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Abstract We consider a probe stable meson in the holo-
graphic quark–gluon plasma at zero temperature and chem-
ical potential. Due to the energy injection into the plasma,
the temperature and chemical potential are increased to arbi-
trary finite values in such a way that the plasma experi-
ences an out-of-equilibrium process. We then observe that
the meson is excited, i.e. the expectation value of Wilson
loop oscillates around its static value with a specific angu-
lar frequency. By defining excitation time tex as a time at
which the meson falls into the final excited state, we study
the effect of various parameters of theory on the excitation
time and observe that for larger values of final temperature
and chemical potential the excitation time increases. Further-
more, our outcomes show that the more stable mesons, mean-
ing that the meson with lower static potential, are excited
sooner.
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1 Introduction

Standard methods applied to calculations in quantum chro-
modynamics (QCD) are often based on a perturbative expan-
sion. This makes them of limited use if applied to ques-
tions about the non-perturbative nature of the theory at low
energies and where the coupling constant is large. Strong
coupling techniques are in particular needed for understand-
ing the physics of the strongly coupled quark–gluon plasma
(QGP) produced at RHIC and at the LHC [1]. One such
technique is lattice gauge theory that successfully describes
the low energy properties of QCD especially at μ = 0 [2].
Lattice gauge theory, however, is of limited use in describ-
ing time-dependent quantities and non-equilibrium evolu-
tion. Another technique is gauge-gravity duality that we
apply in this paper to explain the behavior of meson in non-
equilibrium plasma in the presence of non-zero chemical
potential.

The anti de-Sitter/conformal field theory (AdS/CFT) cor-
respondence or more generally gauge-gravity duality [1,3–5]
is a conjectured relation between two physical theories. One
of them is a strongly coupled gauge theory in d dimensional
space-time and the other one is a classical gravity theory
living in an extra dimension of space-time. In fact, param-
eters, fields and different processes in the gauge theory are
translated into appropriate equivalent on the gravity side. For
instance, the (thermal) vacuum state on the gauge theory side
corresponds to the (black hole-AdS) pure AdS in the gravity
theory. Thermalization process, which generally means evo-
lution of a state from zero temperature to a thermal state, is
dual to black hole formation in the gravity theory [6]. More-
over, as another example, the meson, quark-antiquark bound
state, living in the QGP can be identified with a classical
string in the gravity and by using the expectation value of the
Wilson loop the static potential between a quark and anti-
quark has been firstly found in [7]. For more information,
the interested reader is referred to [1] and references therein.
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In this paper, we consider a probe stable meson in the
QGP at zero temperature and chemical potential. Then the
temperature and the chemical potential are simultaneously
raised from zero to finite values T f and μ f , respectively.
Now the questions we would like to answer are how the stable
meson reacts to the energy injection into the system and what
the characteristics of the new meson state are? Furthermore,
it is instructive to know how much time is needed for the
meson to fall into the final excited state, i.e. excitation time,
and what the effect of the final values of the temperature and
the chemical potential is on the excitation time? By excited
state we mean a meson which has a higher energy than the
ground state, i.e. the meson in the initial static gauge theory.
The holographic dual of the above system is described by
the dynamics of the classical string, with appropriate initial
and boundary conditions, in the Reissner–Nordström–AdS
Vaidya (RN–AdS–Vaidya) background, as we will review in
the next section.

2 Review on the backgrounds

The gauge-gravity duality proposes a promising approach to
investigate different properties of the strongly coupled field
theory. Since we want to study the QGP as a strongly cou-
pled system in the presence of non-zero chemical potential,
we firstly review its corresponding holographic dual, i.e. RN–
AdS background. We then extend our problem to the time-
dependent case, i.e. RN–AdS–Vaidya, which is dual to the
thermalization process in the strongly coupled field theory
when the temperature and the chemical potential simultane-
ously increase.

2.1 RN–AdS black hole background

Here we introduce charged black hole metric which is asymp-
totically AdS. Consider the Einstein–Maxwell anti-de Sitter
action [8]:

S = − 1

16πGd+1

∫
dd+1x

√−g

[
R − F̂2 + d(d − 1)

R2

]
,

(1)

where G is Newton constant, R is Ricci scalar, F̂ is field
strength of the U (1) gauge field and R is AdS radius
which we set to be one. The number of spatial directions
is d and it relates to the negative cosmological constant as
� = − d(d−1)

2R2 . Equations of the motion obtaining from the
above action are

0 = Rμν − 1

2
gμν(R − 2� − F̂2) − 2F̂μλ F̂

λ
μ,

0 = 1√−g
∂ν(

√−gF̂νσ ),

(2)

where μ = 0, . . . , d. The solution of the equations of motion
is the RN–AdS metric1 which can be written as [8]

ds2 = 1

z2

[
− f (z)dt2 + 1

f (z)
dz2 + d �x2

]
,

f (z) = 1 − Mzd + Q2z2d−2,

(3)

and the time component of the gauge field introduced in (6).
M and Q are the mass and the charge of the RN–AdS black
hole, respectively. In (3), z is radial coordinate and z = 0
is the AdS boundary. In addition, (t, �x) are the four dimen-
sional coordinates at the boundary. The gauge-gravity dual-
ity indicates that the Hawking temperature of the black hole
corresponds to the temperature of the QGP. For d = 4, the
temperature of the RN–AdS5 black hole is

T = 1

π zh

(
1 − 1

2
Q2z6

h

)
. (4)

Here zh is the radius of the event horizon, i.e. the smallest
root of f (z) = 0. The relation between zh , M and Q is

M = 1

z4
h

+ Q2z2
h . (5)

Moreover, the time component of the gauge field is given by
[8]

At = −
√

3

2
Qz2 + �, (6)

where � is a constant which plays the role of the electrostatic
potential between the boundary of the bulk and the event
horizon. It can be defined by applying At (zh) = 0. Thus we
obtain

� =
√

3

2
Qz2

h . (7)

Gauge-gravity duality provides a correspondence between
the time component of gauge field at the boundary and the
chemical potential in dual boundary gauge theory [8,11], i.e.

μ = lim
z→0

At =
√

3

2
Qz2

h, (8)

in the AdS radius unit. Hence, it is easy to find that

μ

T
=

√
3π

2

Qz3
h

1 − 1
2 Q

2z6
h

. (9)

1 Holographic models of strongly coupled matter at finite density in
equilibrium can display instabilities when T becomes sufficiently small,
for instance, see the paper on the RN–AdS black holes in five dimensions
where an instability is triggered by a tachyonic field coupled to the
sysytem in N = 8 gauged supergravity [9,10].
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2.2 RN–AdS–Vaidya background

Let’s generalize the static background (3) to the time-
dependent case. It can be achieved by adding external source
terms to the action (1). Then, the equations of motion for
general d are [8]

8πGd+1T (ext)
μν = Rμν − 1

2
gμν(R − 2� − F̂2) − 2F̂μλ F̂

λ
ν ,

8πGd+1 Jμ

(ext) = 1√−g
∂ν(

√−gF̂νμ). (10)

The RN–AdS–Vaidya metric, in the Eddington-Finkelstein
coordinates, is then given by

ds2 = 1

z2 [−F(v̄, z)d v̄2 − 2dzd v̄ + d �x2],
F(v̄, z) = 1 − M(v̄)zd + Q(v̄)2z2d−2,

Aμ = −Q(v̄)

c
zd−2δμv̄, (11)

provided that

8πGd+1T (ext)
μν

= zd−1
[
(d − 1)

2
Ṁ(v̄)−(d−1)z(d−2)Q(v̄)Q̇(v̄)

]
δμv̄δνv̄,

8πGd+1 Jμ

(ext) =
√

(d − 1)(d − 2)

2
zd+1 Q̇(v̄)δμz,

(12)

where Q̇(v̄) = dQ/d v̄ and so on. The v̄-coordinate reduces
to t at the boundary, i.e. t = v̄|z=0, the time coordinate of
the gauge theory. M(v̄) and Q(v̄) are arbitrary functions that
represent how and at what rate the mass and the charge of
the RN–AdS black hole increase. Various functions for M(v̄)

and Q(v̄) have been discussed in the literature and it seems
that the physical results are independent of the form of the
functions [12]. Therefore, we choose

I(v̄) = I f

⎧⎨
⎩

0 v̄ < 0,

k−1
[
v̄ − k

2π
sin

( 2πv̄
k

)]
0 � v̄ � k,

1 v̄ > k,
(13)

where I ∈ (M, Q). The transition time k is the time inter-
val that the mass (charge) of the black hole needs to reach
its final value M f (Q f ). For k � 1 (k � 1) the transi-
tion time is small (large) which is usually called fast (slow)
quench. According to the gauge-gravity duality, study of the
RN–AdS–Vaidya metric on the gravity side corresponds to
the study of thermalization of strongly coupled QGP in the
presence of the chemical potential in the gauge theory. Note
that the relation between M f , Q f and zh is still given by (5).

3 Expectation value of Wilson loop

The static potential between a quark and anti-quark has been
extensively studied, for example see [1,13–15]. In this sec-
tion, we want to review how this static potential can be
obtained from the duality point of view. To do so, we use
the expectation value of the Wilson loop as a gauge invariant
operator. Specifically, on the one hand, we use the time-like
Wilson loop in rectangular form C. One side of rectangle,
l, is spatial corresponding to the distance between quark-
antiquark pair and the other side is temporal, T . If we assume
that T � l, meaning that the world-sheet is translationally
invariant along the time direction, the expectation value of
the Wilson loop is [1]

〈W (C)〉 = e−i(2m+V (l))T , (14)

where m is the rest mass of quark (antiquark) and V (l) repre-
sents the static potential energy between the pair. On the other
hand, the gauge-gravity duality proposes that in order to cal-
culate the static potential in the QGP at finite chemical poten-
tial, one needs to probe the RN–AdS black hole geometry by
the classical string [16,17]. In other words, the expectation
value of the Wilson loop, in the saddle point approximation,
is dual to the on-shell action of classical open string that
its end points are located on the boundary with distance l.
Therefore,

〈W (C)〉 = ei S(C), (15)

where S(C) is value of the Nambu-Goto action

S = −1

2πα′

∫
dτdσ

√− det(gab). (16)

on the rectangle C. The tension of string is proportional to
α′−1 ≡ ls−2 and ls is the fundamental length scale of string.
Also, τ and σ parametrize the two dimensional string world-
sheet. gab = Gμν

∂Xμ

∂ξa
∂Xν

∂ξb
is the induced metric on the world-

sheet. Here Gμν and Xμ (ξa = τ, σ ) are the metric and the
bulk (world-sheet) coordinates, respectively. This action, in
fact, describes the dynamics of the classical string in any
desired geometry. As we will see, using (14)–(16), the static
potential can be found. Note that, the rest mass m is equal to√

λ
2π

∫ zh
ε

dz
z2 [1], where ε is IR regulator in the gravity theory

and according to UV/IR connection, it corresponds to the UV
cut-off in the gauge theory.

In order to calculate the S(C) in the RN–AdS black hole
background (3), we parametrize the two-dimensional world-
sheet of the string as τ = t , σ = x3 ≡ x . All bulk coordi-
nates, except z and x , are chosen to be constant and therefore
the shape of the string is described by z = z(x). Hence the
action (16) reduces to

S = − T
2πα′

∫ l
2

− l
2

dx
1

z2

√
z′2 + f (z), (17)
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where z′ = dz/dx . Since the Lagrangian does not depend
explicitly on x , the associated Hamiltonian is a constant of
motion. After some simple algebra, we get

z′(x) = ± z∗2 f (z)√
f (z∗) z2

√
1 − f (z∗)

f (z)

(
z

z∗

)4

, (18)

where z = z∗ at z′(x) = 0. Using the new coordinate y =
z∗/z and the explicit form of f (z), it turns out

∫ 0

± l
2

dx = ∓z∗
√

1 − y4
h + Q f

2z∗6(1 − yh−2)

×
∫ ∞

1

dy√[
y4−1+Q f

2z∗6(y−2−1)
] [

y4−y4
h+Q f

2z∗6(y−2−yh−2)
] ,

(19)

where yh = z∗/zh . The on-shell action can be then found by
inserting (18) and (19) into (17). Furthermore, by applying
(14) and (15) the potential energy between the quark and
anti-quark will be obtained that is in agreement with results
reported in [18]. Notice that, in order to get a finite value for
the potential energy, we need to subtract the rest mass of the
quarks from the on-shell action and we therefore have

V = 1

πα′

[
1

z∗

∫ ∞

1
dy

⎛
⎝

√
y4 − y4

h + Q f
2z∗6(y−2 − yh−2)

y4 − 1 + Q f
2z∗6(y−2 − 1)

− 1

⎞
⎠

−
(

1

z∗
− 1

zh

) ]
. (20)

Before closing this part, two points should be noted. First, as
we will see, the Eq. (19) will be utilized as an initial condition
for the time evolution of the classical string in the RN–AdS–
Vaidya background. Second, in the next section, we observe
that the expectation value of the time-dependent Wilson loop
oscillates around the static potential resulted in (20).

Now our goal is to calculate the evolution of expectation
value of Wilson loop in the RN–AdS–Vaidya geometry. In
this geometry, the two-dimensional world-sheet of the string
is no longer translationally invariant in the time direction.
Thus the condition T � l does not valid and therefore in
this case, the expectation value of the Wilson loop (14) can
be written as

〈W (C)〉 = e−i
∫
dt W(t), (21)

where, using the gauge-gravity duality, W(t) is the on-shell
action of string without integrating over t-coordinate. It is
important to note that although W is a function of different
parameters in the gauge theory, such as temperature, chem-
ical potential and distance l, we only show its time depen-
dence, explicitly. As before, W(t), or equivalently the on-
shell string action, diverges and in order to regularize this
divergence, similar to the static case, we have

WR(t) = W(t)−2m≡
∫

dσ
(√− det(gab)

)
on−shell

−2m.

(22)

The subscript “R” in (22) refers to the regularized version of
W(t). To calculate the string on-shell action, similar to [19–
21], we choose the null coordinates (u, v) to parametrize the
two-dimensional world-sheet of the string and therefore all
the coordinates on the world-sheet depend on u and v. Then
we choose the following ansatz:

v̄ = V (u, v), z = Z(u, v), x3 = X (u, v). (23)

Note that due to rotational symmetry in spatial coordinates,
there is no difference among them. Substituting this ansatz
into the Nambo-Goto action (16), the equations of motion
can be found. Hence, we finally have

V,uv =
(
F,Z

2
− F

Z

)
V,uV,v + 1

Z
X,u X,v ,

Z,uv =
(
F2

Z
− F

2
F,Z − 1

2
F,V

)
V,uV,v

+
(
F

Z
− F,Z

2

) (
Z,uV,v + Z,vV,u

)

+ 2

Z
Z,u Z,v− F

Z
X,u X,v, X,uv = Z,u X,v+Z,vX,u

Z
,

(24)

where, for an arbitrary function A(a, b), we define A,a = ∂A
∂a

and A,ab = ∂2A
∂a∂b . Since u and v are null coordinates, we

need to impose two constraints corresponding to guu = 0
and gvv = 0. Thus, two constraint equations turn out to be

C1 = 1

Z2 (FV 2
,u + 2V,u Z,u − X2

,u) = 0,

C2 = 1

Z2 (FV 2
,v + 2V,vZ,v − X2

,v) = 0.

(25)

In order to solve the equations of motion (24) subject to con-
straint equations (25), the suitable boundary and initial con-
ditions are essential. In the Appendices B and C, we obtain
the appropriate boundary and initial conditions, respectively.
After solving the equations of motion (24), one can easily
find the time evolution of WR(t) when the other parameters
are kept fixed.

4 Numerical results

As we have already mentioned and shown by the Figs. 1, 2
, 3 and 4 the expectation value of the Wilson loop oscillates
around the static potential. In fact, before injecting energy
(t < 0), the quark-antiquark pair is in ground state. How-
ever, as the energy injection is started, the temperature and the
chemical potential increases and therefore the pair is excited.
When the energy injection ceases, the pair falls into a final
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Fig. 1 WR(t) in terms of the boundary time t for l = 1, k = 0.3 and
μ f /T f = 3.15. For the left (right) graph μ f = 0.3188 (0.3925) and
T f = 0.1012 (0.1246). The static potentials for left (right) graph is

V = − 0.6369 (− 0.3347). The dashed red curve shows our numerical
results and the blue sine curve is the fitted function (26)

Fig. 2 WR(t) in terms of boundary time t for k = 0.3, μ f = 0.4503,
T f = 0.1428 and μ f /T f = 3.15. The distance between the pair is
l = 0.5 (l = 1) for the left (right) graph. The static potential is

V (l) = −2184.8 (−0.1686) for left (right) graph. The dashed red curve
shows our numerical results and the blue sine curve is the fitted function
(26)

Fig. 3 WR(t) in terms of the boundary time t for l = 1, k = 0.3 and
μ f /T f = 0.1. For the left (right) graph μ f = 0.0134 (0.0220) and
T f = 0.1340 (0.2200). The static potentials for left (right) graph is

V = −1.4081 (−0.1017) respectively. The dashed red curve shows our
numerical results and the blue sine curve is the fitted function (26)
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Fig. 4 WR(t) in terms of boundary time t for k = 0.3, μ f = 0.0220,
T f = 0.2200 and μ f /T f = 0.1. The distance between the pair is
l = 0.5 (l = 1) for the left (right) graph. The static potential is

V (l) = − 114.55 (− 0.1017) for left (right) graph. The dashed red
curve shows our numerical results and the blue sine curve is the fitted
function (26)

excited state with specific frequency and amplitude of oscil-
lation. In other words, these oscillations can be interpreted as
if the energy injection puts the meson in the excited state [19–
21]. As a consequence of conformal invariance at finite tem-
perature, there are two independent parameters, say μ f /T f

and lT f . We are now interested in investigating the effect
of these parameters on the characteristic of oscillation, i.e.
frequency and amplitude. Thus our results are classified into
the following categories:

• μ f
T f

> 1 and fixed
In Fig. 1, we show how the expectation value of Wilson
loop evolves with time for lT f = 0.1012 (left panel) and
lT f = 0.1246 (right panel) for fixed μ f /T f = 3.15.
We observe that by raising the final value of the tem-
perature of the QGP while the distance between the
quark and antiquark is kept fixed, the amplitude of the
oscillation increases, also (the energy of the excited pair
increases based on the relation between amplitude and
energy in simple harmonic oscillator). However, the value
of the frequency is independent of the final temperature in
agreement with the numerical results of [22]. In Fig. 2,
we have lT f = 0.0714 (left panel) and lT f = 0.1428
(right panel) for fixed μ f /T f = 3.15. In this figure with
increasing the distance between the quark and antiquark
while the temperature is kept fixed, the amplitude (fre-
quency) of oscillation increases (decreases).

• μ f
T f

< 1 and fixed
All results for this case are similar to the previous case. In
other words, it seems that in the case at hand the value of
μ f /T f does not change the behavior of the expectation
value of the Wilson loop, qualitatively.

An interesting point we would like to emphasize here is that
since we are working in the probe limit, the energy of the

meson does not dissipate in the plasma and therefore the
oscillation remains unchanged.

Up to now, we investigate the response of the system to
the time-dependent change in the temperature and the chem-
ical potential. In fact, the response of the system is described
by the behavior of the expectation value of the Wilson loop,
WR(t), in terms of boundary time. We observe that the expec-
tation value oscillates around the static potential with a spe-
cific value of frequency, ν, and amplitude of oscillation, A.
The characteristics of oscillation depend on the final values
of the chemical potential and the temperature as well as the
distance between the pair. Now, the question we would like
to answer is, at which time the expectation value of the Wil-
son loop starts oscillating around the static potential? And
we call it excitation time. To do so, we define the following
function:

W f (t) = A cos(2πνt + φ) , (26)

where A, ν and φ can be found from WR(t) at asymptotic
times. We then define a time-dependent function

εμ(t) =| WR(t) − W f (t)

WR(t)
|T,l , (27a)

εT (t) =| WR(t) − W f (t)

WR(t)
|μ,l , (27b)

εl(t) =| WR(t) − W f (t)

WR(t)
|μ,T , (27c)

where in (27a) T and l are kept fixed while μ changes and so
on. Thus the excitation time, tex , is defined as the time which
satisfies ε(tex ) < 5 × 10−6 and ε(t) stays below this limit
afterwards.2

2 One can choose the other relevant numbers and see the final results
does not change qualitatively.
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Fig. 5 The excitation time in terms of μ f /T f for l = 1

In Fig. 5 (left), blue points, the final temperature of the
system decreases while the other parameters contributing to
the time evolution of the expectation value are kept fixed.
As it is clearly seen, at higher temperatures the meson falls
into the excited state later. In other words, the higher tem-
perature, the larger (rescaled) excitation time, (k−1)tex . This
result can be intuitively understood: at higher temperatures
the thermal fluctuations become more significant i.e. in any
system with non-zero temperature, the thermal fluctuations
are present and as the temperature increases, the thermal fluc-
tuations become more highlight. In other words, the particles
gain more kinetic energy and bounce more frequently off of
one another, so that can lead to more deviation of the (state
of) particles from their steady state. Thus this effect prevents
the meson from sooner fall. In the same figure, red points,
since we would like to investigate the effect of the chemi-
cal potential on the excitation time, the chemical potential
is varied and the other parameters are kept fixed. Similar to
the previous case, this figure indicates that the rescaled exci-
tation time and chemical potential increase with respect to
each other. As a matter of fact, for larger values of the tem-
perature and the chemical potential, the rescaled excitation
time becomes larger. In short, the effect of temperature on the
rescaled excitation time is similar to the chemical potential.
Apart from the fast quench, in the right panel, the rescaled
excitation time is plotted as a function of μ f /T f for the case
of the slow quench, i.e. k = 3. It is obviously seen that in both
cases the behavior of excitation times is the same. However,
k−1tex is larger for the case of the fast quench.

In Fig. 6, the distance l is increased while the other param-
eters are kept fixed. In contrast to the chemical potential and
the temperature, the distance is an intrinsic characteristic of
the meson in the plasma. This figure shows that for larger
value of distance l, meaning that the meson is less stable,
the excitation time increases. Here, by stability we mean that
the value of the static potential is lower at zero tempera-
ture and chemical potential, or equivalently before the energy

Fig. 6 The excitation time in terms of lT f for T f = 0.1091 and μ f =
0.4811

injection, for smaller values of distance l. Although for both
quenches the rescaled excitation time behaves similarly, the
value of k−1tex is larger for the fast quench. In other words,
this figure indicates that the meson with smaller l, i.e. the
more stable quark-antiquark bound states are excited sooner.
It may be related to the screening of the force between color
charges of the quark and antiquark due to the presence of
the medium since they, quark and antiquark, can not com-
municate, easily. Notice that the distance between quark and
antiquark can not be too large because the meson will then
dissociate in the plasma.

5 Conclusions

Our main outcomes can be summarized as follows:

• We observe that the expectation value of the time-
dependent Wilson loop oscillates around the static poten-
tial. It may be interpreted as the string connecting quark
and antiquark (or flux tube resulted from the gluon fields
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between the pair) in field theory with Dirichlet boundary
conditions on the endpoints. After the energy injection,
the string is oscillating in one of the its normal modes
or equivalently the quark-antiquark bound state has been
excited. As a matter of fact, we investigate the effect of
the chemical potential and the temperature on this normal
mode.

• Making larger each parameter under study in this paper,
i.e. final chemical potential, final temperature and the
quark-antiquark distance, the energy of the bound state,
based on classical harmonic oscillator model, increases
since the amplitude of the oscillation becomes larger.

• The oscillation frequency is independent of the temper-
ature and approximately of the chemical potential. It is
intuitively comprehensible. Similar to the classical har-
monic oscillator, the oscillation frequency is an intrinsic
characteristic of the meson and is independent of the envi-
ronmental changes. However, the larger distance between
quark and antiquark, the smaller oscillation frequency.

• Consider a meson in the plasma with non-zero tempera-
ture and chemical potential. For larger values of the chem-
ical potential and higher temperatures, the excitation time
of the meson increases. In other words, when the plasma
is hotter or denser the meson falls into the final excited
state more slowly.

• Consider a plasma where its temperature and chemical
potential are kept fixed. Then the more stable meson
at T = μ = 0, corresponding to the smaller distance
between quark and antiquark, falls into the final excited
state sooner.

• All of the above results are confirmed for the slow and the
fast quench. By slow (fast) quench we mean the energy
injection into the system is done slowly (rapidly).

We would like to emphasize that, apart from the first result
in the third item, the other outcomes can not be argued by
comparing to the simple harmonic oscillator. In the case of
the second item, one expects that while the energy is injected
into the system by an external source the energy of the bound
state increases. On the other hand, since our results indicate
that the amplitude of the oscillation always increases after
the energy injection, this reminds us of the relation between
the energy and amplitude of the oscillation in the simple har-
monic oscillator and we therefore conclude that the energy of
the meson increases in the plasma. However, it is important
to notice that this relation is not as easy as the simple har-
monic oscillator, i.e. (energy) ∝ (amplitude)2, as shown by
our numerical results. In other words, the amplitude of oscil-
lation, in fact, is a complicated and non-linear function of
the different variables such as temperature, chemical poten-
tial and timescale of the energy injection.

In addition, studying non-local observables [8,23] such as
the two-point correlation function and the expectation value

of Wilson loop as probes of thermalization process, show that
the larger μ/T the larger thermalization time. However, by
studying the two-point correlation function, the expectation
value of Wilson loop and the entanglement entropy [24], the
results indicate that for a fixed small value of lT (lT � 1)
and small values of μ/T the thermalization time decreases
by increasing μ/T , thus plasma thermalizes faster. But, for
larger values of μ/T the thermalization time increases with
increasing μ/T . Also, by increasing the value of lT this non-
monotonic behavior becomes less pronounced and finally
disappears, so that a monotonic behavior has been observed
for lT � 1.

More recently, equilibration of a dynamical scalar opera-
tor is considered in the charged QGP during its equilibra-
tion [25]. The numerical outcomes show that the equili-
bration time can be a decreasing or increasing function of
μ/T and depends on the energy injection, so that one can-
not report the general behavior. Furthermore, in [26] study-
ing non-hydrodynamic quasinormal modes of a scalar field
show that the equilibration time decreases with increasing
the chemical potential far from the critical point, while close
to the critical point it would increase. On the other hand,
the thermalization time always increases with increasing
the chemical potential. In summary, although the excitation
time increases for larger values of the chemical potential in
our case, it should be instructive to check our outcomes in
other gauge theories with holographic dual to find a general
behavior.
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Appendix A: Large chemical potential limit

In this section, we study the potential of quark-antiquark
when the charge Q or equivalently the chemical potential μ

is large enough so the temperature T can be neglected. In this
limit, using (4) and (5), we have:

Q2 = 2 z−6
h , (A1)
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Fig. 7 WR(t) in terms of boundary time t for k = 0.3 and l = 1. For
the left panel μ f = 0.3925, T f = 0.1246 and for the right panel μ f =
0.6981, T f = 0. The static potential is V (l) = − 0.3347 (− 0.3912)

for left (right) graph. The dashed red curve shows our numerical results
and the blue sine curve is the fitted function (26)

Fig. 8 WR(t) in terms of boundary time t for k = 0.3 and l = 1. For
the left panel μ f = 0.0220, T f = 0.2200 and for the right panel μ f =
0.8475, T f = 0. The static potential is V (l) = − 0.1017 (− 0.1793)

for left (right) graph. The dashed red curve shows our numerical results
and the blue sine curve is the fitted function (26)

M = 3 z−4
h , (A2)

and thus, by using (8), one can find

μ =
√

3

2
z−1
h . (A3)

In Fig. 7 (left panel) we set μ f /T f = 3.15. However, in the
right panel T f is zero, i.e. large chemical potential. We see
that the static potential of the pair decreases and the amplitude
of the oscillation increases. But, the frequency of oscillation
does not change. In Fig. 8, we have μ f /T f = 0.1 for the
left panel and large μ for the right panel. The results are in
complete agreement with the Fig. 7. In addition, note that
these results show that, in the large μ limit, by increasing
the chemical potential, the final static potential also rises. It
is intuitively correct since the matter screens the interaction
between the quark and antiquark.

Appendix B: Boundary condition

Here, we state the boundary conditions for solving the equa-
tions of motion (24). By applying the diffeomorphism invari-
ance on the two-dimensional world-sheet of the string, one
of the endpoints of string on the boundary can be fixed to
be at u = v and the other one at u = v + L . Thus, for the
coordinates Z and X , the boundary conditions are

Z |u=v = 0; X |u=v = −l

2
,

Z |u=v+L = 0; X |u=v+L = l

2
.

(B1)

In fact the above boundary conditions in the gauge theory
means that the distance between the quark and antiquark does
not change during the energy injection. Similar boundary
conditions in the static case [27] and in the time-dependent
case [19–21] have been studied. The other boundary con-
ditions can be obtained by expanding V (u, v), Z(u, v) and
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X (u, v) about the point u = v at the boundary. Therefore,
one gets

V (u, v) = V0(v) + V1(v)(u − v) + · · · , (B2)

Z(u, v) = Z1(v)(u − v) + Z2(v)(u − v)2 + · · · , (B3)

X (u, v) = −l

2
+ X1(v)(u − v) + · · · . (B4)

The same expansion is done for the other point u = v +
L at the boundary. By inserting the above equations into
the evolution equations (24) and demanding the regularity
condition at u = v and u = v + L , one can obtain the
remaining boundary conditions. Notice that the results should
be consistent with the constraint equations (25). Finally, at
the boundary, i.e. u = v, conditions are:

V (u, v) = V0(v) + O
(
(u − v)5

)
, (B5a)

Z(u, v) = V̇0(v)

2
(u − v) + V̈0(v)

4
(u − v)2

+
...
V 0(v)

12
(u − v)3 + O

(
(u − v)4

)
, (B5b)

X (u, v) = −l

2
+ O

(
(u − v)3

)
, (B5c)

which indicate that

Z,uv|u=v = 0, 2Z,u |u=v = V̇0(v), (B6)

where V̇ (v) = dV (v)
dv

. The same results are obtained for u =
v + L . We refer the interested reader to [19–21] for more
details.

Appendix C: Initial condition

Using (18) and the constraint equations (25), we get the initial
condition for Z , V and X . We set f (z) = 1 and replace x
and z with the capital forms. Considering V,v > 0 at the
boundary, (B5a) and (B5b), it is easy to find that Z,u > 0
and Z,v < 0. By imposing X,u |Z=0 = X,v|Z=0 = 0 and the
above conditions on the constraint equations (25), we get

V,u = Z,u

(
− 1 +

√
1 + ( dX

dZ

)2
)

, (C1)

V,v = Z,v

(
− 1 −

√
1 + ( dX

dZ

)2
)

. (C2)

Now by taking the derivative of (C1) and (C2) with respect
to v and u respectively and noting that V,uv = V,vu , it turns
out
(
Z,u

√
1 + (dX

dZ

)2
)

,v

= 0. (C3)

Replacing dX
dZ , from (18), into the above equation we get the

initial condition for Z(u, v)

Z 2F1

(
1

2
,

1

4
; 5

4
; Z4

Z∗4

)
= φ(u) − φ(v), (C4)

where φ(y) is an arbitrary function and we choose φ(y) =
y [19–21]. The initial condition for X (u, v) is obtained by
integrating (18). We then have

X (u, v) = l

2
− Z3

3Z∗2 2F1

(
1

2
,

3

4
; 7

4
; Z4

Z4∗

)
. (C5)

Finally, the initial condition for V (u, v) can be obtained from
(C1) and (C2)

V (u, v) = −Z
(

1 − 2F1

(
1
2 , 1

4 ; 5
4 ; Z4

Z4∗

))
+ χ(v), (C6)

V (u, v) = −Z
(

1 + 2F1

(
1
2 , 1

4 ; 5
4 ; Z4

Z4∗

))
+ χ̃(u), (C7)

where χ and χ̃ are some kind of arbitrary functions. Also,
Using (C4) and equalize the above equations, we can get

χ(v) = 2φ(v), χ̃(u) = 2φ(u). (C8)

One can find more details in [19–21].
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