gδgμν = 0, (13)

which yields the field equations with the following time and
spatial components:

α3
(
R00

[
ĝ
] − 1

2
ĝ00R

[
ĝ
]
)

= 8πG0

c0
4 T00, (14)

α

(
Rii

[
ĝ
] − 1

2
ĝi i R

[
ĝ
]) = 8πG0

c0
4 Tii . (15)

Some comments should be made here regarding the varia-
tional principle presented above. In our model the function α

is a definite function of time. Such dependence may for exam-
ple result from (9) if the model is considered to be emergent
from the theory of disformal gravity where we make the fol-
lowing identification: φ ≡ α. For the specific ansatz for the
time dependence of α(t) = φ(t) the Eq. (9) can still be ful-
filled at least locally (close to the singularity), provided that
f (φ) and g(φ) were chosen properly and meet the condition
implied by (9). Thus, the variation of the action (10) with
respect to the metric components gμν only should suffice to
obtain the complete set of equations governing the evolution
of the cosmological frame.

We assume the Friedmann metric for the matter field

ds2
M = −c0

2dt2 + a2(t)

[
dr2

1 − kr2 + dθ2 + sin2θdφ2
]

.

(16)

The resulting the gravitational metric ĝμν takes the form:

ds2
G = −c0

2dt2 + α2a2(t)

[
dr2

1 − kr2 + dθ2 + sin2θdφ2
]

.

(17)

By inserting (16) and (17) into the field equations (14) and
(15) we obtain the density ρ (t) and the pressure p (t) in the
following form

ρ (t) = 3α3 (t)

8πG0

(
ȧ2 (t)

a2 (t)
+ 2ȧ (t) α̇ (t)

a (t) α (t)
+ α̇2 (t)

α2 (t)

)
, (18)

p (t) = −c0
2α (t)

8πG0

(
ȧ2 (t)

a2 (t)
+ 6ȧ (t) α̇ (t)

a (t) α (t)

+ α̇2 (t)

α2 (t)
+ 2ä (t)

a (t)
+ 2α̈ (t)

α (t)

)
. (19)

The continuity equation is given by

ρ̇ (t) + 3
ȧ (t)

a (t)

(
ρ (t) + α2 (t)

c0
2 p (t)

)

+3
α̇ (t)

α (t)

(
α2 (t)

c0
2 p (t)

)
= 0. (20)

Equations (18) and (19) are similar to the field equations
in Brans-Dicke theory where the gravitational constant is
inversely proportional to the scalar field φ [24]. The function
α plays the similar role as the scalar field φ in the Brans–
Dicke theory. On the other hand, the conservation equation
is different from the one derived in the Albrecht and Magueijo
model [25], where an additional term contains time deriva-
tive of the dynamical gravitational constant G(t) coupled to
the density ρ (t) – in our model the additional term contains
the time derivative of α coupled to the pressure p (t). Let us
notice that the assumption of α = const. does not lead to
the Friedmann equations. This suggests that the gravitational
constant and the speed of light are indeed dynamical parame-
ters dependent on the instantaneous value of the α parameter,
given by:

G (t) = G0

α3 (t)
, (21)

c (t) = c0

α (t)
. (22)

This indicates that G0 and c0 appearing in Eqs. (18) and
(19) have identical dimensions as their measured counter-
parts (21) and (22), but may have different values. Conclud-
ing, the assumption of α = const. and the interpretation of
the gravitational constant and the speed of light as dynamical
parameters given by (21) and (22), reduces the field equa-
tions (18), (19) and the conservation equation (20) to stan-
dard set of cosmological equations with GFM = G0/α

3 and
cFM = c0/α.

3 Strength of singularities in dynamical fundamental
constants theories

Hawking and Penrose were the first to properly define the
singularity in general relativity. Their definition is based on
the notion of geodesic incompleteness [26]. After discover-
ing new types of the singular scenarios in cosmology [10]
characterised by different properties, Hawking-Penrose defi-
nition became no longer sufficient due to non-singular behav-
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ior of geodesics [27,28]. In order to differentiate between the
newly discovered types of the singular behaviours other crite-
ria have to be introduced. Tipler and Królak proposed criteria
which are based on the notion of the “strength” of a singu-
larity. In view of Tipler’s definition [15], the singularity is
strong if the double integral diverges in a finite time:

∫ τ

0
dτ ′

∫ τ ′

0
dτ ′′Rμνu

μuν → ∞, (23)

where Rμν is the Ricci tensor, uμ is the 4-velocity, τ is the
proper time. According to Królak’s definition [16], the sin-
gularity is strong if the single integral diverges for the finite
value of the parameter τ :

∫ τ

0
dτ ′Rμνu

μuν → ∞. (24)

It is possible to compute the strength of the cosmological sin-
gularities generated by singular evolution of the dynamical
fundamental constants in the bimetric framework introduced
in Sect. 2. In such a model α (t) is a part of the Ricci tensor
and entails both the dynamical gravitational constant G(t)
and the varying speed of light c(t) (Eqs. (21) and (22)).

We use Królak or Tipler criterion to calculate the strength
of the dynamical constants singularities. To compute (23),
(24) we have to take into account the Ricci tensor calcu-
lated with the metric ĝμν and the 4-velocity ûμ = uμ =
[−1, 0, 0, 0]. The component R00 is given by

R00 = −3 [2ȧ (t) α̇ (t) + ä (t) α (t) + a (t) α̈ (t)]

a (t) α (t)
. (25)

For a non-singular scale factor in the range between 0 and ts
expressed by:

a (t) = a0

(
1 + t

ts

)m

, (26)

where parameter m > 0, we choose the function α (t) in the
form

α (t) =
(

1 − t

ts

)n

, (27)

where n is some real number different than zero. For n > 0,
the function α → 0 at ts . On the other hand, for n < 0, the
function α → ∞ at ts . By inspecting the expression (25),
we conclude that the assumptions (26), (27) lead to a strong
singularity in both cases, namely for α → 0 and α → ∞.
Consequently, we infer from (21) that the dynamical G (t)
singularity is strong forG (t) → 0 as well as forG (t) → ∞.
The same refers to the dynamical speed of light (22). The
singularity is likewise strong for c (t) → 0 and for c (t) →

∞. An exception is the case n = 1, where the singularity
is strong with respect to Królak’s definition and weak with
respect to Tipler’s definition. By inserting (26) and (27) into
(18) and (19), we obtain for t → ts the following types of
singular regimes:

• ρ (ts) → ∞ and p (ts) → ∞ for n < 2/3,
• ρ (ts) → ρs and p (ts) → ∞ for n = 2/3,
• ρ (ts) → 0 and p (ts) → ∞ for 2/3 < n < 2,
• ρ (ts) → 0 and p (ts) → ps for n = 2,
• ρ (ts) → 0 and p (ts) → 0 for n > 2,

where ρs and ps are some finite constants. It should be
stressed that the above singular behaviour of the matter fields
appear despite the perfectly regular behaviour of the metric
associated with matter and are the consequence of the sin-
gularity that occurs in the causal structure defined by the
gravitational metric.

A slowing down effect of the propagation of light was pre-
dicted by Quantum Loop Cosmology in the anti-newtonian
limit, where the light stops to move as the energy density
approaches the critical value [29].

It is also possible to calculate the “strength” of the singu-
larity of the speed of light, but in this model the dynamical
gravitational constant G (t) predominate over c (t), and the
influence of the dynamical speed of light is reduced by the
influence of the dynamical gravitational constant. It should be
stressed that the above results are generic and does not depend
on the the particular dynamics of the Lorentz-violating field
α(t) since they do not depend on the particular form of the
bimetric model. Indeed, one does not have to specify the
potential governing the dynamics of α(t) in order to per-
ceive that the singular behaviour in the gravitational metric
may lead to strong singularity in the matter sector even if
the matter metric is perfectly regular. We find this particular
feature of our study an advantage. The very fact that we do
not give any particular equation of motion evolving the field
α(t) does not weaken the main conclusions of our paper in
any way.

4 Conclusion

We have shown that defining two the different causal struc-
ture leads to a dynamics which may in some aspects be similar
to the dynamics of the scalar–tensor models. Such a result
was obtained without specifying the kinetic sector of the the-
ory that would determine the behaviour of α(t) which in
our model is an assumed function of time. In the context of
the scalar–tensor theories with disformal couplings such a
behaviour of α(t) can, however, naturally emerge from the
dynamical equation of motion for the scalar field φ. The con-
formal factor which relates two different causal structures

123



Eur. Phys. J. C (2019) 79 :287 Page 5 of 5 287

enters the field equation of the considered bimetric model
in as similar way as the scalar field enters the field equa-
tions of the Brans–Dicke theory. The resulting field equations
prove that the effective gravitational constant and the effec-
tive speed of light are the dynamical parameters and their
values are related with the instantaneous value of the confor-
mal factor. It should be stressed that although the considered
theory does not explicitly give the dynamics of the second
metric ĝμν (since there is no given the explicite form of the
equation governing the dynamics of α(t)) it sill constitutes
a bimetric theory. Our model is based on the two different
metrics: the one that describes the causal structure for the
matter gμν and the other one that describes the causal struc-
ture for the gravitational field ĝμν . The fact that both metrics
describe different causal structures is a direct consequence of
the mathematical form of the action with its gravitational part
being computed on the metric ĝμν (Eq. 11) while its matter
part is computed on the metric gμν (Eq. 12). In the context of
such a bimetric framework, we have found a particular sce-
nario in which a strong singularity in the causal structure for
the gravitational interaction in the sense of the criteria given
by Tipler and Królak is accompanied by a singular behaviour
in the matter fields despite the perfectly regular behaviour of
the matter metric. In such a way, we have proven that the
singular behaviour of the matter fields does not necessarily
have to be a result of an occurrence of the singularity in the
causal structure for the matter, as it is the case for the most
of the singular cosmological scenarios.
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