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Abstract The scalarization of Reissner–Nordström black
holes was recently proposed in the Einstein-Maxwell-scalar
theory. Here, we show that the appearance of the scalar-
ized Reissner–Nordström black hole is closely related to the
Gregory-Laflamme instability of the Reissner–Nordström
black hole without scalar hair.

1 Introduction

Recently, the scalarized black hole solutions were found
from Einstein-scalar-Gauss-Bonnet (ESGB) theories [1,2].
We note that these black holes with scalar hair are con-
nected to the appearance of instability for the Schwarzschild
black hole without scalar hair. Interestingly, the instability
of Schwarzschild black hole in ESGB theory is regarded
as not the tachyonic instability but the Gregory-Laflamme
(GL) instability [3] by comparing it with the instability of the
Schwarzschild black hole in the Einstein-Weyl gravity [4].

The notion of the GL instability comes from the three
observations [5–8]: (1) the instability is based on the s(l =
0)-mode perturbations for scalar and tensor fields. (2) The lin-
earized equation includes an effective mass term, providing
that the potential develops negative region near the black hole
horizon but it becomes positive after crossing the r -axis. (3)
The instability of a black hole without hair is closely related
to the appearance of a newly black hole with hair.

More recently, a scalarization of the Reissner–Nordström
(RN) black hole was proposed in the Einstein-Maxwell-
scalar (EMS) theory which is considered as a simpler theory
than the ESGB theory [9]. We note that the scalarized black
holes were found in the Einstein-scalar-Born-Infeld theory
[10,11], regarded as a generalized EMS theory. The EMS
theory includes three physically propagating modes of scalar,
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vector, and tensor. In this case, the instability of RN black
hole is determined solely by the linearized scalar equation
because the RN black hole is stable against tensor-vector per-
turbations, as found in the Einstein-Maxwell theory [12–15].

In this work, we wish to show that the appearance of the
scalarized RN black hole is closely associated with the GL
instability of the RN black hole without scalar hair. Here, the
GL instability will be determined by solving the linearized
scalar equation. This will indicate an important connection
between scalarized RN black holes and GL instability of RN
black holes.

The organization of our work is as follows. We introduce
the EMS theory and its linearized theory around the RN black
hole background in Sect. 2. In Sect. 3, we perform the stability
analysis for the RN black hole based on the linearized scalar
Eq. (18). Mainly, we derive the GL instability bound (20).
We solve the static linearized Eq. (22) to confirm the thresh-
old of the instability αth as well as to obtain n = 0, 1, 2 · · ·
scalarized RN black holes in Sect. 4. In Sect. 5, we explore
what the GL instability is. Section 6 is devoted to obtaining a
scalarized RN black hole by solving the four Eqs. (41)–(44)
numerically. It indicates that the appearance of the scalar-
ized RN black hole is closely related to the GL instability
of the RN black hole without scalar hair. Also, we obtain
scalarized RN black holes for the quadratic coupling of αφ2

for comparison to the exponential coupling eαφ2
. Finally, we

will describe our main results in Sect. 7.

2 EMS and its linearized theory

The EMS theory is given by [9]

SEMS = 1

16π

∫
d4x

√−g
[
R − 2∂μφ∂μφ − Vφ − eαφ2

F2
]
,

(1)
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where φ is the scalar field with a potential Vφ , α is a positive
coupling constant, and F2 = FμνFμν is the Maxwell kinetic
term. Here we choose Vφ = 0 for simplicity. This theory
implies that three of scalar, vector, and tensor are physically
dynamical fields. It is noted that a different dilaton coupling
of e−2α0φ was introduced for the Einstein-Maxwell-dilaton
theory originating from a low-energy limit of string theory
[16,17]. Moreover, a quadratic coupling of αφ2 will be con-
sidered as the other model to reveal scalarized charged black
holes in Sect. 7.

Now, let us derive the Einstein equation from the action
(1)

Gμν = 2∂μφ∂νφ − (∂φ)2gμν + 2eαφ2
Tμν, (2)

where Gμν = Rμν − (R/2)gμν is the Einstein tensor
and Tμν = FμρFν

ρ − F2gμν/4 is the Maxwell energy-
momentum tensor. The Maxwell equation is given by

∇μFμν − 2αφ∇μ(φ)Fμν = 0. (3)

The scalar equation takes the form

�φ − α

2
eαφ2

F2φ = 0. (4)

Considering φ̄ = 0 and electrically charged Āt = Q/r ,
one finds the RN solution from (2) and (3)

ds2
RN = ḡμνdx

μdxν = − f (r)dt2 + dr2

f (r)
+ r2d�2

2 (5)

with the metric function

f (r) = 1 − 2M

r
+ Q2

r2 . (6)

Here, the outer horizon is located at r = r+ = M +√
M2 − Q2 = M(1 + √

1 − q2) with q = Q/M , while
the inner horizon is at r = r− = M(1 − √

1 − q2). It is
worth noting that (5) dictates a charged black hole solution
without scalar hair. We stress that the RN solution (5) is a
black hole solution to the EMS theory for any value of α.
Hereafter we are interested in the outer horizon.

In order to explore the stability analysis, one has to obtain
the linearized theory which describes the metric perturbation
hμν , vector perturbation aμ and scalar perturbation ϕ propa-
gating around the RN background (5) denoting by¯(overbar).
By linearizing (2), (3), and (4), we find three linearized equa-
tions as

δGμν(h) = 2δTμν, (7)

∇̄μ fμν = 0, (8)
(
�̄ + α

Q2

r4

)
ϕ = 0, (9)

where the linearized Einstein tensor δGμν , the linearized
energy-momentum tensor δTμν , and the linearized Maxwell
tensor fμν are given by

δGμν = δRμν − 1

2
ḡμνδR − 1

2
R̄hμν, (10)

δTμν = F̄ν
ρ fμρ + F̄μ

ρ fνρ − F̄μρ F̄νσ h
ρσ

+1

2
(F̄κη f

κη − F̄κη F̄
κ

σ h
ησ )ḡμν − 1

4
F̄2hμν, (11)

fμν = ∂μaν − ∂νaμ. (12)

We note that an effective mass term of −αQ2/r4 in (9) is
replaced by −2λ2M2/r6 in the ESGB theory [4]. Here the
scalar coupling constant ‘α > 0’ plays the role of a mass-like
parameter.

3 Instability of RN black hole

In analyzing the stability of the RN black hole in the EMS
theory, we first consider the two linearized Eqs. (7) and (8)
because two perturbations of metric hμν and vector aμ are
coupled. Exactly, these correspond to the linearized equa-
tions for the Einstein-Maxwell theory. For the odd-parity per-
turbations, one found the Zerilli-Moncrief equation which
describes two physical DOF propagating around the RN
background [12,13]. Also, the even-parity perturbations with
two physical degrees of freedom (DOF) were studies in
[14,15]. It turns out that the RN black hole is stable against
these perturbations. In this case, a massless spin-2 mode starts
with l = 2, while a massless spin-1 mode begins with l = 1.
The EMS theory provides 5(= 2 + 2 + 1) DOF propagating
around the RN background.

Now, we focus on the linearized scalar Eq. (9) which deter-
mines the stability of the RN black hole in the EMS theory.
Introducing

ϕ(t, r, θ, χ) = u(r)

r
e−iωt Ylm(θ, χ), (13)

and considering a tortoise coordinate r∗ defined by dr∗ =
dr/ f (r), a radial equation of (9) leads to the Schrödinger-
type equation

d2u

dr2∗
+

[
ω2 − V (r)

]
u(r) = 0, (14)

where the scalar potential V (r) is given by

V (r) = f (r)
[2M

r3 + l(l + 1)

r2 − 2Q2

r4 − α
Q2

r4

]
. (15)

In Fig. 1, we find the α-dependent potentials for given l = 0,
M = 1.1 and q = M/Q = 0.418 (a non-extremal RN
black hole). The s(l = 0)-mode is allowed for the scalar
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Fig. 1 The α-dependent
potentials as function of
r ∈ [r+,∞) for the outer
horizon radius
r+ = 2.09(q = Q/M = 0.418)

and l = 0. From the top, each
curve represents the potential
V (r) of a scalar field for the
parameter α = 19 (stable),
19.83 (positive definite
potential: sufficient condition
for stability), 21, 25, 30.74
(sufficient condition for
instability), and 35 (unstable
case), respectively. The
potentials have negative regions
near the horizon for α > 19.83.
One conjectures that the
threshold of GL instability
occurs for αth > 19.83

perturbation and it is regarded as an important mode to test
the stability of the RN black hole. Hereafter, we consider this
mode only.

A sufficient condition of
∫ ∞
r+ drV (r)/ f (r) < 0 for insta-

bility [18,19] leads to the bound as

α > αin(q) ≡ 3

q2 − 2q2 − 3
√

1 − q2

q2 . (16)

The first term 3/q2 was found in analyzing the black hole
dynamics in Einstein-Maxwell-dilaton theory [16].

On the other hand, by observing the potential (15) care-
fully, the positive definite potential without negative region
could be implemented by imposing the bound

α ≤ αpo(q) ≡ 2(1 − q2)

q2 + 2
√

1 − q2

q2 , (17)

which guarantees a stable RN black hole. This is called the
sufficient condition for stability. We note that (16) is not a
necessary and sufficient condition for the instability. Observ-
ing Fig. 1 together with q = 0.418, one finds that two poten-
tials with α = 21, 25 between αpo = 19.83 and αin = 30.74
develop negative regions near the horizon, but they become
positive after crossing the r -axis.

At this stage, we would like to mention that such potentials
exist around neutral black holes (black holes without charge)
in higher dimensions and the S-deformation has been used to
confirm the stability of neutral black holes in higher dimen-
sions [20]. We conjecture that the GL instability may occur
for αth > 19.83, but the threshold of instability αth should
be determined explicitly by the numerical computations. We
expect that αth is located at the shaded region between αin

and αpo. Usually, if the potential V derived from physically
propagating modes is negative in some region, a growing
perturbation can appear in the spectrum. This might indicate
an instability of the black hole system under such perturba-
tions. However, this is not always true. Some potentials with
negative region near the horizon do not imply the instabil-
ity. The criterion to determine whether a black hole is stable
or not against the perturbation is whether the time-evolution
of the perturbation is decaying or not. The perturbed equa-
tion around a RN black hole can usually be described by the
Schrödinger-type equation (18), where a growing mode like
e�t of the perturbation indicates the instability of the black
hole. The absence of any unstable physical fields provides a
precise way of determining the stability of the black hole.

It suggests that the RN black hole would be unstable for
α > αth = 29.47 with q = 0.418, while it is stable for
19.83 < α < 29.47 showing negative region near the hori-
zon. In the latter case, the S-deformation method could pro-
vide a complementary result to support the stability of such
black holes by finding the deformed potential [21,22].

To determine the threshold of instability explicitly, one has
to solve the second-order differential equation numerically

d2u

dr2∗
−

[
�2 + V (r)

]
u(r) = 0, (18)

which allows an exponentially growing mode of e�t (ω =
i�) as an unstable mode. Here we choose two boundary con-
ditions: a normalizable solution of u(∞) ∼ e−�r∗ at infinity
and a solution of u(r+) ∼ (r − r+)�r+ near the outer hori-
zon. Observing Fig. 2, we read off the threshold of insta-
bility αth(q) = {88.98, 60.69, 29.47, 15.46, 8.019, 2.995}
at q = {0.25, 0.3, 0.418, 0.55, 0.7, 0.9} ≡ {· · · }. From
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Fig. 2 Plots of unstable scalar
modes (•) on six different curves
with q = {0.25, 0.3, 0.418,

0.55, 0.7, 0.9}. The y(x)-axis
denote � in e�t (mass-like
parameter α). Here we observe
that the thresholds (� = 0) of
instability are located at αth(q) ≈
{88.98, 60.69, 29.47, 15.46, 8.019, 2.995}

Fig. 3 Three α-curves as
function of q. The upper blue
curve represents αin(q) in (16)
and the middle green curve
indicates αth(q), while the lower
red one denotes αpo(q) (17). We
find an inequality of
αpo(q) < αth(q) < αin(q)

Fig. 3, one confirms that the threshold of instability is
located between the sufficient condition for instability
αin(q) ≈ {92.48, 63.13, 30.74, 16.2, 8.45, 3.318} at q =
{· · · } and the sufficient condition for stability αpo(q) ≈
{68.98, 41.42, 19.83, 10.13, 4.997, 1.545} at q = {· · · }.
This implies an inequality as

αpo(q) < αth(q) < αin(q), (19)

where αpo(q) and αin(q) are given by (17) and (16), while
αth(q) is determined by solving (18) numerically.

Consequently, the GL instability bound for the RN black
hole is given by

α > αth(q) (20)

which is considered as one of our main results. However, we
could not determine an explicit form of αth(q) as function of
q like as αin(q) in (16). In addition, the small unstable black
appears when the bound satisfies

r+ < rc(q = 0.7) = 1.714 (21)

at α = 8.019.

4 Static scalar perturbation

Here, it is worth checking the instability bound (20) again
because the precise value of αth(q) determines scalarized
RN black holes. This can be achieved by obtaining the static
perturbed solutions to the linearized Eq. (14) with ω = 0 on
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q 0.7 8.019 n 0

40.84 n 1

99.89 n 2

1.0 1.5 2.0 2.5 3.0 3.5 4.0
z
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q 0.9
2.995 n 0

14.38 n 1

34.87 n 2
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Fig. 4 Radial profiles of ϕ = u(z)/z as function of z = r/(2M)

for the first three perturbed scalar solutions. The left-handed picture
is depicted for q = 0.7, while the right-handed one is designed for

q = 0.9 (near-extremal black hole). The number of nodes n is number
of zero crossings. All profiles approach zero as z → ∞

the RN background. For a given l = 0 and q, requiring an
asymptotically vanishing condition (ϕ∞ → 0) leads to the
fact that the existence of a smooth scalar determines a discrete
set for α. In addition, it determines n = 0, 1, 2, · · · branches
of scalarized black holes. Introducing a static condition (ω =
0) and a new coordinate of z = r/2M , the equation for u(r)
reduces to

f (z)u′′(z) + f ′(z)u′(z) −
(

αq2

4z4 − f ′(z)
z

)
u(z) = 0, (22)

where f (z) = (z − z−)(z − z+)/z2 with z± = (1 ±√
1 − q2)/2.
Here we wish to find a numerical solution even though

an analytic solution is available for l = 0 case [9]. For this
purpose, we first propose the near-horizon expansion for u(z)
as

u(z) = u+ + u′+(z − z+) + u′′+
2

(z − z+)2 + · · · . (23)

This expression can be used to set data outside the outer
horizon for a numerical integration from z = z+ to z = ∞.
Here the coefficients u′+ and u′′+ could be determined in terms
of a free parameter u+ as

u′+ = −αq2 + 4z+(z− − z+)

4z2+(z+ − z−)
u+,

u′′+ = αq2
(
αq2 + 8z−z+

)
32z4+ (z+ − z−)2 u+. (24)

An asymptotic form of u(z) near the infinity of z = ∞ is
given by

u(z) = u∞ + u(1)

z
+ u(2)

z2 + · · · , (25)

where two relations are expressed in terms of u∞ as

u(1) = z− + z+
2

u∞,

u(2) = −αq2 + 8(z2− + z−z+ + z2+)

24
u∞. (26)

At this stage, it is worth noting that we search for bound
state scalar solution to (22) in the RN spacetime. We are
free to choose the value of scalar field u+ at the hori-
zon because (22) is a linear differential equation and then,
we choose u∞ = 1 at infinity [2]. Actually, a numer-
ical solution could be obtained by connecting the near-
horizon form (23) to the asymptotic form (25) together
with selecting the parameter α for given q properly. In
this case, we obtain two discrete spectra of the param-
eter α: αn(q = 0.7) ≈ {8.019, 40.84, 99.89, · · · } and
αn(q = 0.9) ≈ {2.995, 14.38, 34.87, · · · }. The other four
spectra are given by αn(0.55) ≈ {15.46, 80.02, 196.1, · · · },
αn(0.418) ≈ {29.47, 153.9, 377.7, · · · }, αn(0.3) ≈ {60.69,

318.4, 382.0, · · · }, andαn(0.25) ≈ {88.98, 467.4, 1148,· · · }.
In Fig. 4, these solutions are classified by the order number
n = 0, 1, 2, · · · which is identified with the number of nodes
for ϕ(z) = u(z)/z. We find that the n = 0 scalar mode
without zero crossing represents the fundamental branch of
scalarized black holes, while the n = 1, 2 scalar modes with
zero crossings denote n = 1, 2 higher branches of scalarized
black holes. Actually, this corresponds to finding the l = 0
bifurcation points from the RN black hole with q = Q/M .
Finally, we confirm that for given q, αn=0(q) = αmin(q)

[underline value] recovers the threshold of instability αth(q)

exactly.

5 GL instability

The instability of the RN black hole may be regarded as
the GL instability since this instability is based on the
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s(l = 0) mode of a perturbed scalar and its linearized equa-
tion includes an effective mass term (not tachyonic mass of
m2

t < 0 presicely) which develops negative potential near
the horizon from the Maxwell kinetic term. In this section,
we wish to clarify the similarity and difference between the
GL instability (modal instability) and tachyonic instability
because the instability of RN black hole is closely related to
appearance of scalarized RN black holes.

Let us first introduce the tachyon propagation with mass
squared m2

t < 0 in the RN background as

(
�̄ − m2

t

)
ϕt = 0 (27)

which provides a Schrödinger equation for radial part

d2ut
dr2∗

+
[
ω2 − Vt (r)

]
ut (r) = 0 (28)

with the tachyon potential Vt (r)

Vt (r) = f (r)
[2M

r3 + l(l + 1)

r2 − 2Q2

r4 + m2
t

]
. (29)

As is shown Fig. 5, the potential Vt (r) for l = 0 tachy-
onic mode develops a positive region near horizon, while it
approaches −0.01 as r → ∞ for m2

t = −0.01. This shows
clearly the tachyonic instability of RN black hole because
the sufficient condition for instability (

∫ ∞
r+ drVt (r)/ f (r) =

−∞ < 0) is always satisfied with any mass m2
t = −const <

0. We wish to mention that Vt differs from V (r) in (15) in the
sense that the latter is negative near horizon and becomes pos-
itive after crossing the r -axis. We regard ‘−αQ2/r4’ in V (r)
as an effective mass term which can be made sufficiently neg-
ative by choosing α, making the scalar potential sufficiently
negative in the near horizon. However, its role is limited to
small r , because it approaches zero as r → ∞. Such a r -
dependent mass term is necessary to have the scalarized RN
black holes.

Now we consider the stability of Schwarzschild black hole
in Einstein-Weyl gravity whose action takes the form [6,8]

SEW = γ

∫
d4x

√−g
[
R − 1

2m2
2

CμνρσC
μνρσ

]
. (30)

Its linearized equation around the Schwarzschild black hole
is given by the Licherowicz-Ricci tensor equation

(�L + m2
2)δRμν = 0, (31)

where the Lichnerowicz operator is given by

�LδRμν = −�̄δRμν − 2R̄μρνσ δRρσ . (32)

mt

mt

Vt

Fig. 5 The tachyonic potential Vt (r) as function of r ∈ [r+,∞) for
the outer horizon radius r+ = 2.09(q = Q/M = 0.418) and l = 0.
For comparison, we include a massless scalar potential with m2

t = 0

We note here that the condition of non-tachyonic mass
requiresm2

2 > 0 because the Lichnerowicz operator contains
−�̄. Before we proceed, we would like to mention the GL
instability. For this purpose, we consider the perturbations
around the 5D black string with ds2

5 = ds2
4 + dz2 where ds2

4
denotes the Schwarzschild line element,

hMN (t, r, θ, χ, z) =
[
h(4)

μν hμz

hzν hzz

]
,

where the z-dependence is assumed to be of the form eikz and
the time-dependence takes the form of e�t . Actually, Eq. (31)
takes the same form as the linearized black string equation
for h(4)

μν with the transverse-traceless gauge [3]

(�L + k2)h(4)
μν = 0 (33)

except that the mass m2 of the Ricci tensor is replaced by the
wave number k along z direction. The GL instability states
that the 5D black string is unstable against the metric per-
turbation for k < kth = 0.876/r+ (long wavelength pertur-
bation). The GL instability is an s(l = 0)-wave spherically
symmetric instability from the four-dimensional perspective.
In addition, it is interesting to note that the dRGT massive
gravity having a Schwarzschild solution when formulated in
a diagonal bimetric form, has the same linearized equation
as (31) except replacing δRμν by hμν [23,24].

The l = 0 polar sector of Eq. (31) is given by

d2ϕ̃0

dr2∗
−

[
�2 + VZ (r)

]
ϕ̃0(r) = 0 (34)

with ϕ̃0 = s(l = 0)-mode of δRμν and the Zerilli potential
VZ (r) [7,24]

VZ (r) =
(

1 − r+
r

)

×
[
r+
r3 + m2

2 − 12r+(r − 0.5r+)m2
2 + 6r3(2r+ − r)m4

2

(r+ + r3m2
2)

2

]
.

(35)
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m2 = 1

m2 = 0.7

m

m2 = 0.876

VZ

Fig. 6 The Zerilli potentials VZ (r) as function of r ∈ [r+,∞) with
different masses m2 = 1 (stable), 0.876 (threshold), 0.7 (unstable),
0.4(unstable) for the horizon radius r+ = 2M = 1 and l = 0

r

r

r

m

Fig. 7 Plots of unstable tensor modes with different horizon radii. The
y(x)-axis denote � in e�t (mass m2 of massive spin-2 mode). Here we
read off the thresholds of instability located at mth ≈0.876, 0438, 0.219
for r+ = 1, 2, 4

As is shown in Fig. 6, all potentials develop negative region
near the horizon, whereas their asymptotic limits are nonzero
constants (VZ → m2

2, r → ∞). The former is similar to
V (r) in (15), while the latter is different from V → 0 as
r → ∞. This may imply that the structure of scalarized
black holes differs from that of non-Schwarzschild black hole
(Schwarzschild black hole with Ricci-tensor hair). Solving
Eq. (34) with boundary conditions, one finds unstable tensor
modes from Fig. 7. From Fig. 7, the GL instability mass
bound for s(l = 0)-mode is given by

0 < m2 < mth = 0.876

r+
, (36)

where mth represents the threshold of GL instability.
On the other hand, we confirm the precise value of mth by

solving the static Lichnerowicz-Ricci tensor equation as [7]

�Lψμν = λψμν, (37)

where the eigenvalue λ should be determined by requiring the
existence of a normalizable eigenfunction ψμν . This amounts
to seeking a negative eigenvalue λ for which the exponen-
tially diverging solution e

√−λ is absent when solving (37)
[equivalently, (34) with ω = 0 and m2

2 = −λ] numerically
by the shooting method. It determines λ = −m2

2 = −0.7677,
leading tom2 = mth = 0.876. We emphasize that there exists
just one negative value of λ for which one can have a normal-
izable eigenfunction. Here, we note that λ = −0.7677 is rele-
vant both to the edge of the zone of Schwarzschild instability
and the existence of non-Schwarzschild black holes. Impor-
tantly, this process is very similar to Sect. 4 for determining
αth in the EMS theory. The difference is that many branches
of α = {8.019, 40.84, 99.89, · · · } for q = 0.7 exist in the
EMS theory, while a single branch of m2

2 = 0.7677 exists
for the EW gravity. This may be so because their asymptotic
forms of potentials are different (V → 0 versus VZ → m2

2
as r → ∞). Hence, the boundary condition at infinity is an
asymptotically vanishing scalar (ϕ∞ → 0) in the EMS the-
ory, while it is a normalizable mode in the EM gravity. An
actual correspondence would be met if one includes a mass
term of V (φ) = 2αφ2 in (1), leading to the s(l = 0)-mode
potential

Vcp(r) = f (r)
[2M

r3 + α − (α + 2)
Q2

r4

]
, (38)

which has similar asymptote (Vcp → α as r → ∞) to VZ (r)
in (35).

From (36), selecting mth = 1 for r+ = rc = 0.876, one
finds the bound for unstable (small) black holes

r+ < rc. (39)

It is worth noting that r+ = rc corresponds to the bifur-
cation point which allow a new non-Schwarzschild black
hole [25]. At this stage, we note that the appearance of non-
Schwarzschild black hole is closely related to the threshold of
instability for Schwarzschild black hole in the Einstein-Weyl
gravity [6,8].

We summarize whole properties for instability happened
in the EMS theory and Einstein-Weyl gravity in Table 1. It
is emphasized that the role of s-mode scalars ϕ in the EMS
theory is replaced by a s-mode Ricci tensor δRμν(ϕ̃0) in the
Einstein-Weyl gravity.

6 Scalarized RN black holes

6.1 Exponential coupling

Before we proceed, we note that the RN black hole solution
is allowed for any value of α, while a scalarized RN black
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Table 1 Gregory-Laflamme (GL) instability among RN black hole (RNBH) in EMS theory and and Schwarzschild black hole (SBH) in Einstein-
Weyl gravity. LR denotes Licherowicz-Ricci tensor

Theory Einstein-Maxwell-scalar theory Einstein-Weyl gravity

Action SEMS in (1) SEW in (30)

BH without hair RNBH with φ̄ = 0 SBH with R̄μν = 0

Linearized equation Scalar equation (9) LR-equation (31)

GL instability mode s-mode of ϕ s-mode of δRμν

Bifurcation points α = 8.019, 40.84, 99.89, · · · for q = 0.7 m2
2 = 0.7677

Potential and its asymptotic form V (r) in (15) and Vr→∞ = 0 VZ (r) in (35) and VZ ,r→∞ = m2
2

GL instability bound α > αth(q) in (20) 0 < m2 < 0.876
r+ in (36)

Small unstable BH r+ < rc = 1.714 with αth = 8.019(q = 0.7) r+ < rc = 0.876 with mth = 1

BH with hair Scalarized RN BH Non-Schwarzschild BH

hole solution may exist only for α ≥ αth. The threshold of
instability for a RN black hole reflects the disappearance of
zero crossings in the perturbed scalar profiles. We explore a
close connection between the instability of a RN black hole
without scalar hair and appearance of a scalarized RN black
hole. As a concrete example, we wish to find a scalarized
RN black hole which is closely related to the q = 0.7(M =
1, Q = 0.7) and α ≥ 8.019 case (n = 0 case).

For this purpose, let us introduce the metric ansatz as [9]

ds2
sRN = −N (r)e−2δ(r)dt2 + dr2

N (r)

+r2(dθ2 + sin2 θdχ2), (40)

where a metric function is defined by N (r) = 1 − 2m(r)/r
with the mass function m(r). Also, we consider the U (1)

potential and the scalar as A = v(r)dt and φ(r). Substituting
these into Eqs. (2)–(4) leads to the four equations

−2m′(r) + e2δ(r)+αφ(r)2
r2v′(r)2 + [r2 − 2rm(r)]φ′(r)2 = 0,

(41)

δ′(r) + rφ′(r)2 = 0, (42)

v′(r) + e−δ(r)−αφ(r)2 Q

r2 = 0, (43)

e2δ(r)+αφ(r)2
r2αφ(r)v′(r)2 + r [r − 2m(r)]φ′′(r)

−
(
m(r)[2 − 2rδ′(r)] + r [−2 + r + 2m′(r)]δ′(r)

)
φ′(r)

= 0. (44)

Assuming the existence of a horizon located at r = r+,
one finds an approximate solution to equations in the near
horizon

m(r) = r+
2

+ m1(r − r+) + · · · , (45)

δ(r) = δ0 + δ1(r − r+) + · · · , (46)

φ(r) = φ0 + φ1(r − r+) + · · · , (47)

v(r) = v1(r − r+) + · · · , (48)

where the four coefficients are given by

m1 = e−αφ2
0 Q2

2r2+
, δ1 = −r+φ2

1 ,

φ1 = αφ0Q2

r+(Q2 − eαφ2
0 r2+)

, v1 = −e−δ0−αφ2
0 Q

r2+
. (49)

This approximate solution involves two parameters of φ0 =
φ(r+) and δ0 = δ(r+), which will be found when matching
(45)–(48) with the asymptotic solutions in the far region

m(r) = M − Q2 + Q2
s

2r
+ · · · , φ(r) = φ∞ + Qs

r
+ · · · ,

δ(r) = Q2
s

2r2 + · · · , v(r) = � + Q

r
+ · · · , (50)

where Qs and � denote the scalar charge and the electrostatic
potential, in addition to the ADM mass M and the electric
charge Q. For simplicity, we choose φ∞ = 0 here.

The EMS theory admits the RN black hole solution for
any α. However, it becomes an unstable black hole for α >

αth(q) (20), while it is stable against the scalar perturbation
for α < αth(q). We note that ‘α = αth(q)’ indicates the
threshold of instability. One expects that a scalarized RN
black hole is allowed for α ≥ αth(q) when q ≥ 0.7. This
means that the scalarized RN black holes bifurcates from the
RN black hole hole at α = αth(q), but q increases beyond
unity for the fixed α, implying that the scalarized RN black
hole could be overcharged [9].

For the RN black hole with φ0 = 0, the outer horizon
is located at r+ = 1.714 and the charge-mass ratio is given
by q = 0.7. In the Fig. 8 (left), one observes that for given
α = 8.019, the ratio of q for the n = 0 scalarized RN black
hole increases beyond the extremal RN black hole (q = 1)
as φ0 increases. Moreover, in the Fig. 8 (right), the scalar at
the horizon φ0 increases as the horizon radius r+ decreases.
The scalar at the horizon is terminated at r+ = 1.714, corre-
sponding to the RN outer horizon. It is the starting point for
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Fig. 8 (left) The charge-mass
ratios q of the n = 0 scalarized
RN black hole as functions of
φ0 with the fixed α = 8.019 for
exponential and quadratic
couplings. The horizontal line
represents the maximum ratio
q = 1 for the RN black hole.
(right) The scalars at the horizon
φ0 as functions of the horizon
radius r+ for the n = 0
scalarized black hole

q

r

Fig. 9 The scalar field φ0 = φ(r+) at the horizon as a function of
mass-like parameter α for exponential and quadratic couplings . All
the nontrivial branches with n = 0, 1, 2 start from bifurcation points
at αn = {8.019, 40.84, 99.89} on the trivial branch (RN black holes on
α-axis). They span the whole region without upper bound

a scalarized RN black hole, while from (21) it corresponds
to the ending point for unstable RN black hole.

It is known that the scalarization bands exist for the ESGB
theory [2]. A discrete set for η/M2 obtained from static scalar
perturbation corresponds to the right-end values of scalariza-
tion bands for a scalarized Schwarzschild black hole, while
the left-end values are provided by the regularity constraint
at the horizon (r4+ ≥ 6η2φ2

0). However, as is shown in
Fig. 9, there are no scalarization bands in the EMS theory
because we do not need to impose the regularity condition
at the horizon. As a result, there is no upper bound on α as
n = 0(α ≥ 8.019), 1(α ≥ 40.84), and 2(α ≥ 99.89).

Consequently, we obtain the scalarized RN black hole
solution depicted in Fig. 10. The metric function N (r) has a
different horizon at ln r = ln r+ = 0.067 in compared to the
RN horizon at ln r = ln r+ = 0.539 and it approaches the RN
metric function f (r) as ln r increases. Also, the scalar hair
φ(r) starts with φ0 = 0.44 at the horizon and it decreases as
ln r increases, in compared toφ(r) = 0 for the RN black hole.

6.2 Quadratic coupling

Considering the quadratic coupling of αφ2, we have to
choose φ̄ = const to obtain the RN black hole with dif-

ferent charge Q̃2 = αφ̄2Q2. In order to make the analysis
simple, we may choose an equivalent coupling of 1 + αφ2

with φ̄ = 0 to give the RN black hole. In this case, the bifur-
cation points of the RN solution are the same as those of
exponential coupling because the static scalar equation takes
the same form as in (22). Furthermore, instabilities of RN
solution are exactly the same for both couplings. To obtain
scalarized RN black holes, we solve Eqs. (41)–(44) by replac-
ing eαφ2

with 1 + αφ2. From Figs. 8, 9, 10, we observe that
the quadratic coupling shows the similar properties to the
exponential coupling.

As was mention in [26], however, the only difference
between two coupling in the ESGB theory is that the n = 0
fundamental branch of scalarized black holes is stable for the
exponential coupling, while the n = 0 fundamental branch
is unstable for the quadratic coupling. Therefore, we expect
that the similar thing will happen since the n = 0 scalarized
RN black hole turned out to be unstable in the EMS theory
with exponential coupling [27].

7 Discussions

First of all, we mention that scalarized RN black holes were
found in the EMS theory. It is emphasized that the appearance
of these black holes with scalar hair is closely related to the
instability of the RN black hole without scalar hair in the
EMS theory. Concerning the appearance scalarized RN black
holes [9], it is very important to obtain the precise threshold
αth of instability for the RN black hole in the EMS theory.
In this work, we have obtained the GL instability bound (20)
for the RN black hole in the EMS theory by considering
s(l = 0)-mode scalar perturbation.

Roughly speaking, a shape of scalar potential V (r) in (15)
determines the instability of RN black hole. The sufficient
condition of

∫ ∞
r+ dr [V (r)/ f (r)] < 0 for instability [18,19]

gives rises to an analytic bound (16), while the sufficient con-
dition for stability is given by the other bound (17). Explic-
itly, for q = 0.418, the sufficient condition for instability
takes the form of α > 30.74, whereas the sufficient con-
dition for the stability is given by 0 < α ≤ 19.83. In the
case of

∫ ∞
r+ dr [V (r)/ f (r)] > 0 with negative potential near
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Fig. 10 The n = 0 scalarized RN solutions. (left) Exponential cou-
pling. Two metric functions f (r) for RN and N (r) for scalarized RN
are given by functions of r for α = 8.019. We observe that the loga-
rithmic values of horizon radius of scalarized RN and RN black holes
are located at 0.067 and 0.539, respectively. The scalar hair φ(r) starts

with φ0 = 0.44 at the horizon and it decreases as ln r increases. (right)
Quadratic coupling. The logarithmic values of horizon radius of scalar-
ized RN and RN black holes are located at −0.062 and 0.539, respec-
tively

the horizon, however, it is not easy to make a clear decision
on the stability of the black hole. Here it is still stable for
19.83 < α ≤ 29.47 with q = 0.418 even providing neg-
ative region near the horizon shown in Fig. 1. In this case,
the S-deformation method might provide a complementary
result to support the stability of such black holes by finding
the deformed potential [21,22].

In general, the GL instability bound is not given by an
analytic form. As was shown in Fig. 3 depending on q, it
was determined by solving the linearized Eq. (9) numeri-
cally. In the case of q = 0.418, the GL instability bound is
α > 29.47 which is surely less than the sufficient condition
for instability (α > 30.74). Importantly, this picture shows
that the GL instability appeared in a simpler EMS theory than
the ESGB theory and Einstein-Weyl gravity. For q = 0.7, we
have obtained the GL instability bound of α > αth = 8.019.
We have derived the precise value of threshold αth = 8.019
again by solving the static linearized equation numerically.
Furthermore, we have obtained the n = 0(α ≥ 8.019) scalar-
ized RN black hole by solving Eqs. (41)–(44) numerically for
exponential and quadratic couplings.

Consequently, we have explored a clear connection
between GL instability of RN black hole and scalarization of
RN black hole.
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