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Abstract In this work, we revisit the perturbations that are
generated in the bounce inflation scenario constructed within
the framework of f (T ) theory. It has been well known that
pure f (T ) theory cannot give rise to bounce inflation behav-
ior, so aside from the gravity part, we also employ a canonical
scalar field for minimal extension. We calculate the perturba-
tions in f (T ) theory using the well-established ADM formal-
ism, and find various conditions to avoid their pathologies.
We find that it is indeed very difficult to obtain a healthy
model without those pathologies, however, one may find a
way out if a potential requirement, say, to keep every function
continuous, is abandoned.

1 introduction

Inflation [1–3] has been viewed as one of the most success-
ful theory in modern cosmology. Not only is it simple and
elegant, it can also simultaneously solve several cosmologi-
cal puzzles of Big-Bang, such as horizon, flatness, unwanted
relics and so on, as well as predicts nearly scale-invariant
power spectrum, which is verified by the observational data
[4]. Nonetheless, inflation cannot avoid the notorious Big-
Bang Singularity, whose existence has been proved by Hawk-
ing and Penrose [5–7]. one of the easiest ways of avoiding the
singularity point might be to assume that the universe starts
from a contracting phase, and bounce into the expanding one
as we observed [8]. Together with the inflation period that
follows up, this can be called as “bounce inflation” scenario
of the early universe [9–11].

For the universe to bounce, some conditions must be sat-
isfied, such as the Null Energy Condition violating [12]. In
order to do so, one may either introduce exotic matter which
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can violate the NEC, or modify the classical General Rel-
ativity. Recently the studies of bounce cosmology encoun-
tered a boost in the literatures and fruitful bounce models
are built in both two ways. The first way includes double-
scalar-field bounce [13–15] and higher-order single-scalar-
field bounce [16–20], while the second way includes non-
minimal coupling bounce [21,22], f (R) bounce [23], f (T )

bounce [24,25], Loop-quantum bounce [26] and so on.
In Ref. [27] (see also [28–30]), it is proved that it is

indeed very difficult for a single scalar to make a alhealthy
bounce (inflation) scenarios, which needs to go even beyond
Horndeski theory [31–34]. However, the conclusion only
applies to single scalar models, and for modified gravity
driven bounces whether there is such “no-go” theorem is
unknown. In this paper, we will focus on an interesting type
of bounce inflation scenario, driven by the f (T ) modified
gravity theory. The f (T ) theory is an extension of the so-
called “Teleparallel Equivalent General Relativity (TEGR)”.
Although TEGR, as a torsion theory, is equivalent to Gen-
eral Relativity, f (T ) is no longer equivalent to the extension
to GR, namely f (R) theory, but act as a totally new theory,
with many interesting properties not shared by GR or f (R)

theories. For more information on f (T ) theory, see reviews
[35,36].

We will perform a detailed investigation of perturbations
generated by f (T ) modified gravity theory, and apply it into
the bounce inflation scenario. Note that the general formu-
lation of perturbations on f (T ) has been investigated in, for
instance, [37–42]. We study on what conditions could the
perturbations remain healthy passing through the bounce.
The rest of our paper is organized as follows: in Sect. 2 we
set up with the basic formulation of f (T ) theory, as well
as the FRW background analysis which can be applied to
the bounce inflation scenario. In Sect. 3, we focus on the
perturbations (both tensor and scalar) generated from f (T )

theory, respectively, and demonstrate the conditions for a
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healthy bounce inflation scenario. An explicit example of
f (T ) bounce inflation scenario satisfying all the conditions
are given in Sects. 4, and 5 comes the final remarks.

2 f (T )modified gravity and the bounce inflation ansatz

According to General Relativity, the torsion tensor of a 4-
dimensional curved spacetime manifold is defined as:

T ρ
μν ≡ �ρ

νμ − �ρ
μν, (1)

which is also known as the antisymmetric part of the affine
connection �

ρ
μν . As is well known, with the existence of

torsion tensor, the affine connection �
ρ
μν can no longer be

expressed in terms of metric, but act as an independent vari-
able. Actually, from this definition, �ρ

μν can be expressed as:

�ρ
μν = �̃ρ

μν − K ρ
μν, (2)

where �̃
ρ
μν is the Christoffel symbol which can be expressed

in terms of metric gμν , namely �̃
ρ
μν = gρα(∂νgμα+∂μgνα−

∂αgμν)/2, and

Kμν
ρ ≡ −1

2
(Tμν

ρ − T νμ
ρ − T μν

ρ ), (3)

is the so-called contorsion tensor. Furthermore, the Ricci
scalar R can be calculated as:

R ≡ gμν(∂α�α
μν − ∂ν�

α
μα + �α

μν�
β
αβ − �α

μβ�β
μα)

= R̃ + �R, (4)

where R̃ is the Ricci scalar made of Christoffel symbols, and

�R = KρλνK
νρλ − 4∇μT

μ − 4TμT
μ, (5)

is the difference between R and R̃. In the above formula,
Tμ ≡ T ν

μν and ∇μTμ ≡ ∂μTμ − �
μ
μνT ν is the covariant

derivative of Tμ.
If there is no torsion, say, �ρ

μν → �̃
ρ
μν which is symmet-

ric, then �R = 0 and R reduces to R̃ as in GR. However,
if we choose �

ρ
μν to be another kind of connection, e.g.

�
ρ
μν = eρ

A∂νeAμ (Weitzenbock connection [43]) where eAμ is
the tetrad with an internal index A = 0, 1, 2, 3 and a contrac-
tion relation eAμe

B
ν ηAB = gμν with normal metric gμν via a

flat metric ηAB = diag(−1, 1, 1, 1), one has R̃ = −�R and
there will be no curvature. However, there could be torsion
instead. One can construct the torsion scalar:

T ≡ 1

2
T ρ

μν

(
Kμν

ρ + δμ
ρ T

αν
α − δν

ρT
αμ
α

)
, (6)

which is actually equivalent to R̃ except a total derivative
[37–42]:

T = R̃ + 2∇̃νTμ
μν, (7)

so an action containing only T as its Lagrangian, as has been
demonstrated in the introduction, it is actually nothing but
GR, thus is called “Teleparallel Equivalent of General Rel-
ativity” (TEGR). As in the case of f (R) modified gravity,
TEGR can also be extended to be a function of T . This f (T ),
however, is different from either GR or even f (R) gravity,
and become a totally new theory.

We start with the general action of f (T ) modified gravity:

S =
∫

d4x
[
e f (T ) + √−gLm

]
, (8)

where e f (T ) is the gravity part, while Lm is the matter part
which could be added to the gravity. Moreover, since the
connection now is constructed based on the tetrad rather than
metric, we use the determinant of eAμ to construct the invariant
volume element, and

e ≡ |eAμ | = 1

4!εABCDεμνρσ eAμe
B
ν e

C
ρ e

D
σ , (9)

which is equivalent to
√−g in Riemann geometry, while

εABCD and εμνρσ are totally antisymmetric tensors. The
background equation of motion can be obtained by varying
(8) with respect to eAμ ,

fT [e−1∂μ(eS μν
A ) + T ρ

μAS
νμ

ρ ] + fT T S
μν
A ∂μT

+1

4
eν
A f (T ) = 4πGeρ

AT
ν

ρ . (10)

As a specific case, let’s consider the cosmological solu-
tion, namely the flat FRW spacetime, where the tetrad is given
as:

eAμ = diag(1,−a2(t),−a2(t),−a2(t)), (11)

therefore Eq. (10) can be reduced to Friedmann equations:

H2 = 1

2 fT

(
8πG

3
ρm − f (T )

6

)
, (12)

Ḣ = −4πG(ρm + pm)

fT − 12H2 fT T
, (13)

where ρm and pm are energy density and pressure coming
from Lm , and ,T denotes derivative with respect to T . Also
note that T = −6H2 in flat FRW spacetime. For analyzabil-
ity, it is useful to consider everything as functions of t , so
from Eq. (12) one gets
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ḟ (t) = f,T Ṫ (t)

= −6
Ḣ

H

[
8πG

3
ρm(t) − f [T (t)]

6

]
, (14)

which has a general solution as

f (t) = e− ∫
P(t)dt

[
λ +

∫
Q(t)e

∫
P(t)dt

]
, (15)

where

P(t) = − Ḣ

H
, Q(t) = −16πG

Ḣ

H
ρm(t), (16)

and λ is the integration constant.
We are focusing on the bounce inflation solution given by

f (T ) modified gravity theory. The bounce, by definition, is
the scenario where the universe goes from contracting phase
(H < 0) to expanding phase (H > 0), therefore there must
be a pivot point where H = 0, Ḣ > 0 is satisfied, which
we call the bounce point. However, in absence of the matter
part, namely ρm = pm = 0, from Eqs. (12) and (13) one
can only get a trivial solution of f (T ) = −T/3 + λ/

√−T
with an integral constant λ, and Ḣ = 0 forever, so no bounce
will happen. This is a well-known result [24] and that’s why
a matter part will be needed. Moreover, in order to solve the
inconsistency problem in usual bounce model with single
scalar degree of freedom (namely one cannot both solve the
anisotropy problem and get the scale-invariant power spec-
trum) (last two references in [16–20]), we explore the bounce
inflation model where the contracting phase has a large equa-
tion of state, w ≥ 1, or, in terms of the slow-varying param-
eter ε ≡ 3(1 + w)/2, ε ≥ 3, while in expanding phase
usual slow-roll conditions for inflation, w � −1, ε � 0, is
imposed. Note that other bounce inflation solutions in f (T )

theory has been discussed in Ref. [44].
In principle, one can employ the reconstruction method to

obtain the functional form of f (T ), which gives the bounce
inflation solution, as has been done in [24,45]. However,
there will be several conditions coming from perturbations,
namely ghost-free and gradient stable conditions for both
scalar and tensor perturbations, violating which will make
the model pathologic. So before heading to specific models,
we will first analyze the perturbation theory of f (T ) in a very
general form, to find whether these conditions will impose
rigid constraints on f (T ) models.

3 Perturbations generated from f (T ) modified gravity

3.1 3 + 1 decomposition

In order to calculate the perturbations in f (T ) bounce infla-
tion scenario, first of all we write down the tetrads containing
perturbation as:

e0
μ = (N , Ñi ) , eaμ = (Na, hai ) ,

e μ
0 =

(
1

N
,−Ni

N

)
, e μ

a = (0, h i
a ), (17)

where a = 1, 2, 3 is the spatial part of internal indices, N is
the lapse function, Na is the shift vector, and hai is the induced
3-vierbein. Note that although the metric is symmetric, the
tetrad used to construct it does not need to be symmetric,
therefore Ñi and Na has independent components. However,
both Ñi and Na can be decomposed into a pure vector and
gradient of a scalar, say, Ñi = ∂iβ + ui , Na = δai (∂i B + vi )

[46]. In this paper we don’t consider vector perturbations, and
to make the calculations simpler, hereafter we set β = 0 as a
gauge fixing. By making use of the relation eAμe

B
ν ηAB = gμν ,

we can get the line element as:

ds2 = gμνdx
μdxν

= N 2dt2 − hi j
(
dxi + Nidt

) (
dx j + N jdt

)
,

hi j = hai h
b
jδab, (18)

which is consistent in the result of ADM metric decom-
position usually used in Riemannian gravity theories. Note
that the index a, b, · · · is upper/lowered by δab, i, j, · · · is
upper/lowered by hi j , and the transfer between them is via
hai . Moreover, the determinant of the tetrad is:

e = √−g = √
hN . (19)

The Weitzenbock connection turns out to be

�0
00 = Ṅ/N , �0

0i = ∂i N/N , �0
i0 = 0,

�i
00 = −Ṅ N i/N + hai∂i Na , �i

j0 = h i
a ḣ

a
j ,

�i
0 j = −Ni∂ j N/N + h i

a ∂ j N
a , �i

jk = h i
a ∂kh

a
j , (20)

and one can also find that (3)�i
jk = �i

jk , where (3)�i
jk is

defined using the 3D tetrad, hai . From the above, one can
also obtain the torsion tensor as:

T 0
i0 = ∂i N/N , (21)

T i
j0 = ∇ j N

i − h i
a ∂0h

a
j − Ni∂ j N/N , (22)

T i
jk = h i

a

(
∂ j h

a
k − ∂kh

a
j

)
, (23)

where ∇i N j = h j
a ∇i Na = h j

a ∂i Na . Moreover, since it is
well known that the curvature scalar R̃ can be decomposed
into 3 + 1 form as:

R̃ = �̃i j �̃
i j − �̃2 + R̃(3) + 2∂0(

√
h�̃)/(N

√
h)

−2∇̃i

(
�̃Ni + hi j∂ j N

)
/N , (24)

where R̃(3) is the 3D curvature scalar,

�̃i j = 1

2N

(
ḣi j − ∇̃i N j − ∇̃ j Ni

)
, (25)
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is the extrinsic curvature in Riemannian gravity theories, and
∇̃i is the 3D covariant derivative connected with Christoffel
symbols. Thus making use of Eq. (7) one can have

T = �̃i j �̃
i j − �̃2 + R̃(3) + �T , (26)

where

�T = 2∂0

(√
h�̃

)
/(N

√
h) − 2∇̃i

(
�̃Ni + hi j∂ j N

)
/N

+2∇̃νTμ
μν

= −2∇̃k

(
NT i k

i

)
/N . (27)

In the last step we’ve made use of Eqs. (21), (22) and (23).
See also [47] for other formulations for torsion gravity.

Besides the gravity part, in principle the matter part can
also have perturbations. However, since we mainly focus on
the perturbations generated in f (T ) gravity, we for simplicity
assume the matter part consists of a background fluid or field
that is totally homogeneous and isotropic, and temporarily
turn off the perturbations for matter part. This is valid if
the (isocurvature) perturbations generated by matter is quite
small. As an explicit example, we set it to be a canonical
scalar field:

Lm = 1

2
(∇φ)2 − V (φ). (28)

3.2 Perturbations generated from bounce inflation: tensor
part

We first consider the tensor perturbations produced from
action (8). Since the gravity part is modified, the tensor per-
turbations are expected to be different from those in GR the-
ories. To analyze the tensor perturbations, we first perturb
the tetrad in terms of tensor as:

hai = a

(
δai + 1

2
γ a
i

)
, (29)

with other components of eAμ being zero. Note that since the
tensor perturbations decouples with the scalar counterpart at
2nd order level, one can consider them separately. According
to the above, the induced 3D metric hi j can be obtained as:

hi j = δabh
a
i h

b
j

= a2
(

δi j + γi j + 1

4
γiaγ

a
j

)
, (30)

where γi j ≡ δab(δ
a
i γ

b
j + δbjγ

a
i )/2. Moreover, the transverse

and traceless conditions are imposed, namely:

∂iγ
i j = δi jγi j = 0. (31)

From this, one can get

�̃i j �̃
i j − �̃2 ⊂ − 6H2 + 1

4
γ̇i j γ̇

i j , (32)

R(3) ⊂ −1

4
a−2γ

i j
,k h

,k
i j , (33)

T i k
j ⊂ 1

4
a−2(γ i

a ∂kγ a
j − γ i

a ∂ jγ
ak), (34)

and from the last equation,

�T = −2∇̃k(NT i k
i )/N = −2∇̃k(T

i k
i ),

⊂ −1

2
a−2∂k(γ

i
a ∂kγ a

j − γ i
a ∂ jγ

ak). (35)

According to Eq. (27), the torsion can be expand (to second
order) as:

T ⊂ T0 + δT (2)

= − 6H2

+ 1

4
γ̇i j

˙γ i j − 1

4
a−2γ

i j
,k γ

,k
i j − 1

2
a−2∂k(γ

i
a ∂kγ a

j

− γ i
a ∂ jγ

ak), (36)

where there is no first order term, δT (1). Therefore the second
order action is:

δT2 S = 1

2

∫
dtd3xa3 fT

∣∣
0δT

(2),

= 1

8

∫
dtd3xa3 fT

∣∣
0(γ̇i j

˙γ i j − a−2γ
i j
,k γ

,k
i j )

+ total derivatives. (37)

From this action one can see that it is very much alike that of
GR, except for the coefficients in front of both kinetic term
and spatial derivative terms are fT

∣
∣
0, with the sound speed

squared being unity. If fT = 1, we can get back to GR as it
must be. For fT 	= 1 case, in order for the tensor perturbation
to be free of both ghost and gradient instabilities, one should
require fT be positive definite. Therefore the first condition
to have healthy perturbation is:
1. from stability of tensor perturbation:

fT > 0. (38)

Note that this condition is the generalization of the condi-
tion ∂L/∂R > 0 in scalar-tensor gravity, and fR > 0 in
f (R) gravity to f (T ) gravity, the breaking of which leads
to the formation of generic curvature singularity at a spatial
hypersurface where this derivative becomes zero [48].1

1 We thank the anonymous referee for pointing this to us.
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3.3 Perturbations generated from bounce inflation: scalar
part

We then consider the scalar perturbation produced from
action (8). As in Riemannian gravity theory, we perturb the
components in the tetrad as:

N = 1 + α , Ni = ∂iψ , hi j = a2e2ζ δi j , (39)

and from Eq. (18) one can find hai = aeζ δai , h i
a =

(aeζ )−1δia . Therefore from the definitions in Subsec. 3.1 that

�̃i j = 1

2N

(
ḣi j − ∇̃i N j − ∇̃ j Ni

)

⊂ 1

N

[
a2e2ζ

(
H + ζ̇

)
δi j − ∂i∂ jψ

+ ∂ jζ∂iψ + ∂iζ∂ jψ − δi j∂
kζ∂kψ)

]
, (40)

�̃ = hi j �̃i j

⊂ 1

N

[
3
(
H + ζ̇

) − a−2e−2ζ
(
∂2ψ + ∂ iζ∂iψ

) ]
, (41)

up to second order, which can be combined to give

�̃i j �̃
i j − �̃2

⊂ − 6H2

+ 12H2α − 12H ζ̇ + 4a−2H∂2ψ

− 6ζ̇ 2 + 24Hαζ̇ − 18H2α2 + 4a−2H∂ iζ∂iψ

+ 4a−2ζ̇ ∂2ψ − 8a−2Hζ∂2ψ − 8a−2Hα∂2ψ

+ a−4∂ i∂ jψ∂i∂ jψ − a−4(∂2ψ)2, (42)

Moreover, the reduced 3D Ricci scalar is

R(3) = a−2e−2ζ
[
−4∂2ζ − 2(∂ζ )2

]

⊂ a−2
[
−4∂2ζ − 2(∂ζ )2 + 8ζ∂2ζ

]
, (43)

and the 3D torsion tensor is:

T i k
j = hkk

′
T i

jk′

= a−2e−2ζ (∂ jζ δik − ∂kζ δij ), (44)

which makes the surface term �T as:

�T = −2∇̃k(NT i k
i )/N

⊂ 4a−2∂2ζ + 4a−2∂iα∂ iζ − 8a−2ζ∂2ζ

+ 4a−2(∂ζ )2. (45)

Making all the elements together, one can finally get the
perturbation of torsion scalar up to second order:

T = �̃i j �̃
i j − �̃2 + R(3) + �T

⊂ − 6H2

+ 12H2α − 12H ζ̇ + 4a−2H∂2ψ

− 6ζ̇ 2 + 24Hαζ̇ − 18H2α2 + 4a−2H∂ iζ∂iψ

+ 4a−2ζ̇ ∂2ψ − 8a−2Hζ∂2ψ − 8a−2Hα∂2ψ

+ a−4∂ i∂ jψ∂i∂ jψ − a−4
(
∂2ψ

)2

+ 2a−2(∂ζ )2 + 4a−2∂iα∂ iζ, (46)

from which the first and second lines are the 0th order and
1st order separately, while the rest lines are the 2nd order.

The variation of the action (8) with respect to the constraint
perturbations N and Ni are:

δN S =
∫

dx4
√
h

(
N fT δN T + f (T )δN + LmδN

)

=
∫

dx4
√
h

[
N fT δN

(
�̄i j �̄

i j − �̄2 + (3)R

+ DT

)
+ f (T )δN + LmδN

]
, (47)

δNi S =
∫

dx4
√
hN fT δNi T

=
∫

dx4
√
h{∇̃i

[
fT (�̃i j − hi j �̃)

]
δN j

+ ∇̃ j

[
fT

(
�̃i j − hi j �̃

)]
δNi }. (48)

By setting δN S = 0, δNi S = 0, one can get the constraint
equations:

f (T ) − 2 fT
(
�̃i j �̃

i j − �̃2) + 2∇̃k( fT T
i k
i

)

+2 fT T
i k
i ∇̃k N/N − φ̇2/N 2 − 2V (φ) = 0, (49)

∇̃i

[
fT

(
�̃i j − hi j �̃

)]
= 0. (50)

We can expand the above equations to 1st order to solve N
and Ni . Using the results (39), (42), (43), (45) and (46) in
above subsection, and notice that f (T ) and fT (T ) can be
expanded as:

f (T ) = f (T0) + fT 0δT
(1) +

(1

2
fT 0(δT

(1))2

+ fT T 0δT
(2)

)
+ · · · , (51)

fT (T ) = fT 0 + fT T 0δT
(1) +

(1

2
fT T 0(δT

(1))2

+ fT T T 0δT
(2)

)
+ · · · , (52)

where the subscript ‘0’ means the background value, we can
get the solution of N (in terms of α) and Ni (in terms of ψ)
as:

α = C1
ζ̇

H
+ C2∂

2ζ, (53)

∂2ψ = C3
ζ̇

H
+ C4∂

2ζ, (54)

where

C1 = 12H2 fT T 0 fT 0 − f 2
T 0

12H2 fT T 0 fT 0 − f 2
T 0 + 2 fT T 0φ̇2

, (55)
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C2 = 4a−2 fT T 0 fT 0

12H2 fT T 0 fT 0 − f 2
T 0 + 2 fT T 0φ̇2

, (56)

C3 = 6a2H2 fT T 0φ̇
2 − a2 fT 0φ̇

2/2

12H3 fT T 0 fT 0 − H f 2
T 0 + 2H fT T 0φ̇2

, (57)

C4 = f 2
T 0 − 12H2 fT T 0 fT 0

12H3 fT T 0 fT 0 − H f 2
T 0 + 2H fT T 0φ̇2

. (58)

With the results given in the above subsection, one can
obtain the second order perturbed action as:

S =
∫

dx4
√
h
[
N

(
f (T0) + fT 0(δT

(1) + δT (2))

+1

2
fT T 0(δT

(1))2
)

+ N−1φ̇2 − 2NV (φ)
]
. (59)

With Eqs. (39), (53) and (54), one can perform straightfor-
ward calculation to obtain:

δ(2)S =
∫

d4x
[
α1ζ

′2 − α2(∂ζ )2 − α3(∂
2ζ )2

]
, (60)

where “′” denotes derivative with respect to conformal time,
η ≡ ∫

a−1(t)dt , and

α1 = − aφ̇2 fT
H

(
ḟT − 3H fT

) , (61)

α2 = −2a fT − d

dt

(
6a f 2

T

ḟT − 3H fT

)

, (62)

α3 = 4 f 2
T ḟT

aφ̇2( ḟT − 3H fT )
. (63)

where we’ve made use of the relation: ḟT = fT T Ṫ =
−12 fT T H Ḣ . Note that different from f (R) theories, the
perturbation action contains also a higher-spatial-derivative
term α3(∂

2ζ )2. This is due to the fact that the constraint
variable α now contains not only terms ∼ ζ̇ , but also terms
∼ ∂2ζ , which is similar to the case of non-trivial kinetic
coupling gravity theory explored in [49,50]. Moreover, from
action (60) one has the equation of motion of ζ , or, the rede-
fined variable u ≡ √

α1ζ , as

u′′ +
(

α2

α1
k2 − α3

α1
k4

)
u − z′′

z
u = 0. (64)

In order to have the theory be free of ghost, one requires
that α1 > 0 for all the time. Furthermore, from Eq. (64), to
eliminate the gradient instability in all region of k, one needs
α2 > 0, α3 > 0 as well. Considering Eqs. (61), (62) and
(63), one has the following conditions for stability:
2) from )α1 > 0,

⎧
⎨

⎩

ḟT < 3H fT for H > 0,

ḟT > 3H fT for H < 0,

(65)

3) from α2 > 0,

a fT + d

dt

(
3a f 2

T

ḟT − 3H fT

)

< 0, (66)

4) from α3 > 0,

⎧
⎨

⎩

ḟT < 0 for H > 0,

ḟT > 0 for H < 0,

(67)

Note that actually Condition 2) is contained in Condition 4).

3.4 A “no-go theorem”?

In this section, we analyze that under the conditions 1) to
4) obtained from the above subsections, what kind of f (T )

theory can survive. Interestingly, we find that, in order to
obey all the conditions, one may have very harsh constraints
on f (T ) theory. To be precise, we compile our results as
a “theorem” which we think is useful for construction of
bounce (or bounce inflation) scenarios in framework of f (T )

theories. The theorem is presented in the following:

1. the gravity theory with pure f (T ) cannot give rise to a
bounce universe;

2. bounce can be realized with the help of exotic matter, e.g.,
a canonical scalar field. However, if the field doesn’t con-
tribute the perturbations, then in order for the perturba-
tions be stable within all scales, at least at bounce point
ḟT cannot be a continuous function with respect to t .

The first item is already demonstrated in the previous Sect.
2. To prove the second item, let’s first introduce a lemma:

Lemma. For any function V (t)which satisfies V (t) > 0 for
t > 0, V (t) < 0 for t < 0, or vice versa, then at t = 0 point,
V (t)can either be vanishing, or become discontinuous.

This is easy to prove. if V (t) is continuous acrossing t = 0
point, and assume V (t = 0) = V∗ 	= 0, then we always have
a small number ε, such that V (t = 0 + ε) ≈ V∗ + V ′∗ε, and
V (t = 0 − ε) ≈ V∗ − V ′∗ε, where V ′∗ε is the time derivative
of V (t) at t = 0. So V (t = 0 + ε) · V (t = 0 − ε) =
(V∗ + V ′∗ε)(V∗ − V ′∗ε) ≈ V 2∗ − V ′2∗ ε2 ≈ V 2∗ > 0 for small
enough ε and regular V ′∗ε. This violates the condition that
V (t) changes its sign before and after t = 0 point. Proof
completed.

Now we prove the second item of the theorem. Since
H must change its sign when crossing the bounce point,
in order to have α1 > 0, i.e., to eliminate the ghost prob-
lem, ḟT − 3H fT must change its sign when crossing the
bounce point, which we set to be t = 0. According to the
lemma, ḟT − 3H fT can either cross 0 or become discon-
tinuous. If ḟT − 3H fT crosses 0 at t = 0, it means that
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3a f 2
T /( ḟT − 3H fT ) gets divergent when t approaches to

zero, unless fT also goes to zero to compensate the diver-
gence. In that case, as 3a f 2

T /( ḟT − 3H fT ) blows up, its time
derivative will be at least positive, and fT is also positive
considering the stability of tensor perturbations, which gives
rise to α2 < 0, leading to a gradient instability.

The only loophole is to have fT also goes to zero at t = 0,
as mentioned before. However, it is also impossible. Since
fT is constrained to be positive either before or after the
bounce, fT → 0 means that fT decreases ( ḟT < 0) before
the bounce, while increases ( ḟT > 0) after the bounce, con-
tradicting with the requirement of α3 > 0. Therefore, the
only way to have all the three α’s be positive all the time is
to have ḟT − 3H fT discontinuous, at least at t = 0.

The discontinuity of ḟT − 3H fT implies that either ḟT or
fT be discontinuous, or both. However, the case where fT is
discontinuous while ḟT is not cannot be true. The reason is
that according to the lemma and requirement of positivity of
α3, ḟT can either be discontinuous, or cross zero. If ḟT → 0
at t = 0, since ḟT − 3H fT cannot cross 0, it means fT
has to be divergent (to compensate the vanishing of H ), and
moreover, ḟT − 3H fT � −3H fT . In this case, one has

α2 � 4a ḟT
H

+ 2a

3H2

(
f̈T − 3Ḣ fT

)
, (68)

where one can see that, every term has a negative value. The
first term is because ḟT and H must have opposite signs,
the second term is because f̈T must be negative while ḟT
goes continuously from positive value to negative value, and
the third term is because both Ḣ and fT are positive during
bounce region. Therefore ḟT must be discontinuous at least
crossing the bounce point t = 0. Hitherto the full proof
completed.

Actually, the implication of discontinuous function in
cosmology solutions is not rare at all in the literature. For
example, in Refs. [51–53] people explore interesting obser-
vational effects brought by step-like functions in inflation
model buildings. In next section, we will give an example
of a bounce inflation scenario, which is modeled by f (T )

theory with discontinuous ḟT at the bounce point.

4 An example

According to the theorem above, in this section, we provide a
parameterized model of f (T ) theory that could have bounce
inflation solution and satisfy all the requirements 1) to 4) for
stabilities of perturbations. First of all, we parameterize the
scale factor to be:

a(t) =
⎧
⎨

⎩

a1(t1 − t)p1 for t < 0,

a2(t − t2)p2 for t > 0,

(69)

where we assume that the bounce happens at t = 0 point.
And according to this, the Hubble parameter can be written
as:

H = pi
t − ti

, i = 1, 2 for t < / > 0. (70)

Moreover, this parameterization will give the equation of
state (EoS) w1 = 2/(3p1) − 1 for t < 0 and w2 =
2/(3p2)−1 for t > 0. Considering the requirement on back-
ground demonstrated in Sec. 2, one then has 0 < p1 ≤ 1/3
and p2 → +∞. For specific choice, we set p1 = 1/3 and
p2 = 100.

The Torsion scalar T will be

T = −6H2 = −6

(
pi

t − ti

)2

, (71)

In order to solve f (t) from Eq. (15), we also need to
parameterize the scaling of matter density ρm(t). For sim-
plicity, we temporarily let

ρm(t) =
⎧
⎨

⎩

ρm1(t1 − t)2r1 for t < 0,

ρm2(t − t2)2r2 for t > 0,

(72)

so that we can write ρmi ∼ a
2ri
pi with i = 1, 2 for t < / > 0,

which can give us the relation between the EoS of matter and
that of background given by f (T ): wmi = −2ri/pi − 1 =
−r(1 +wi )− 1. Since both before and after bounce we have
wi > −1, therefore, if we use a single canonical scalar field
as we did to describe the matter, such a relation requires that
ri < 0 for both before and after the bounce. A more stringent
constraint on ri will be given by the conditions 1) to 4). They
gives i) ri (1 + 2ri ) > 0, ii) −2ri (1 + ri )/(1 + 2ri ) > 0, iii)
ri (2ri + 3)/[(ri + 1)(2ri + 1)] < 0, respectively, which can
be combined to have −3/2 < ri < −1.

Substituting Eqs. (70) and (72) into Eq. (15) one can get

f (t) =

⎧
⎪⎪⎨

⎪⎪⎩

2ρm1
M2

p(1+2r1)
(t1 − t)2r1 + λ1

t1−t for t < 0,

2ρm2
M2

p(1+2r2)
(t − t2)2r2 − λ2

t−t2
for t > 0,

(73)

and considering the expression of T in Eq. (71), one has the
form of f (T ):

f (T ) = 2ρmi

M2
p(1 + 2ri )

(
T

−6p2
i

)2ri

± λi

√
T

−6p2
i

, (74)

and i = 1, 2, ± = +,− for t < / > 0, respectively.
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Fig. 1 From top to bottom are the plots of fT , α1, α2 and α3 respec-
tively, with respect to cosmic time t , while t = 0 is the bounce point.
Note that all these parameters are positive (αi ’s are plotted in Logarithm
scale.) while fT presents a sharp peak. The parameters are chosen as:
a1 = 10−100, a2 = −1/3

√
3/10, t1 = 1

3 × 10−3M−1
p , t2 = −0.1M−1

p ,

p1 = 1/3, p2 = 100, ρm1 = −5/2
√

3 × 10−5M4
p , ρm2 = 1M4

p ,
λ1 = λ2 = 0, r1 = r2 = −5/4, Mp = 1

Figure 1 shows the time evolution of the parameters α1,
α2, α3 as well as fT [derived from Eq. (74)] which describes
the stabilities of tensor and scalar perturbations. One can
see that although fT appears continuous, it forms a sharp
peak around the bounce point, demonstrating a discontinu-
ity of its further derivative, ḟT (In our numerical calculation,
ḟT (0−) ≈ 0.13M3

p while ḟT (0+) ≈ −4.39×10−4M3
p). αi ’s

may also be discontinuous as they contain ḟT , nonetheless,
all the parameters remain positive, leading to a totally stable
bounce inflation solution. For parameter choices, we choose
a1 = 10−100, a2 = −1/3

√
3/10, t1 = 10−3/3M−1

p , t2 =
−0.1M−1

p , p1 = 1/3, p2 = 100, ρm1 = −5/2
√

3 × 10−5M4
p,

ρm2 = 1M4
p, λ1 = λ2 = 0, and r1 = r2 = −5/4, which

means wm1 = 3/2 for contracting phase with w1 = 1, and
wm2 ≈ −1 for expanding phase with w2 ≈ −1. These
choices can ensure the continuity of a(t), T (t), ρm(t) and
f (T ), however, as all the degrees of freedom are thus used
up, one has to abandon the continuities of further derivatives,
namely ḟT .

As a side remark, we note that scalar field with arbitrary
EoS larger than − 1 can be realized by potential parameter-
ization, an example having been given in [54]. In our case,
the function form of the potential can be given by

V (φ) = V0i [Ai (φ − φ0i )]
2ri
ri+1 , (75)

while V0i = ρmi [2 + r(1 + wi )]/2, Ai = (1 + ri )/√−riρi (1 + wi ), and φ0 is a integral constant. Since accord-
ing to [54], for −3/2 < ri < −1 the condition for existence
of scaling solution, namely the power index 2ri/(ri +1) > 2,
is satisfied, therefore with such a parameterized potential,
there exists a scaling solution of φ − φ0i ∼ tri+1, which can
be used to get (72).

5 Conclusions

In this paper, we investigated the properties of perturba-
tions generated from f (T ) modified gravity theory applied
to bounce inflation scenario. We calculated the perturbation
action of f (T ) theory plus a scalar field, and found con-
ditions for obtaining a stable bounce inflation solution. We
found it is actually very difficult to satisfy all the conditions,
and one way out is to give up the continuity of derivative
function of f (T ), say, ḟT . An example of such a solution is
also presented.

As a member of the big modified gravity family, f (T )

theory has many interesting features that are deserved fur-
ther investigation. For example, as it breaks the local Lorentz
symmetry [55], an interesting idea is to extend the current
study to a more general torsion theory which restored the
symmetry. One example of such a torsion theory, namely
the Cartan theory, has been explored in Ref. [57]. More-
over, since we only consider perturbations from the gravity
part. If the matter part also takes the role, the perturbation
analysis will be more complicated since isotropic modes of
perturbation also involved in. A higher order perturbations
(Non-Gaussianities) of the system might also be interesting
especially for future observational data. Another smoking-
gun of the work in this paper is that we have chosen the
gauge β = 0 so that the tetrad (17) is made diagonal. How-
ever, since one has freedom to choose other gauges, which
may make the tetrad non-diagonal, whether the conclusion
will be affected is still unknown. We leave all these topics
for upcoming works.
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