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Abstract In the context of ultra-relativistic nuclear col-
lisions, we present a fast method for calculating the final
particle spectra after the direct decay of resonances from
a Cooper–Frye integral over the freeze-out surface. The
method is based on identifying components of the final parti-
cle spectrum that transform in an irreducible way under rota-
tions in the fluid-restframe. Corresponding distribution func-
tions can be pre-computed including all resonance decays.
Just a few of easily tabulated scalar functions then determine
the Lorentz invariant decay spectrum from each space-time
point, and simple integrals of these scalar functions over the
freeze-out surface determine the final decay products. This
by-passes numerically costly event-by-event calculations of
the intermediate resonances. The method is of considerable
practical use for making realistic data to model comparisons
of the identified particle yields and flow harmonics, and for
studying the viscous corrections to the freeze-out distribution
function.

1 Introduction

Ultra-relativistic heavy ion collisions create the deconfined
state of matter called the Quark–Gluon Plasma (QGP),
which has been under intensive experimental and theoret-
ical research in the last two decades [1,2]. Remarkably,
the expanding QGP has been very successfully described
as a relativistic fluid, where the system dynamics is com-
pletely determined by a few macroscopic fields like fluid
velocity uμ(x) or temperature T (x) [3–7]. As the fluid
expands and cools down below the cross-over tempera-
ture Tc ≈ 155 MeV, quarks and gluons are re-confined in
hadronic degrees of freedom. Therefore a systematic com-
parison between the hydrodynamic models of the QGP and
experimental data necessitates the conversion of hydrody-
namic fields into hadronic degrees of freedom.
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Various techniques of treating the hadronic phase have
been developed over the years. Resonances are sampled at
the freeze-out surface using the Cooper–Frye formula [8] and
then passed to hadronic transport models, which describe
both the decays and possible rescatterings of resonances [9,
10]. However direct resonance decays (without rescatter-
ings) are often used in phenomenological studies [11–14].
The decay processes of resonances are simulated by Monte-
Carlo generators [15–17], or by semi-analytic treatments of
decay integrals [18,19]. From ∼ 300 species of hadronic
resonances produced in high energy nuclear collisions, only
a handful long-lived hadrons (e.g. pion, kaons and protons)
reach the particle detectors and are directly observed [20,21].
In this paper we show how to by-pass the numerically costly
procedure of calculating the intermediate resonance decays
and to relate directly the hydrodynamic fields on the freeze-
out surface to the final decay particle spectra.

Let us remark here that semi-analytic description of res-
onance decays was studied previously [18,19,22,23]. While
these works constitute the basis of our approach, our frame-
work is applicable to arbitrary freeze-out surfaces and more
general particle distribution functions.

In Sect. 2 we describe a particle decay process as a lin-
ear Lorentz invariant map, which transforms the spectrum of
initial (or primary) particles to the spectrum of final decay
products. In Sect. 3 we argue that the decay map can be
applied directly to the particle distribution function before
performing the Cooper–Frye integral and we define a distri-
bution function for the decay products. Using group theoret-
ical arguments we find the Lorentz invariant decomposition
of the decay particle distribution functions as a sum of frame-
independent weight functions, which we calculate. In Sect. 4
we show that the same procedure also applies to viscous
and linear perturbations of particle distribution function on
the freeze-out hypersurface. Then in Sect. 5 we discuss the
implementation of fast resonance decay procedure for gen-
eral freeze-out surfaces and phenomenologically convenient
setups of blast-wave freeze-out and mode-by-mode hydro-
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dynamics. We end with discussion of further extensions and
applications in Sect. 6. Finally Appendix A gives the deriva-
tion of the irreducible decay spectrum components.

2 Lorentz invariant decay map

Relativistic particle decays is a well established subject [18,
19,21,24–26] and here we briefly discuss some of the key for-
mulas. In kinetic theory, decays can be treated as 1 ↔ n par-
ticle scatterings. The probability for such an event is given by
a Lorentz invariant integral over the scattering matrix squared
|M|2, the available momentum phase space (constrained by
4-momentum conservation) and the phase space densities of
initial and final particles, i.e. the gain and loss terms. In chem-
ical and thermal equilibrium both the decay and the reverse
process are equally likely, however, if the system becomes
dilute and falls out of the detailed balance, multi-particle
scatterings become very improbable and the 1 → n decays,
which are linear in the initial particle densities, dominates the
subsequent phase space evolution of particles. This is exactly
what happens for hadron resonances in heavy ion collisions
below the freeze-out temperature. At sufficiently late times,
all allowed decays will have taken place and the Lorentz
invariant spectrum of the final particle species b will be pro-
portional to the primary populations of resonance species a,
which decay (directly or through intermediate resonances) to
particles of type b.1

A particle decay is intrinsically a probabilistic process,
and the resultant particle spectrum from a decay cascade will
fluctuate event by event, but for very large number of initial
resonances (or an average over many decay cascades), we
can write the 1-body particle spectra of final particles as a
Lorentz invariant integral over the primary resonances.2

Ep
dNb

d3p
=

∫
d3q

(2π)32Eq
Da
b (p, q) Eq

dNa

d3q
. (1)

The linear decay map Da
b (p, q) simply gives the Lorentz

invariant probability of particle a with momentum q to decay
to a particle b with corresponding momentum p. Summing
over all species of primary resonances a then gives the total
decayed particle spectrum of particle species b. We note in
passing that the decay map Da

b (p, q) fulfils certain sum rules
as a consequence of conservation laws for energy, momen-
tum, net baryon number, electric charge, etc.

1 This applies to all strong decays of hadron resonances, which have
typical lifetimes τ ∼ 10−23 s and decay before reaching the detector.
Some weak decays of strange particles take place within the detector
and can be reconstructed experimentally [27,28].
2 We also note here that the two-particle distribution
EpEqdNbc/(d3pd3q) inherits correlations from a decay a → b + c
as a consequence of energy and momentum conservation. However, in
the present paper we only concentrate on one-particle distributions.

In general the linear map Da
b (p, q) is a composition of

phase space integrals, 4-momentum conservation and decay
matrix elements for each successive decay in the decay cas-
cade [19,29]. Most of the listed decays or hadron resonances
in the Particle Data Group book [21] are 2-body and 3-
body decays, which in heavy ion simulations are customary
approximated as isotropic decays with a branching ratio B.
For the simple case of isotropic two-body decay a → b + c
the phase space integral of the decay partner c can be done
analytically and the map Da

b|c is reduced to a Lorentz invari-
ant delta function of the product of initial and final particle
momenta pμqμ [19,21,24]

Da
b|c(p

μqμ) = B
4π2ma

pab|c
δ(qμ pμ + maE

a
b|c), (2)

where B is the branching ratio for this process. In the rest-
frame of particle a, Eq. (2) is simply a uniform probabil-
ity distribution on a sphere with radius |p| = pab|c fixed by
energy conservation

pab|c ≡ 1

2ma

√
((ma + mb)2 − m2

c)((ma − mb)2 − m2
c),

(3)

and we also use Ea
b|c ≡

√
m2

b + (pab|c)2.

Isotropic three body decays a → b + c + d have larger
phase-space and 4-momentum conservation is not enough
to fix the particles’ momenta even in the rest-frame of the
primary resonance a. However treating the two partner par-
ticles c and d as a fictitious particle c̃ with an effective mass
m2

c̃ = −(pc + pd)2, the three body decay map Da
b|cd can

be written as an integral of the 2-body decay map for the
allowed values of mc̃ [19,21,24]

Da
b|cd(p

μqμ) =
∫ ma−mb
mc+md

dmc̃ pab|c̃ p
c̃
c|d D

a
b|c̃(p

μqμ)∫ ma−mb
mc+md

dmc̃ pab|c̃ p
c̃
c|d

. (4)

where pab|c̃ is the momentum of b in the rest-frame of a and

pc̃c|d is the momentum of particle c or d in their common
rest-frame [21].

Composing 2-body and 3-body decay maps, Eq. (2) and
Eq. (4), according to the chain rule

Da
b (p

μqμ) =
∫

d3k
(2π)32Ek

De
b(p

μkμ)Da
e (k

νqν) (5)

a map for an arbitrary decay cascade can be constructed.
Importantly, this a → b + X decay map will be itself only
a function of the invariant product pμqμ of initial and final
particle momenta. Such a map can be calculated iteratively
by applying the 2-body decay map Eq. (2) for which the
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chain rule Eq. (5) can be reduced to just a single dimensional
integral over dimensionless variable w.3

Da
b (p

μqμ) =B
1

2

m2
e

m2
b

∫ 1

−1
dw Da

e

(
qμ pμ

meEe
b|c

m2
b

+w

√
(qμ pμ)2 − m2

am
2
b

me peb|c
m2

b

)
(6)

The extension to three body decays follows immediately by
the application of Eq. (4).

The decay chain map Da
b (q

μ pμ) is independent of initial
particle spectrum and only depends on particle properties
and branching ratios listed in the particle data book [21].
This means that the main computational cost is in the eval-
uation of the decay map, which only needs to be done once,
and then the final decay spectrum can be computed from
an arbitrary initial particle spectrum according to Eq. (1). In
particular, more finer details of resonance decay processes
could be thus efficiently treated. The primary example is a
finite width of resonances, which can be included in the decay
map as an additional integral over resonance mass with, for
example, Breit-Wigner distribution [15]. The formalism may
also be generalized to anisotropic as well as spin-dependent
decays. However, even ignoring these additional complica-
tions, the sheer number of primary resonances in heavy ion
collisions makes the numerical evaluation of Eq. (1) a bur-
den. Therefore we will now specialize to the decays of initial
resonance spectrum specified by a common freeze-out pro-
cedure and will leave the inclusions of resonance widths and
other improvements of the decay map for future work.

3 Cooper–Frye for the final decay spectrum

Even after integration of the intermediate resonances in the
decay map, evaluation of the total decayed particle spectrum
requires the sum over a (possibly large) number of primary
resonances and corresponding freeze-out integrals. This sum
can be performed explicitly, if we make some assumptions
about the initial resonance spectra. In the hydrodynamic
description of heavy ion collisions, the initial hadron spec-
trum is given as an integral over a freeze-out hypersurface σ

according to the Cooper–Frye formula [8]4

3 In the rest-frame of the particle b the variable w has the physical
interpretation as the fraction of particle’s a momentum in the direction
of the fluid velocity. The limit of the massless final state particlemb = 0

can be treated by a simple change of variables u = (1 − w)
m2
e

m2
b

.

4 The hypersurface element is dσμ = d3x
√
hnμ, where h is the deter-

minant of the induced metric on the freeze-out surface, d3x
√
h is the

invariant volume element and nμ is a normal vector on the surface,
which we take to be pointing inwards. In this work we use mostly pos-
itive metric convention.

Ep
dNa

d3p
= νa

(2π)3

∫
σ

fa(−uν pν, T, μ)pμdσμ, (7)

where νa is the degeneracy factor of spin/polarization states
and fa is a particle distribution function which depends on
local fluid temperature T (x), flow velocity uμ(x), and chem-
ical potential μ(x). We will discuss more general initial par-
ticle distributions arising in dissipative hydrodynamics in
Sect. 4.

In the calculation of the decay particle spectrum the order
of surface integral and the linear map given by Eq. (1) can be
reversed, resulting in the formula for the final decay particle
spectrum

Ep
dNb

d3p
= νb

(2π)3

∫
σ

gμ
b (p, u, T, μ)dσμ, (8)

where we define vector distribution function gμ, which for
the primary resonances is gμ

a = fa pμ, while for the decay
products it is given by

gμ
b (p, u) ≡

∑
a

νa

νb

∫
d3q

(2π)32Eq
Da
b (p

νqν) fa(−uσqσ )qμ.

(9)

Once the function gμ
b (p, u, T, μ) is calculated and stored,

the final decay spectra can be straightforwardly obtained by
Cooper–Frye integral, Eq. (8), without the need of ever cal-
culating distribution of intermediate hadrons.

If the initial distribution fa is only a function of particle
energy Ēq = −qμuμ in the reference frame moving with
velocity uμ5 and some Lorentz scalars, e.g. temperature T
or chemical potentials μ, then by Lorentz invariance of the
decay process, the vector distribution function before and
after the decay integral in Eq. (9) can be uniquely written as
a sum of two scalar functions

gμ
b (p, u) = f eq

1,b(Ēp)
(
pμ − Ēpu

μ
) + f eq

2,b(Ēp)Ēpu
μ.

(10)

Here pμ, and Ēpuμ are the only available Lorentz vec-
tors, and f eq

1 and f eq
2 are functions only depending on the

Lorentz scalar Ēp, and (implicitly) μ, T , and decay param-
eters. In the fluid-restframe, 4-vectors Ēpuμ = (Ēp, 0) and
pμ − Ēpuμ = (0, p̄) are two irreducible SO(3) representa-
tions transforming under rotations as a scalar and a vector,
respectively. The decay operator in Eq. (9) is a linear map
and therefore guarantees that f eq

1 and f eq
2 components do

not mix during (isotropic) decays. The initial hadrons on the
freeze-out surface are initialized by gμ

a = fa pμ and for the
equilibrium distribution function both components f eq

1 and

5 In principle uμ could be any time-like vector, not necessarily associ-
ated with a fluid flow.
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f eq
2 are initialized to be either Bose-Einstein or Fermi-Dirac

distributions

feq(−uμ pμ, T, μ) =
(
e−uμ pμ/T−μ/T ∓ 1

)−1
, (11)

where μ = ∑
Q μQQ represents the sum over the product of

all relevant chemical potentials and corresponding charges.
Instead of applying the full decay map Da

b (q
μ pμ) in

Eq. (9) and calculating immediately the final vector distri-
bution function gμ

b (from which its components f eq
i,b can be

determined), one can also apply repeatedly the elementary
2-body and 3-body decay maps. This procedure is simple,
because for the isotropic 2-body decay a → b+ c in Eq. (2),
the transformation rule between the parent and child compo-
nents f ai and f bi is simply a one dimensional integral. Leav-
ing the details for Appendix A, the iterative relation between
the components is (c.f. Eq. (6))

f eq
1,b(Ēp) = B

νa

νb

m2
a

m2
b

1

2

∫ 1

−1
dw f eq

1,a (E(w))
Q(w)

|p̄| , (12a)

f eq
2,b(Ēp) = B

νa

νb

m2
a

m2
b

1

2

∫ 1

−1
dw f eq

2,a (E(w))
E(w)

Ēp
, (12b)

where we used the abbreviations

E(w) ≡ maEa
b|c Ēp

m2
b

− w
ma pab|c|p̄|

m2
b

, (13a)

Q(w) = maEa
b|c|p̄|

m2
b

− w
ma pab|c Ēp

m2
b

, (13b)

and Ēp and p̄ are the energy and momentum of particle b
in the fluid-restframe. The isotropic three body decays a →
b+c+d can be easily incorporated by integrating the 2-body
transformation rules Eq. (12) over the effective decay partner
mass mc̃ as in Eq. (4). Such one-dimensional integrals can be
easily done by standard numerical integration routines [30].

For concreteness consider the decay of h1 mesons illus-
trated in Fig. 1. The initial irreducible components f eq

i,h1
for

h1 meson are initialized by the Bose-Einstein distribution
depending on temperature and chemical potential

f eq
i,h1

= feq,h1(Ēp, T, μ). (14)

Then the two body decay h1 → ρπ produces contributions
to ρ and π mesons, f h1

i,ρ and f h1
i,π , according to Eq. (12). These

have to be added to the corresponding thermal distributions
and the feed-down from other resonances.

f eq
i,ρ = feq,ρ(Ēp, T, μ) + f h1

i,ρ + f other
i,ρ , (15)

f eq
i,π = feq,π (Ēp, T, μ) + f h1

i,π + f ρ
i,π + f other

i,π . (16)

Fig. 1 Decay cascade h1 → ρπ → πππ . Here h1 meson has only
the initial thermal distribution, while ρ and π receive feed-down from
resonances’ decays

Here f ρ
i,π represents the total feed-down from ρ → ππ

decay irrespective of ρ’s origin and which is calculated
according to Eq. (12) from parent particle distribution f eq

i,ρ .
By starting from the heaviest resonance and summing the
thermal and decay contributions of lower mass resonances,
the irreducible components of the final stable particles can
be calculated with the minimal number of decay integrals.

The physical meaning of the irreducible components f eq
i,b

of the vector distribution function gμ
b can be clarified by con-

sidering particle spectrum in the fluid-restframe

Ep
dNb

d3p
= νb

(2π)3

∫
σ

[
f eq
1,b

(
pμ − Ēpu

μ
) + f eq

2,b Ēpu
μ
]
dσμ

= νb

(2π)3

∫
σ

( f eq
1,b p

i dσi + f eq
2,bEpdσ0)

∣∣∣∣
uμ=(1,0)

,

(17)

where now f eq
1,b is the part of particle spectrum propor-

tional to pidσi element of the freeze-out surface, while f eq
2,b

contributes to the spectrum with Epdσ0 weight. In Fig. 2
we show the irreducible components f eq

1 and f eq
2 for the

final pion π+ spectrum from a completely decayed ther-
mal Tfo = 145 MeV distributions of hadron resonances as
used in Monte-Carlo decay chain generators [17].6 We see
that the f eq

2 component, which gives the sole contribution to
the particle spectra for time-like (fixed time) freeze-out sur-
face, is larger than thermal pion distribution due to feed-down
from resonance decays, while the space-like component f eq

2
remains of the same size. In an arbitrary reference frame
the decay pion spectrum can be straightforwardly calculated
using frame independent formulas Eq. (10) and Eq. (8). We
will discuss this further in Sect. 5.

6 For simplicity of comparison, we used the default list of decay chains
included in THERMINATOR 2 package [17], which includes strong
and weak decays of hadron resonances with mass < 2.5GeV.
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Fig. 2 Lorentz invariant pion π+ weight functions f eq
i (−uμ pμ),

Eq. (10), which determine the final pion spectrum at each space-time
point on the freeze-out surface, Eq. (17). Direct decays of ∼ 300 hadron
resonances were computed from equilibrium distributions with tem-
perature Tfo = 145 MeV and zero chemical potential μQ = 06. The
explicit prefactors indicate the required freeze-out surface elements for
the Cooper–Frye integration in the fluid-restframe. Thermal pion dis-
tribution function shown for comparison

Fig. 3 The decay pion π+ spectra for a simple freeze-out surface7

for different decay channels calculated using irreducible weight func-
tions (see Fig. 2). Results from a Monte-Carlo generator are shown for
comparison [17]

In Fig. 3 we plot the final pion spectra π+ for a simple
freeze-out surface with a constant Bjorken time, freeze-out
temperature and radial velocity.7 In addition to the total pion
spectrum (which includes all decay chains producing π+),
we also show the pion spectrum from the dominant decay
channels ρ+,− → π+ + π0,− and ω0 → π+ + π− + π0

(where ρ+,0 and ω0 spectra themselves include decay con-
tributions from yet heavier resonances). We compare our
results with the decay pion spectrum generated by a Monte-
Carlo resonance decay generator THERMINATOR 2 [17].
All spectra are in excellent agreement, however we would
like to stress that the decay pion spectrum in Fig. 3 is obtained
immediately from a simple Cooper–Frye freeze-out proce-

7 We used the following THERMINATOR 2 options for the freeze-out
surface: τfo = 8.17 fm, Tfo = 145 MeV, radius of the surface R =
8.21 fm and a constant radial velocity vT = 0.341.

dure Eq. (8). The vector distribution function components
f eq
i shown in Fig. 2 only need to calculated once for a par-

ticular freeze-out temperature Tfo and then can applied to
any shape of the freeze-out surface or the fluid velocity field
uμ(x), without the need of costly calculations of intermediate
resonances.

Although we gave an example of a constant temperature
and chemical potential freeze-out surface, our method can
be equally well applied for varying freeze-out temperature
or chemical potential. In such case irreducible components
of the vector distribution function f eq

i will need to be tabu-
lated not only in the fluid-restframe energy Ēp = −uμ pμ,
but also the additional freeze-out variables. However, since
this tabulation needs only to be done once, the freeze-out inte-
gral Eq. (8) can be performed essentially without additional
computational cost.

4 Viscous and linear corrections to particle spectrum

In viscous hydrodynamics, the freeze-out distribution func-
tion differs from the equilibrium Bose-Einstein or Fermi-
Dirac distribution with additional dependences on the dissi-
pative terms like the shear-stress tensor πμν(x) and the bulk-
viscous pressure 	(x), so that the initial vector distribution
function in the Cooper–Frye formula, Eq. (7), is

gμ(p, u, π,	) = f (uμ(x), πρσ (x),	(x), pμ)pμ. (18)

The functional dependence of the distribution function on
viscous corrections for hadron resonance gas is largely unre-
solved problem even at linear order in the dissipative terms
and various parametrizations are used [31,32]. Therefore
below we also consider only linear dissipative corrections
to the decay particle spectrum, but note that higher order
terms, if known, could be also straightforwardly included.
For concreteness we consider the form of viscous δ f correc-
tions used in modern hydrodynamic simulations [32]

δ f bulk(Ēp,	) = feq(1 ± feq)

[
Ē p

T

(
1

3
− c2

s

)

−1

3

m2

T Ē p

]
τ		

ζ
, (19)

δ f shear(Ēp, πρν p
ρ pν) = feq(1 ± feq)

πρν pρ pν

2(e + p)T 2 . (20)

Here cs(T ) is the speed of sound of the medium at the freeze-
out temperature, m – mass of the primary resonance, and
τ	/ζ is the ratio of bulk relaxation time and bulk viscosity.

We want to compute the final decay particle spectrum aris-
ing from such viscous components. The procedure is anal-
ogous to the one described in the previous section. First we
expand Eq. (18) to linear order in viscous corrections
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Fig. 4 Lorentz invariant pion π+ weight functions f bulk
i (−uμ pμ) and

f shear
i (−uμ pμ), Eqs. (23) and (23), which determine the final pion spec-

trum from bulk and shear viscous perturbations of the distribution func-
tions of primary resonances, Eqs. (19) and (20). The explicit prefactors

indicate the required freeze-out surface elements for the Cooper–Frye
integration in the fluid-restframe. Note that a term T 2/|p|2 was factored
out from f shear

i components. Bulk/shear perturbation of (initial) pion
distribution function shown for comparison

gμ = gμ
eq + gμρσ

shearπρσ + gμ
bulk	 + . . . (21)

where the derivatives gμρσ
shear ≡ ∂gμ/∂πρσ and gμ

bulk ≡
∂gμ/∂	 can only be functions of 4-vectors pμ and Ēpuμ,
and Lorentz scalars like temperature, chemical potential or
resonance mass. Initially they are given by Eqs. (19) and (20)

gμ
bulk	 = δ f bulk pμ, gμρσ

shearπρσ = δ f shear pμ. (22)

After the decays gμ
bulk and gμρσ

shear can be written uniquely
as a certain sum of Lorentz vectors/tensors. In Appendix A
we discuss the general irreducible decomposition of Lorentz
tensors in terms of representations transforming differently
under SO(3) rotations in the fluid-restframe. Here we only
reproduce the final result for the bulk

gμ
bulk	 =

[ (
pμ − Ēpu

μ
)
f bulk
1 (Ēp)

+ Ēpu
μ f bulk

2 (Ēp)
]

× −τπ	

ζ
, (23)

and shear perturbations

gμνρ
shearπνρ =

{
[ηρσ (pμ − Ēpu

μ) − 2

5
ηρμ
σα pα] f shear

1 (Ēp)

+ 2

5
ηρμ
σα pα f shear

2 (Ēp)

+ ηρσ Ēpu
μ f shear

3 (Ēp)
}

× pνπνρ pσ

2(e + p)T 2 . (24)

The bulk pressure perturbation does not introduce new ten-
sor structures and the decomposition is the same as for the
equilibrium distribution in Eq. (10), but the initial distri-
bution functions f bulk

i are, of course, different and can be

read off from Eq. (19). The linear perturbations in the shear-
stress tensor induces a rank-3 tensor distribution function
gμνρ

shear, which has three non-vanishing irreducible compo-
nents f shear

1 , f shear
2 and f shear

3 corresponding to a symmet-
ric traceless tensor, vector and scalar representations (see
Appendix A). The irreducible weight functions fi of final
decay particle distribution can be calculated iteratively using
similar integrals as for the equilibrium distribution Eq. (12)

f bi (Ēp) = B
νa

νb

m2
a

m2
b

1

2

∫ 1

−1
dwAi (w) f ai (E(w)). (25)

where integration measures Ai (w) are listed in Appendix A.
In Fig. 4 we show the final decayed pion π+ spectrum

in the fluid-restframe due to viscous perturbations at Tfo =
145 MeV.8 Different lines in Fig. 4 correspond to different
contributions stemming from components fi in Eq. (23) and
Eq. (24). The labels next to the lines indicate the required
factors for the Cooper–Frye freeze-out integral in the fluid-
restframe. Note that we factored in |p̄|2 for the shear perturba-
tions. We also factored out the terms proportional to the trans-
port coefficients, so any (small) viscous perturbation will pro-
duce the same correction to the particle spectrum (up to the
magnitude) in the local fluid-restframe. However the pres-
ence of such viscous corrections in the hydrodynamic evo-
lution modifies the fluid velocity and temperature fields, and
therefore the freeze-out surface will itself be different. Then
evaluating the generalized Cooper–Frye freeze-out integral
Eq. (8) will yield different particle spectrum.

8 At Tfo = 145 MeV the sound velocity needed for bulk perturbation
Eq. (19) is c2

s (Tfo) ≈ 0.14 [33].
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Fig. 5 Lorentz invariant pion π+ weight functions f temp.
i (−uμ pμ)

and f velocity
i (−uμ pμ), Eqs. (23) and (23), which determine the final

pion spectrum from temperature and velocity perturbations of the distri-
bution functions of primary resonances, Eqs. (28) and (29). The explicit

prefactors indicate the required freeze-out surface elements for the
Cooper–Frye integration in the fluid-restframe. Note that a term T̄ /|p|
was factored out from f velocity

i components. Temperature/velocity per-
turbation of (initial) pion distribution function shown for comparison

Similarly to viscous perturbations, one can also consider
linear perturbations of fluid velocity δuμ, or temperature δT
around the background fields ūμ and T̄ ,9

δ f temp.(Ēp, δT ) = feq(1 ± feq)
Ēp

T̄

δT

T̄
, (26)

δ f velocity(Ēp, δuμ p
μ) = feq(1 ± feq)

δuν pν

T̄
. (27)

The irreducible decomposition for temperature perturbation
is the same as for the equilibrium distribution

gμ
temp.δT =

[ (
pμ − Ēpu

μ
)
f temp.
1 (Ēp)

+ Ēpu
μ f temp.

2 (Ēp)
]

× δT

T̄
. (28)

The irreducible decomposition for velocity perturbations
consists of symmetric traceless tensor, vector and scalar rep-
resentations with corresponding weight functions f velocity

i

gμν
vel.δuν =

{
[ηνρ(pμ − Ēpu

μ) − 1

3
ηνμ pσ 
σρ)] f velocity

1 (Ēp)

+ 1

3
ηνμ pσ 
σρ f velocity

2 (Ēp)

+ ηνρ Ēpu
μ f velocity

3 (Ēp)
}

× δuν pρ

T̄
. (29)

The total vector distribution function is then given by

gμ
ideal = ḡμ + gμρ

vel.δuρ + gμ
temp.δT + . . . (30)

9 Note that a constant temperature freeze-out surface depends on δT .
However, one can also consider a freeze-out at a constant background
temperature T̄ , which is then independent of the perturbation.

In Fig. 5 we show the particle spectrum decomposition
due to temperature and velocity perturbation for the same
freeze-out temperature. As before we factor out the explicit
dependence on the magnitude of the perturbation in the
fluid-restframe. Such linearised perturbations can be used to
study, for example, the angular velocity modulations around
a known freeze-out flow uμ, e.g. provided by a blast-wave
model or in the mode by mode description of heavy ion col-
lisions [34,35].

We would like to note in passing that other types of
perturbations to the equilibrium spectrum can be consid-
ered. At lower collision energies, as in the Beam Energy
Scan studies, the freeze-out distribution function will also
depend on the chemical potential μQ(x) and one could con-
sider linear perturbations of the chemical potential δμQ ,
which are treated identically to the temperature variations
Eq. (28). Also, the hydrodynamics at non-zero baryon den-
sity must also evolve the baryon current jμ = nBuμ + jμD
(e.g. see [36]). The transverse (diffusion) part of this cur-
rent will induce perturbations of the freeze-out surface dis-
tribution functions analogous to velocity perturbations in
Eq. (29)

δ f diffusion(Ēp, jμD pμ) = feq(1 ± feq)

[
nB

e + p
− QB

Ēp

]
jνD pν

κ̂
.

(31)

where nB is the local baryon density, QB is the baryon charge
and κ̂B is a related transport coefficient [37]. Such additional
terms are easy to accommodate in our framework, because
the same transformation rules can be used to find the final
decay spectrum (see Appendix A).
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5 Application to blast-wave and mode-by-mode
freeze-out

In this section we will discuss practical implementation of
the fast resonance decay procedure in heavy ion collisions.
Collecting together all equilibrium and viscous terms con-
tributing to the particle spectrum, we can group them by how
they are contracted with the freeze-out surface element dσμ

Ep
dN

d3p
= ν

(2π)3

∫
σ

dσμ

{
Fpμ+GĒpu

μ+H
pνπ

μ
ν |p̄|2

2(e + p)T 2

}
,

(32)

where explicitly these terms are

F = f
eq
1 (Ēp) + f shear

1 (Ēp)
πρσ pρ pσ

2(e + p)T 2 + f bulk
1 (Ēp)

−τπ	

ζ
,

G = f
eq
2 (Ēp) − f

eq
1 (Ēp) +

(
f bulk
2 (Ēp) − f bulk

1 (Ēp)
) −τπ	

ζ

+
(
f shear
3 (Ēp) − f shear

1 (Ēp)
) πρσ pρ pσ

2(e + p)T 2 ,

H =
(
f shear
2 (Ēp) − f shear

1 (Ēp)
) 2

5
. (33)

The required values of fluid velocity uμ, shear and bulk
stresses πμν , 	 on the freeze-out surface must be provided
by the hydrodynamic model of the QGP fireball or freeze-
out parametrization, e.g. blast-wave model [38]. Then the
complete final decay particle spectrum (for a particle species
or even for the total sum of charged particles) can be com-
puted according to Eq. (32) by using the tabulated values of
irreducible weight functions fi .

Up to now the freeze-out surface was left completely gen-
eral. An interesting application of our formalism arises from
the mode-by-mode solution to the fluid dynamic expansion
of a fireball [34,35]. In that formalism, one decomposes the
fluid fields (temperature, chemical potentials, fluid velocity,
shear stress and bulk viscous pressure) into a background
part and a fluctuating part, e.g. uμ = ūμ + δuμ. In high
energy collisions, a boost invariance is a good symmetry and
the collision is often parametrized in Bjorken coordinates

ds2 = −dτ 2 + dr2 + r2dφ2 + τ 2dη2. (34)

It is particularly convenient to take the background part as
symmetric with respect to azimuthal rotations and longitu-
dinal Bjorken boosts (see e.g. [39] for the fluid equations of
motion in this situation). Then the hadron spectrum resulting
from the fluid fields after freeze-out can be also split into a
background, which is invariant under these symmetries (now
in momentum space), and a fluctuating part. The freeze-out
surface in this case is given by a 1D curve in τ–r plane,
which can be conveniently parametrized by (τ (α), r(α))

where α ∈ (0, 1) and

dσμ = τ(α)r(α)

(
∂r

∂α
,− ∂τ

∂α
, 0, 0

)
dαdφdη (35)

Similarly by symmetry the fluid velocity has only two com-
ponents and can be written in terms of a radial fluid rapidity
χ̄ ,

ūμ = (cosh(χ̄), sinh(χ̄), 0, 0) . (36)

Note that then the particle energy in fluid-restframe is

Ēp = mT cosh(χ̄) cosh(η − y) − pT sinh(χ̄) cos(φ − ϕ).

(37)

where in the coordinate system of Eq. (34) and at space
time point (τ, r, φ, η) the particle momentum components
are given by

pτ = mT cosh(η − y), pr = pT cos(φ − ϕ),

pφ = pT
r

sin(φ − ϕ), pη = mT

τ
sinh(η − y).

(38)

Here we use the transverse momentum pT (and transverse

mass mT =
√
m2 + p2

T ), the particle momentum angle ϕ,
and the particle momentum rapidity y.

The background contribution to the shear stress tensor can
be parametrized in terms of two independent components,
here taken to be π̄

φ
φ and π̄

η
η

π̄ττ = −ūr ūr
[
π̄

φ
φ + π̄

η
η

]
, π̄τr = π̄rτ = ūr ūτ

[
π̄

φ
φ + π̄

η
η

]
,

π̄rr = −ūτ ūτ
[
π̄

φ
φ + π̄

η
η

]
, π̄φφ = r2π̄

φ
φ , π̄ηη = τ2π̄

η
η ,

(39)

and the bulk viscous pressure is simply 	̄.
The decay hadron spectrum for azimuthally and boost

invariant freeze-out surface then reduces to a single integral

dN

2πpT dpT dy
= ν

(2π)3

∫ 1

0
dα τ(α)r(α)

{
∂r

∂α

[
K eq

1 + π̄
η
η

2(e + p)T 2 K shear
1

+ π̄
φ
φ

2(e + p)T 2 K shear
3 + −τπ	̄

ζ
K bulk

1

]

− ∂τ

∂α

[
K eq

2 + π̄
η
η

2(e + p)T 2 K shear
2
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+ π̄
φ
φ

2(e + p)T 2 K shear
4 + −τπ	̄

ζ
K bulk

2

]}
,

(40)

were the freeze-out kernels Ki (pT , χ̄) are solely functions
of the transverse particle momentum and radial fluid velocity
ūr = sinh χ̄ , and the terms proportional to viscous tensors are
factored out. Analogously to the original irreducible weights
fi , the freeze-out kernels can be precomputed and applied to
an arbitrary freeze-out surface (τ(α), r(α)) and radial fluid
rapidity profile χ̄ (α). For the equilibrium components f eq

i
these kernels are given by the following rapidity and angle
integrals

K eq
1 (pT , χ̄) =

∫ 2π

0
dφ

∫ ∞

−∞
dη

{
f eq
1 (Ēp)mT cosh(η − y)

+ (
f eq
2 (Ēp) − f eq

1 (Ēp)
)
Ēp cosh(χ̄)

}
,

K eq
2 (pT , χ̄) =

∫ 2π

0
dφ

∫ ∞

−∞
dη

{
f eq
1 (Ēp)pT cos(φ − ϕ)

+ (
f eq
2 (Ēp) − f eq

1 (Ēp)
)
Ēp sinh(χ̄)

}
.

(41)

Recall that Ēp also depends only on the differences of η − y
and φ−ϕ, Eq. (37), so the dependence on momentum rapidity
y and angle ϕ disappears after the integration. The integral
expressions for viscous kernels are given in Appendix B. For
the simple constant time freeze-out surface used in Fig. 3
only the temporal part of the freeze-out surface contributes
and the decay pion spectrum is proportional to K eq

1 (pT , χ̄ =
arctan vT ).

All deviations from the azimuthally and boost invariant
background in mode-by-mode hydrodynamics is carried by
the fluctuating part of the fluid fields and to first approxi-
mation only the linear part in these perturbations contribute
to the final particle spectra. For perturbations in e.g. fluid
velocity δuμ the corresponding perturbations of the distri-
bution functions are given explicitly in Eq. (27). Because
the decay operator Eq. (1) is linear, if δuμ is written as lin-
ear superposition of Fourier modes in azimuthal angle φ and
space-time rapidity η

δuμ(x) = (
tanh(χ̄)δur , δur , δuφ, δuη

)
eimφ+ikη, (42)

one finds that the distribution of hadrons after kinetic freeze-
out and resonance decays depends on momentum space
azimuthal angle ϕ and momentum space rapidity y via the
combination eimϕ+iky with the same azimuthal wavenumber
m and rapidity wavenumber k. This is a direct consequence
of U(1) × R

1 symmetry, which prevents different represen-
tations labelled by m and k from mixing under linear oper-
ations. This way arbitrary linear perturbations in fluid fields
can be mapped to the modes of the final particle spectra,

which can be straightforwardly incorporated in the formal-
ism of mode-by-mode hydrodynamics [34,35].

6 Conclusions

We presented a method to calculate the final decay spec-
trum of direct resonance decays directly from hydrodynamic
fields on a freeze-out surface. By applying the decay map,
Eq. (1), to the distribution function of primary particlesbefore
the Cooper–Frye integration, we found the (vector) distribu-
tion function of decay products, Eq. (9). By decomposing
this distribution into components transforming differently
under SO(3) rotations in the fluid-restframe, we expressed
the final decay particle spectrum as a sum of a few Lorentz
invariant weight functions and known Lorentz vectors. The
explicit procedure to determine the irreducible weight func-
tions for an arbitrary decay chain of isotropic 2-body and
3-body decays was derived and a numerical implementation
was made public [30]. We considered primary hadron res-
onances generated by the equilibrium distribution function,
viscous shear and bulk perturbations, and linearised tempera-
ture and velocity perturbations. Modifications to the particle
spectrum due to variations in the chemical potential and the
diffusive part of particle current can be also straightforwardly
included in this framework.

The final 1-body particle spectrum of decay products is
then calculated from a general Cooper–Frye-type freeze-out
integral, Eq. (32). The most important aspect of our method
is that intermediated particle decays do not need to be cal-
culated event-by-event. The irreducible components of the
decay particle distribution function Eq. (9) are computed
only once, and the spectrum of a few relevant hadron species,
which includes feed-down of all direct decays, can be com-
puted for an arbitrary freeze-out surface. This significantly
reduces the computational costs of direct resonance decays.

Although our method of calculating direct resonance
decays is already competitive with other treatments avail-
able on the market, the computational efficiency of our
approach makes it practical to include finer details of reso-
nances decays. For example, new hadron resonance states can
be easily added to improve the agreement between the lattice
QCD and hadronic equation of state [11]. Finite widths of the
resonances can be incorporated in the decay map [15,40,41].
This has recently been shown to reduce the discrepancy
between measured and predicted proton yield in the statisti-
cal hadronization models [42].

In this work we neglected hadronic rescatterings after
the chemical freeze-out, which may change the final par-
ticle spectra, but the effect is subleading in comparison with
the decay feed-down [43]. Elastic scatterings in the hadronic
phase can be modeled by a hydrodynamic evolution of hadron
fluid in partial chemical equilibrium [44,45]. In this scenario,
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the particle ratios are fixed at the chemical freeze-out tem-
perature Tchem for each species i of long lived hadrons by
introducing an appropriate chemical potentials μi (T ) for
T < Tchem. Subsequently, the kinetic freeze-out may take
place at some lower temperature Tkin. Because the primary
resonance spectra are still described only by temperature Tkin

and the chemical potentials μi (Tkin), the direct decays can
be calculated using the techniques proposed in this work.

Another interesting generalization of the framework is to
keep track of the particle spin in the decays. This could be
particularly useful for the studies of vorticity polarization in
heavy ion collisions [46,47]. However, in this case one might
need to go beyond isotropic s-wave decays and consider more
general momentum dependent decay patterns, which to our
knowledge were not included in phenomenological works so
far. Finally, we note that the 1-particle distribution function
does not have the information of the connected two-particle
function, namely the non-flow correlations of particles pro-
duced by the same resonance decay. However, the decay map
Eq. (1) can be generalized to two-particle spectrum.

In summary, we believe that the computationally effi-
cient way of computing direct resonance decays, which
was presented in this paper, will be of great practical util-
ity for phenomenological studies of heavy ion collisions
and make realistic particle yield calculations much more
affordable.
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A Tensor decomposition and decay rules

Instead of calculating the decay operator to a particle spec-
trum, Eq. (1), one may also apply elementary decay oper-
ators directly to the distribution function and obtain thus a
modified distribution function, Eq. (9), that already includes
resonance decays. A technical complication is that one needs
to do this based on a Lorentz-vector form of the distribution

function, which at the freeze-out surface is given by

gμ = pμ f (p, u, T, μ). (43)

In ideal hydrodynamics f is simply Bose-Einstein or Fermi-
Dirac distribution

feq(−uμ pμ, T, μ) =
(
e−uμ pμ/T−μ/T ∓ 1

)−1
. (44)

Note that although the decay operator is Lorentz invari-
ant, the Lorentz boost symmetry is explicitly broken by
the fluid velocity, which singles out a reference frame. The
residual rotational subgroup allows to decompose gμ into
two 4-vectors transforming under different representations
of SO(3) in the fluid-restframe

gμ
eq = p̂μ f eq

1 + q̂μ f eq
2 , (45)

where (
μν = ημν + uμuν)

q̂μ = Ēpu
μ, and p̂μ = pμ
νμ = pμ − Ēpu

μ, (46)

transform as a scalar (1) and a vector (3) respectively. Both
representations have identical weight functions f eq

1 = f eq
2 =

feq on the freeze-out surface, but after the resonance decays
are taken into account the two functions will differ. Isotropic
decays do not mix different SO(3) representations and the
new weight functions are found by successively applying the
decay maps Eq. (2) and Eq. (4). Before deriving the specific
transformation rules for the weight functions fi , lets consider
a more general case for the distribution function. In viscous
hydrodynamics, the freeze-out distribution function differs
from the equilibrium expression Eq. (44) and also depends
on shear-stress tensor and bulk viscous pressure

gμ = f (−uμ p
μ, πρσ p

ρ pσ ,	, T, μ)pμ. (47)

Close to equilibrium one may Taylor expand the vector distri-
bution function around the equilibrium distribution function

gμ = gμ
eq + gμρσ

shearπρσ + gμ
bulk	 + . . . , (48)

where the derivatives gμρσ
shear ≡ ∂gμ/∂πρσ and gμ

bulk ≡
∂gμ/∂	 can only be functions of 4-vectors pμ and Ēpuμ,
and Lorentz scalars like temperature, chemical potential or
resonance mass. Similarly, we can also consider perturba-
tions of the hydrodynamic fields around an arbitrary back-
ground, e.g. uμ = ūμ + δuμ and T = T̄ + δT . Then the
vector distribution function decomposes as

gμ = ḡμ + gμρ
velocityδuρ + gμ

temp.δT + . . . (49)

Thanks to the linearity of the decay map, each term in the
Taylor expansion (gμ, gμρ , gμρσ ) can be also decomposed
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into irreducible representations of SO(3) rotational group.
For example, a two-tensor distribution function gμν(u, p)
contains irreducible representations of SO(3) according to
the tensor decomposition (1+3)⊗(1+3) = 2×1+3×3+5.
In terms of the 4-vectors q̂μ and p̂μ they are given as

(a) two scalars,

(1) q̂μq̂ν and (2) |p̄|2
μν, (50)

(b) three vectors,

(1) q̂μ p̂ν, (2) p̂μq̂ν, and (3) q̂α p̂βεαβμν, (51)

(c) a traceless, symmetric two-tensor,

(
p̂μ p̂ν − 1

3 |p̄|2
μν
)

. (52)

However, in practice not all of these terms are needed. Thanks
to the orthogonality relation ūρδuρ = 0, the first terms in
Eq. (50) and Eq. (51) drop out, while the antisymmetric term
in Eq. (51) is not present initially and by symmetry reasons
is not generated by the decay operator. Only one scalar, one
vector and one tensor representation contribute to the con-
traction gμν

velocityδuν

gμν
velocityδuν =

{
[δuν p

ν(pμ − Ēpu
μ) − 1

3
|p̄|2δuμ)] f velocity

1

+ 1

3
|p̄|2δuμ f velocity

2

+ δuν p
ν Ēpu

μ f velocity
3

}
× 1

T̄
(53)

Analogously we list the most general decomposition of
the three-tensor distribution function gμνρ into the SO(3)

representations (1 + 3) ⊗ (1 + 3) ⊗ (1 + 3) = 5 × 1 + 9 ×
3 + 5 × 5 + 7

a) five scalars

1) q̂μq̂ν q̂ρ, 2) |p̄|2q̂μ
νρ, and 2 perm. (54)

3) q̂αεαμνρ |p̄|2. (55)

b) nine vectors

1) q̂μq̂ν p̂ρ, and 2 perm. (56)

2) q̂α p̂βεαβμν q̂ρ, and 2 perm. (57)

3) |p̄|2
μν p̂ρ and 2 perm.. (58)

c) five symmetric and traceless two-tensors

1) q̂μ
(
p̂ν p̂ρ − 1

3
νρ |p̄|2
)

, and 2 perm., (59)

2) ( p̂μ p̂β − 1
3 |p̄|2
μ

β )q̂αεαβνρ, and 1 perm. (60)

Note that a third possible permutations of Eq. (60) is not
linearly independent of the other two.

d) one symmetric and traceless three-tensor

p̂μ p̂ν p̂ρ − 1

5
|p̄|2 [

p̂μ
νρ + p̂ν
μρ + p̂ρ
μν
]
. (61)

Of these only three independent SO(3) representations con-
tribute to gμνρ

shearπνρ , namely, those which are symmetric,
traceless and orthogonal to fluid velocity in the indecies ν

and ρ:

gμνρ
shearπνρ =

{
[pνπνρ p

ρ(pμ − Ēpu
μ) − 2

5
|p̄|2 pνπ

νμ] f shear
1

+ 2

5
|p̄|2 pνπ

νμ f shear
2 + πνρ p

ν pρ Ēpu
μ f shear

3

}

× 1

2(e + p)T 2 . (62)

The extension of this procedure to quadratic and higher terms
in the Taylor expansions Eq. (48) and Eq. (49) is straightfor-
ward, if laborious.

Now we will discuss the transformation rules for the
weight functions fi due to an elementary 2-body decay,
Eq. (2). The new vector distribution function is given by the
convolution with the decay map

gμ
b (p, u) = νa

νb

∫
d3k

(2π)32Ek
Da
b|c(p

νkν)g
μ
a (k, u). (63)

Because the Lorentz vectors corresponding to different SO(3)
representations in Eq. (45) are orthogonal both before and
after the decay, we can use them to project out the desired
component and reduce Eq. (63) to a scalar integral, which can
be simplified (the same as Eq. (6)) to a single dimensional
integral

f bi (Ēp) = B
νa

νb

m2
a

m2
b

1

2

∫ 1

−1
dwAi (w) f ai (E(w)). (64)

The calculation is straightforward and the appropriate Ai (w)

functions for Eq. (45) are

Aeq
1 = Q(w)

|p̄| , Aeq
2 = E(w)

Ēp
(65)

where we remind that E(w) and Q(w) were defined as

E(w) ≡ maEa
b|c Ēp

m2
b

− w
ma pab|c|p̄|

m2
b

, (66a)

Q(w) = maEa
b|c|p̄|

m2
b

− w
ma pab|c Ēp

m2
b

. (66b)
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The same procedure of finding the transformation rules also
apply for the irreducible decomposition of tensor distribution
function gμν

velocity and gμνρ
shear. For the weight functions fi for

δuμ perturbations in Eq. (53) we obtain

Avelocity
1 = 3

2

Q(w)2

|p̄|2 − 1

2

E(w)2 − m2
a

|p̄|2 (67)

Avelocity
2 = E(w)2 − m2

a

|p̄|2 , Avelocity
3 = Aeq

1 (w)Aeq
2 (w)

(68)

while for the shear-stress case, Eq. (62),

Ashear
1 = 5

2

Q(w)3

|p̄|3 − 3

2

Q(w)

|p̄|
E(w)2 − m2

a

|p̄|2 (69)

Ashear
2 = Avelocity

2 (w)Aeq
1 (w), A3 = Avelocity

1 (w)Aeq
2 (w).

(70)

Note that some representations in Eq. (53) and Eq. (62) are
just a products of lower dimensional representations and the
corresponding functions Ai (w) are equal to the product of
their Ai ’s. In summary the Eq. (64) and functions Ai (w)

defines a simple iterative scheme for calculating weight func-
tions fi for different irreducible components of the vec-
tor/tensor distribution function undergoing a 2-body decay
Eq. (2), which can be easily extended to a 3-body decay rule
by Eq. (4). By repeated application of these transformations
and summing over all possible decay chains the final decay
particle components fi can be determined. A concrete real-
ization of such scheme is made publicly available [30].

B Decay kernels for azimuthally symmetric and
boost-invariant freeze-out surface

For azimuthally and boost invariant freeze-out surface the
general decay particle spectrum formula Eq. (32) reduces
to one dimensional integral Eq. (40), where the azimuthal
and rapidity integrals are factored out in the freeze-out ker-
nels Ki . The integral formulas for them are obtained by a
straightforward algebra of inserting Eqs. (35), (36), (39), and
(38), in Eqs. (32) and (33), and collecting terms proportional
to temporal and radial components of the freeze-out surface
element. Explicitly these are

K
eq
1 (pT , χ̄) =

∫ 2π

0
dφ

∫ ∞
−∞

dη
{
f

eq
1 (Ēp)mT cosh(η)

+
(
f

eq
2 (Ēp) − f

eq
1 (Ēp)

)
Ēp cosh(χ̄)

}
,

K
eq
2 (pT , χ̄) =

∫ 2π

0
dφ

∫ ∞
−∞

dη
{
f

eq
1 (Ēp)pT cos(φ)

+
(
f

eq
2 (Ēp) − f

eq
1 (Ēp)

)
Ēp sinh(χ̄)

}
, (71)

K shear
1 (pT , χ̄) =

∫ 2π

0
dφ

∫ ∞
−∞

dη
{[

f shear
1 (Ēp)mT cosh(η)

+
(
f shear
3 (Ēp) − f shear

1 (Ēp)
)
Ēp cosh(χ̄)

]

× [
m2
T sinh(η)2 − {mT sinh(χ̄) cosh(η)

−pT cosh(χ̄) cos(φ)}2 ]
+

(
f shear
2 (Ēp) − f shear

1 (Ēp)
)

2

5
(Ē2

p − m2) sinh(χ̄)

× [mT sinh(χ̄) cosh(η)

−pT cosh(χ̄) cos(φ)]
}
, (72)

K shear
2 (pT , χ̄) =

∫ 2π

0
dφ

∫ ∞
−∞

dη
{[

f shear
1 (Ēp)pT cos(φ)

+
(
f shear
3 (Ēp) − f shear

1 (Ēp)
)
Ēp sinh(χ̄)

]

× [
m2
T sinh(η)2 − {mT sinh(χ̄) cosh(η)

−pT cosh(χ̄) cos(φ)}2 ]
+

(
f shear
2 (Ēp) − f shear

1 (Ēp)
)

2

5
(Ē2

p − m2) cosh(χ̄)

× [mT sinh(χ̄) cosh(η)

−pT cosh(χ̄) cos(φ)]
}
, (73)

K shear
3 (pT , χ̄) =

∫ 2π

0
dφ

∫ ∞
−∞

dη
{[

f shear
1 (Ēp)mT cosh(η)

+
(
f shear
3 (Ēp) − f shear

1 (Ēp)
)
Ēp cosh(χ̄)

]

× [
p2
T sin(φ)2 − {mT sinh(χ̄) cosh(η)

−pT cosh(χ̄) cos(φ)}2 ]
+

(
f shear
2 (Ēp) − f shear

1 (Ēp)
)

2

5
(Ē2

p − m2) sinh(χ̄)

[mT sinh(χ̄) cosh(η)

−pT cosh(χ̄) cos(φ)]
}
, (74)

K shear
4 (pT , χ̄) =

∫ 2π

0
dφ

∫ ∞
−∞

dη
{[

f shear
1 (Ēp)pT cos(φ)

+
(
f shear
3 (Ēp) − f shear

1 (Ēp)
)
Ēp sinh(χ̄)

]

× [
p2
T sin(φ)2 − {mT sinh(χ̄) cosh(η)

−pT cosh(χ̄) cos(φ)}2 ]
+

(
f shear
2 (Ēp) − f shear

1 (Ēp)
)

2

5
(Ē2

p − m2) cosh(χ̄)

[mT sinh(χ̄) cosh(η)

−pT cosh(χ̄) cos(φ)]
}
. (75)

K bulk
1 (pT , χ̄) =

∫ 2π

0
dφ

∫ ∞
−∞

dη
{
f bulk
1 (Ēp)mT cosh(η)
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+
(
f bulk
2 (Ēp) − f bulk

1 (Ēp)
)
Ēp cosh(χ̄)

}
,

K bulk
2 (pT , χ̄) =

∫ 2π

0
dφ

∫ ∞
−∞

dη
{
f bulk
1 (Ēp)pT cos(φ)

+
(
f bulk
2 (Ēp) − f bulk

1 (Ēp)
)
Ēp sinh(χ̄)

}
,

(76)

The above kernels can be evaluated numerically as two
dimensional tables and stored. For a given solution of the
hydro equations one can then use Eq. (40) to calculate the
final particle spectrum.
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