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Abstract It has been shown that holographic massive grav-
ities can effectively realize spontaneous breaking of transla-
tional symmetry in homogenous manners. In this work, we
consider a toy model of such category by adding a special
gauge-axion coupling to the bulk action. Firstly, we iden-
tify the existence of spontaneous breaking of translations by
the analysis on the UV expansion. In the absence of explicit
breaking, the black hole solution is simply the same as the
Reissner-Nodström(RN) black holes, regardless of the non-
trivial profile of the bulk axions. The associated Goldstone
modes exist only when the charge density is non-zero. Then,
we investigate the optical conductivity both analytically as
well as numercially. Our result perfectly agrees with that for
a clean system, while the incoherent conductivity gets modi-
fied due to the symmetry breaking. The transverse Goldstone
modes are dispersionless since the solution is dual to a liq-
uid state. Finally, the effect of momentum relaxation to the
transverse modes is considered. In this case, the would-be
massless modes are pinned at certain frequency, which is
another key difference from the unbroken states.
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1 Introduction

In most of real-word materials, the translational symmetry in
spatial dimensions are inevitably broken both spontaneously
and explicitly (In this paper, we call them SSB and ESB for
short.) due to the existence of periodic lattice, striped orders,
impurities, defects, etc. For crystalline states, the Goldstone
bosons associated with the SSB of translations are usually
called transverse and longitudinal phonons, all of which have
linear dispersion relations and propagate freely at certain
speed in the clean materials. While, for liquid states with
SSB of translations, there is only one longitudinal phonon
since the shear stresses cannot be supported.

In strongly interacting electronic systems, Goldstone
modes and electrons can be mightily coupled which gives
rise to novel collective behaviors and exotic transport prop-
erties [1–4]. To have a deeper understanding on such patterns,
building a framework beyond the conventional perturbative
methods has already become an important mission in con-
densed matter physics.

Holographic duality provides a tractable approach to the
physics of strong correlated systems by mapping the many-
body problems to classical gravity problems. Recently, some
holographic effective models for solid states that sponta-
neously break the translations have been constructed [6–15].
A common feature in these models is that the translations are
spontaneously broken in a homogenous manner(For inho-
mogeneous realizations, one can refer to [16–25]). This sig-
nificantly simplifies the calculations and makes it possible to
dissect the key properties of the system, say, the transport,
in analytic ways. Recently, the homogeneous realization of
phonons and pseudo-phonons has also been investigated in
the field theory side [26].

In this paper, we mainly consider a new simple holo-
graphic models which can realize the liquid states with SSB
of the translations, by introducing a special gauge-axion cou-
pling. In the absence of relaxation, it is found that the back-
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ground metric as well as the gauge field are exactly the same
as the Reissner-Nodström(RN) black holes, while the pro-
file of the bulk axions plays the role of the scalar condensate
that breaks the translations. On top of this, we investigate the
imprints of the transverse Goldstone modes on the optical
electric conductivity. The plan of this work is as follows: In
Sect. 2, we construct the simplest holographic model with a
gauge-axion coupling and explain how the SSB of transla-
tions can happen in this model via analyzing the UV expan-
sion of the bulk fields. In Sect. 3, we compute the electric
conductivity in the purely SSB pattern both analytically and
numerically. In Sect. 4, we consider the pinned modes in the
presence of relaxation. In Sect. 5, we conclude.

2 Goldstone modes by gauge-axion coupling

To break the translations in an isotropic and homogeneous
manner, one needs to introduce massless axion fields with a
bulk profile φ I = k δ Ii x

i . Essentially, these scalar fields give
the gravitons an effective mass, hence breaking the diffeo-
morphism invariance of the bulk theory [27]. In this way, we
can in principle construct a series of general effective holo-
graphic models with higher derivative terms [28]. Here, we
will focus only on the following simple model with a special
gauge-axion coupling:

S =
∫

d4x
√−g

×
(
R − 2 � − λX − 1

4
F2 − J

4
Tr

[
X F2

])
(1)

where the U(1) gauge field Fμν ≡ ∇μAν − ∇ν Aμ,

Tr [X F2] ≡ Xμ
νF

ν
ρF

ρ
μ, with Xμ

ν

= 1

2

∑
I=x,y

∂μφ I ∂νφ
I , (2)

and X ≡ Tr [X ]. We require that λ ≥ 0 for avoiding the
ghost problem and a necessary condition 0 ≤ J ≤ 2/3
for unitarity and causality [28]. For convenience, we set the
cosmological constant � = −3 which implies a normalized
AdS radius. Then, if taking J = 0, it reduces to the simplest
linear axion model.

From the action above, the covariant form of the equations
of motion are given by

∇μ

[
Fμν − J

2

(
(X F)μν − (X F)νμ

)] = 0, (3)

∇μ

[
λ∇μφ I + J

4
(F2)μν∇νφ I

]
= 0, (4)

and

Rμν − 1

2
gμνR − λ

2
∇μφ I∇νφ

I − 1

2

(
6 − λ

2
∇σ φ I∇σ φ I

)
gμν

= 1

2

(
Fμ

σ Fνσ − 1

4
gμνFρσ F

ρσ
)

+ J
4

(1

2
∇(μ|φ I∇σ φ I (F2)σ |ν)

+F(μ|σ (FX )σ |ν) + F(μ|σ (X F)σ |ν) − 1

2
gμνTr

[X F2] )
.

(5)

As is known that this model has the following isotropic
charged black hole solutions:

ds2 = −D(r) dt2 + B(r) dr2 + C(r) dxidxi ,

Aμ = At (r) dt, φ I = (0, 0, k x, k y), (6)

where i = 2, 3 denotes the two spatial directions. Choosing
such radial coordinate r that the AdS boundary is located
at r = 0, in the asymptotic region the background solution
behaves like

D(r) = 1

r2

(
1 − d(3) r

3 + · · ·
)

,

B(r) = 1

r2 (1 + d(3) r
3 + · · · ),

C(r) = 1

r2 ,

At (r) = μ − ρ r + · · · , (7)

where the coefficient d(3) is associated with the energy den-
sity, μ and ρ are the U (1) chemical potential and the charge
density in the boundary theory.

To explain why the SSB of translations can be realized in
the holographic model (2), we firstly explain what role the
profile of the scalars φi = k xi plays in the following two
different cases. Without loss of generality, let us now assume
that φ I depend on the full coordinates xμ. If we set λ �= 0
and J = 0 in (4), the asymptotic behavior of φ I near the UV
boundary is

φ I = φ I
(0)(t, x

i ) + φ I
(3)(t, x

i ) r3 + · · · . (8)

Then, the r−independent term φi
(0)(t, x

i ) dominates the sec-
ond one, and hence plays the role of an external source that
breaks the translations in the standard quantization. Obvi-
ously, the profile φi = k xi = φi

(0) means that the ESB
of translations happens. And this has already been widely
investigated in previous holographic studies on momentum
relaxation [29–31].
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Conversely, if we instead set λ = 0 andJ �= 0, the scalars
behave like1

φ I = φ I
(−1)(t, x

i )

r
+ φ I

(0)(t, x
i ) + · · · . (9)

In this case, the r− independent term is subleading and corre-
sponds to the expectation value of a dual operator O I .2 Now,
φi = k xi should be interpreted as the expectation value
〈Oi 〉 ∼ k xi with a vanishing source, i.e. φi

(−1) = 0. Since

such a scalar condensate 〈Oi 〉 is not uniform in xi , the trans-
lational symmetry is broken spontaneously. The Nambu-
Goldstone theorem claims that there should exist gapless
excitations in the low energy description which are called
Goldstone modes. With λ = 0, the background solution is
given by

D(r) = f (r)

r2 = 1

r4B(r)
,

f (r) = 1 − r3

r3
h

− μ2 r3

4 rh

(
1 − r

rh

)
,

C(r) = 1

r2 , At (r) = μ − ρ r,

(10)

where rh denotes the location of the horizon. Note that, unlike
other massive gravity models, the background metric as well
the gauge field do not depend on k. While the scalars can still
have the non-trivial profile φi = kxi . Requiring the gauge
field to be regular on the horizon gets μ = ρ rh . Finally, the
Hawking temperature is given by

T = 3

4πrh
− μ2rh

16π
, (11)

which is also the same as the RN black holes. If we perturb
the fields around the non-trivial solution like φ I = kxi +χ I

and Aμ = At + aμ, the axion-gauge term can be expanded
as

Lχ = −J r4ρ2

8

[
(χ̇ I )2 + (χ I ′)2

]
+ · · · (12)

where the dots represents the higher derivative terms asso-
ciated with χ I and aμ interactions. The leading term in the
action is quadratic and the dynamics of the Goldstone modes
in the dual boundary theory is encoded in the eom of χ I . Note
that this story happens only for finite density cases which is

1 In practice, switching off the canonical kinetic term of the scalar
fields theory means that the theory becomes strongly coupled at a rela-
tively low energy scale. However, strong coupling is ubiquitous in field
theories describing the low energy dynamics of systems with sponta-
neously broken translational symmetry. That is to say the bulk EFT of
our model should be valid only down to a certain radial scale. A parallel
and detailed argument can be seen from [9]. To achieve the expansion
(9), we have also supposed that A′

t (0) ∼ const �= 0, i.e., ρ �= 0.
2 See the holographic renormalization procedure in the Appendix.

the similar case as the gapless sliding modes of charge den-
sity waves [32], however in contrast to the acoustic phonons
which do not carry U (1) charges. For zero density case, the
scalars χ i will be decoupled from the other fluctuating fields
in the bulk and will not affect the charge transport. In the
next section, we will investigate the electric conductivity in
the clean case.

3 Electric conductivity

We now turn to study small fluctuations around the back-
ground solution. We denote gμν = ḡμν + δgμν , Aμ =
Āμ + δAμ and φi = φ̄i + χ i , where the quantities with bars
are evaluated on the background, and introduce the time-
dependent perturbations as follows

δAμ(t, r, xi ) =
∫ +∞

−∞
dωd2 pi
(2π)3 e−iωt+i pi xi aμ(r),

δgμν(t, r, x
i ) =

∫ +∞

−∞
dωd2 pi
(2π)3 e−iωt+i pi xi r−2hμν(r),

χ I (t, r, xi ) =
∫ +∞

−∞
dωd2 pi
(2π)3 e−iωt+i pi xi ψ I (r). (13)

To derive the conductivity, we focus on the homogeneous
vector modes, namely setting all the momenta pi = 0. Since
the system is isotropic, we only need to consider the x-
component of the vector modes, namely ax , htx , hrx and
ψ x . The linearized Maxwell, scalar equation and Einstein
equations read

f a′′
x − J

4
k2r2 f a′′

x − 1

4
J k2r2a′

x f
′ + a′

x f
′

−1

2
J k2r f a′

x − J k2r2ω2ax
4 f

+ ω2ax
f

+ i

4
J k2ρr2ωhrx − iρωhrx + 1

4
J k2ρr2h′

t x − ρh′
t x

+1

4
J k2ρrh′

t x + 1

2
iJ kρrωψ x = 0, (14)

f ψ x ′′ − 2ikωax
ρr

− khrx f
′ + f ′ψ x ′ − k f h′

r x

−2k f hrx
r

− ikωhtx
f

+ 2 f ψ x ′

r
+ ω2ψ x

f
= 0, (15)

− iJ k2ρr4ωax
4 f

+ iρr2ωax
f

+ ω2hrx
f

− iωh′
t x

f

−J
4
k2ρ2r4hrx + 1

4
J kρ2r4ψ x ′ = 0, (16)

f h′′
t x + J

4
k2ρr4 f a′

x − ρr2 f a′
x + iω f h′

r x − 2iω f hrx
r

−2 f h′
t x

r
− J

4
k2ρ2r4htx − iJ

4
kρ2r4ωψ x = 0, (17)
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Fig. 1 Left plot: Im(σ ) as the function of ω/μ for different tempera-
ture. The inset plot shows the Drude weight, χ2

J P/χPP , as the function
of T/μ. Blue line is the analytical result obtained from Eq. (19) and the
red dots are the numerical result. Right plot: The incoherent conductiv-

ity σ0 as the function of T/μ. Blue line is the analytical result obtained
from Eq. (20) and the red dots are the numerical result. Here, we have
set J = 1/3 and k/μ = 1

In this case, the mass of the spin-1 gravitons should be read

as M(r)2 = J k2ρ2r4

4 , which varies non-trivially along the
radial direction [28]. In particular, its value in the UV and IR
satisfies that

M(0) = 0, and M(rh) =
(
J πk2μ2

s

)1/2

∼ finite.

(18)

As is pointed in the previous holographic study, this is exactly
a condition for realizing the gapless Goldstone bosons [8].
The optical conductivity can be achieved numerically by set-
ting the infalling boundary conditions at the horizon and solve
the linearized equations of motion in the bulk. Since the elec-
tric current is a vector operator, the conductivity is sensitive
to the transverse Goldstone modes but cannot mix with the
longitudinal component which is a scalar mode. Then, one
can directly read the information about the transverse modes
from the conductivity.3

Without explicit breaking, the optical conductivity of a
relativistic system in the hydrodynamic limit can be written
as [1]

σ(ω)
ω→0−−−→ σ0 + χ2

J P

χPP

i

ω
(19)

where χJ P = ρ, χPP = ε + P in our case and the finite part
σ0 is the incoherent conductivity that is theory-dependent
and irrelevant to the momentum relaxation. Unlike the DC
conductivity, the incoherent one can always be achieved via
the membrane paradigm, hence is UV insensitive from the
RG perspective. In our model, it can be obtained similarly as
in [10,11]:

3 Peaks in the spectral function is associated with the low-lying quasi-
normal modes on the complex plane. Then, the dispersion relation of
the Goldstone modes can be identified by the motion of the peaks. We
would like to thank M. Baggioli for pointing out this.

σ0 =
(

sT

sT + μρ

)2 (
1 − J πk2

s

)
, (20)

where the thermodynamic relation sT+μρ = ε+P has been
applied. Eq. (19) means that the real part of conductivity has
a delta infinity at zero frequency in the purely SSB pattern
due to the absence of momentum relaxation.

In Fig. 1, we show that the numeric result of our holo-
graphic model with λ = 0 agrees with (19) and (20) very
well. This again indicates that the background profile of the
scalars φ̄i = kxi should be interpreted as breaking the trans-
lational symmetry spontaneously rather than explicitly. And
the Goldstone modes contribute the correction term in (20) to
the incoherent conductivity that is controlled by the param-
eters J and k.

The Goldstone modes associated with the SSB of transla-
tions in crystals are usually called phonons. Nevertheless, the
transverse gapless modes in this model are not phonon like.
For transverse and longitudinal phonons, they have the lin-
ear dispersion relations ω ∼ vT,L p with finite sound speeds
vT,L . Setting py = p �= 0 and repeat the numerical calcula-
tions(To do so, we adopt the gauge invariant formulation of
the bulk fields like in [33], and solve three coupled equations
of the shear modes numerically.), we find that the infinite
peak does not move away from ω = 0 as the momentum
p is increased. In Fig. 2, we show the imaginary part of the
conductivity with the varying momentum.

Therefore, the Goldstone modes are not dispersive, which
means there is no freely propagating transverse phonons.
This can also be understood in another way: For phonons,
their sound speeds are related to the shear modulus G and the
bulk modulus K by [34]

v2
T = G

χPP
, v2

L = G + K
χPP

. (21)

One can however check that in our model the J coupling
does not contribute a finite mass term to the spin-2 gravitons
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Fig. 2 Im(σ ) as the function of ω/μ for different momenta. Here, we
have set J = 1/3, k/μ = 1 and T/μ = 1. For all the cases, there is
always an infinite pole standing still at zero frequency

δgxy . Then, we conclude that the shear viscosity obeys the
KSS bound η = s

4π
and the shear modulus G = 0 which is

the case for a strongly coupled fluid instead of a solid. First
relation in (21) implies that vT = 0, the transverse modes
are not phonon like. This does not conflict with the common
sense that there is no transverse phonons in a fluid due to
the lack of shear stress. Therefore, this holographic model
provides a low energy description for the gapless Goldstone
modes coupled with a conformal fluid. In the next section, we
will further study the optical conductivity in the presence of
the explicit source that breaks the translations. The numeric
result of the holographic model captures another key feature
of the SSB of translations which is called pinning effect.

4 Pinning effect

Now, we consider how the peak of the goldstone bosons
moves in the presence of ESB. According to the UV analysis
in Sect. 2, such a pinning effect can be realized by setting
a non-zero value of λ, or the external source equivalently.
In consequence, the infinite delta at zero frequency should
be removed and there will be a sharp but finite peak at a
certain frequency (called pinning frequency) in the optical
conductivity.

When λ �= 0, the blackfactor f (r) becomes

f (r) = 1 − r3

r3
h

−
(

λk2r2

2
+ μ2 r3

4 rh

) (
1 − r

rh

)
. (22)

And the linearized equations of motion:

f a′′
x − J

4
k2r2 f a′′

x − 1

4
J k2r2a′

x f
′ + a′

x f
′

−1

2
J k2r f a′

x − J k2r2ω2ax
4 f

+ ω2ax
f

+ i

4
J k2ρr2ωhrx − iρωhrx + 1

4
J k2ρr2h′

t x − ρh′
t x

+1

4
J k2ρrh′

t x + 1

2
iJ kρrωψ x = 0, (23)

f ψ x ′′ − 2ikωax
ρr

− khrx f
′ + f ′ψ x ′ − k f h′

r x

−2k f hrx
r

− ikωhtx
f

+ 2 f ψ x ′

r
+ ω2ψ x

f
− 4λk f ′hrx

J ρ2r4

+4λ f ′ψ x ′

J ρ2r4 − 4λk f h′
r x

Jρ2r4 + 8λk f hrx
Jρ2r5

− 4λikωhtx
J ρ2r4 f

−8λ f ψ x ′

Jρ2r5
+ 4λ f ψ x ′′

Jρ2r4 + 4λω2ψ x

Jρ2r4 f
= 0, (24)

λkψ x ′ − λk2hrx − iJ k2ρr4ωax
4 f

+ iρr2ωax
f

+ω2hrx
f

− iωh′
t x

f
− J

4
k2ρ2r4hrx + 1

4
J kρ2r4ψ x ′ = 0,

(25)

f h′′
t x + J

4
k2ρr4 f a′

x − ρr2 f a′
x + iω f h′

r x − 2iω f hrx
r

−2 f h′
t x

r
− J

4
k2ρ2r4htx − iJ

4
kρ2r4ωψ x

−λk2htx − iλkωψ x = 0, (26)

From the equations, the effective mass of the spin-1 gravi-

tons should be identified asM(r)2 ≡ k2
(
λ + Jμ2r2

4

)
. With

λ �= 0, the DC conductivity can be directly computed by the
membrane paradigm [28]

σDC =
(

1 − J πk2

s

)
+

(
1 − J πk2

s

)2
μ2

M(rh)2 , (27)

The gapped modes can be identified with the peaks in the
optical conductivity in the two plots of Fig. 3. As is expected,
the pinning frequency becomes higher as the increase of λ,
i.e, the rate of momentum relaxation. However, the relation
between ω0/μ and λ exhibits a peculiar scaling that is dif-
ferent from the Gell-Mann-Okubo relation. In addition, it is
obvious to see from the left plot of Fig. 4 that the pinning
effect introduces a mechanism of transition from a metallic
state(when J = 0) to an insulating state, which is quite sim-
ilar as what happens in a doped Mott insulator [35]. Even
though, the commensurability effect is in general absent in
the holographic systems with homogeneity [36].

The quantitive relation between λ and the relaxation rate
can be in principle checked by a full analysis on the quasi-
normal modes of the black hole like in [8,37,38], which is
however not a target in this work. Now, we consider how
the propagation of the transverse modes would change when
we vary the value of λ. We turn on p �= 0 and obtain the
optical conductivity with finite momentum in the right plot
of Fig. 4. The numerical result shows that the peak of gapped
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Fig. 3 Left plot: Re(σ ) as the function of ω/μ for different values of λ. Right plot: The pinning frequency as the function of λ. The solid lines
are the fitting results which show that ω0/μ ≈ 0.272532 λ0.125 in the region λ ∈ [5 × 10−4, 3 × 10−2]. Here, we have fixed J = 1/3, k/μ = 1
and T/μ = 0.005

Fig. 4 Left plot: Re(σ ) as the function of ω0/μ for λ = 0.1 and vari-
ous values of T/μ. It shows that dσdc/dT > 0. Right plot: The optical
conductivity for λ = 0.01, T/μ = 0.005 and various values of p/μ.
Note that the pinned modes are dispersionless which is the same as the

purely SSB pattern. However, there appears a gapless peak again for
large values of p/μ. The underlying physics still remains to be revealed
in future. In both plots, we have fixed J = 1/3, k/μ = 1

modes becomes milder as increasing the momentum. How-
ever, these modes are still dispersionless, in contrast to the
solid holographic massive gravity model [8,33].

5 Conclusion and outlook

In this paper, we introduce a simple holographic model that
can realize both the spontaneous and explicit breaking of the
translational symmetry in the dual field theory. In this model,
the SSB is induced by a gauge-axion coupling J Tr [X F2],
while the ESB can be realized by turning on the linear axion
term λX .

When we turn off the external scalar source by setting
λ = 0, the condensate of the dual operators that breaks the
translations should be identified as the bulk profile of the
axions, via the UV analysis. In this case, the background
metric and gauge field is the same as the RN black holes. And
the dynamics of the transverse Goldstone modes is encoded
in the eoms of the spatial components of axions. Our numeric
result of electric conductivity matches with that of a fluid with

SSB of translations. We then turn on the explicit source to see
its pinning effect on the Goldstone modes. It is found that the
pinning frequency becomes higher as we increase the value
of λ. And the gapped modes are still dispersionless.

In this short paper, the analysis on the bulk mode is lack-
ing. In fluids, there exists longitudinal phonons whose speed
is related to both of the shear and bulk modulus. Then, the
second relation in (21) can be checked by studying the cou-
pled spin-0 fluctuations, which is more complicated.4 We
will leave this for future work [40].

Our model can be generalized, including the higher deriva-
tive terms like

∑∞
n=2 Tr [X n F2]. One can, however, check

that such terms do not change the UV expansion (9), hence
will not change the story a lot, albeit further modifications on
the incoherent conductivity. One can also consider another
class of gauge-axion couplings, for instance, K Tr [X ]F2

[28]. This term will change the background solution and gives

4 Since the J coupling does not affect the background, we cannot
directly express the bulk modulus K in terms of the background quan-
tities as in [13,39].
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the system a non-zero shear modulus when ρ �= 0. Then the
dual system may be interpreted as some kind of “electronic
crystals”, whose impacts on the transport or elastic properties
are also worth studying. In [41,42], a general framework has
been developed for computing the holographic 2-point func-
tion and the corresponding conductivities dual to a broad
class of Einstein-Maxwell-Axion-Dilaton theories. We can
generalize this study to include the higher derivative axion
terms and see what novel phenomena emerge. In future, we
will study this issue following the line in [41,42].
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Appendix: Holographic renormalization

To clarify the identification of the coefficients in the UV
expansion (9), we compute the one-point correlator of the
dual scalar operator by performing the holographic renor-
malization procudure [10,43] for the purely SSB case. For
this purpose, we only need to focus on the gauge-axion cou-
pling that describes the dynamics of broken phase,

SSSB = −J
8

∫
d4x

√−g
(
∂μφ I ∂νφ

I FνρFρμ

)

= −J
4

∫
r=ε

d3x
√−ggrr

×
(
φ I ∂νφ

I FνρFρr − ∂rφ
I ∂νφ

I Fνρ Aρ

)

+ bulk terms, (28)

where ε is the UV cut-off, the bulk terms can be eliminated
by using the the on-shall condition and the eoms of the bulk
fields. In order to calculate the one-point correlation, 〈O I 〉,
we derive the renormalized action up to linear order in the per-
turbations. Consider the fluctuations around the background
solution (6):

gμν = ḡμν + δgμν,

Aμ = Āμ + δAμ,

φ I = φ̄ I + δφ I . (29)

Here, ḡμν, Āμ, φ̄ I denote the background fields and
δgμν, δAμ, δφ I denote the fluctuations. Similar as the UV
expansion (7) and (9), the fluctuations in the asymptotic
region behave as:

δgμν = 1

r2

(
δg(0)

μν + δg(1)
μν r + · · ·

)
,

δAμ = δA(0)
μ + δA(1)

μ r + · · · ,

δφ I = δφ I
(s)

r
+ δφ I

(v) + · · · . (30)

Inserting this into (28) gives that

δSSSB
reg (1) = −J

4

∫
r=ε

d3x
√−ḡḡrr φ̄ I ∂rδφ

I F̄r t F̄tr ,

= J ρ2

4

∫
r=ε

d3x

(
φ̄ I

(s)δφ
I
(s)

r
− φ̄ I

(v)δφ
I
(s) + · · ·

)
.

(31)

In the first line above, only one term associated with δφ I

survives when we expand the on-shell action to linear level
because of the fact that the background value of φ I does
not depend on t or r . Then, all the terms containing δgμν or
δAμ should be vanishing. Moreover, only the first term in
the second line is divergent as ε → 0, which can however
be removed by subtracting an additional boundary counter-
term:

SSSB
c.t. = J

16

∫
r=ε

d3x
√−γ (φ I )2F2. (32)

The last term in (31) is finite, which corresponds to the cou-
pling term of the scalar operator O I in the field theory side.
Then, one can easily read that

〈O I 〉 = J ρ2

4
φ̄ I

(v). (33)

Note that φ̄ I
(v) was denoted as φ I

(0) in the UV expansion
(9) in the main text. We thus conclude that the coefficient
φ I

(0) indeed corresponds to the expectation value of the

operator O I , as expected. Hence, the background solution
φ I = kδ Ii x

i should be interpreted as a translational order,
〈Oi 〉 = J ρ2φ I

(0)/4 ∼ k xi .
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