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Abstract In this article, we study thin shells of matter con-
necting charged black string geometries with different values
of the corresponding parameters. We analyze the matter con-
tent and the mechanical stability of the shells undergoing
perturbations that preserve the cylindrical symmetry. Two
different global configurations are considered: an interior
geometry connected to an exterior one at the surface where
the shell is placed, and two exterior geometries connected by
a wormhole throat located at the shell position.

Keywords General relativity · Thin shells · Cylindrical
spacetimes

1 Introduction

Thin matter layers (or thin-shells) [1–4] and their associated
geometries appear in both cosmological and astrophysical
frameworks. At a cosmological scale, the formalism used to
define such layers has been applied in braneworld models,
in which a spacetime is defined as the surface where two
higher dimensional manifolds are joined (see for instance
[5] and references therein). At an astrophysical level, such
matter layers appear, for example, as models for stellar atmo-
spheres, gravastars, etc. [6,7]. Most thin-shell models consid-
ered in the literature are associated to spherically symmetric
geometries. However, cylindrical shells and the correspond-
ing spacetimes are also of physical interest.

Cosmic strings [8] are topological defects which would
result from symmetry breaking processes in the early Uni-
verse. Theories with only the presence of scalar fields predict
the so-called global strings, while the addition of one or more
gauge fields leads to the prediction of local or gauge strings.
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The possible important role of cosmic strings in the expla-
nation of structure formation at cosmological scale [9] and,
besides, the fact that it would be possible to detect their grav-
itational lensing effects [10,11] led to a considerable amount
of work devoted to their study [12]. A large proportion of
the recent developments addressing cylindrical shells deals
with geometries associated to cosmic strings [13–20]. Other
studies regarding cylindrical shells involve wormhole space-
times, see for example [21–24].

Black strings have a very different origin, as they would be
associated to gravitational collapse. While for 3 + 1 dimen-
sions, in the absence of a cosmological constant, the collapse
of a cylindrical matter distribution does not lead to horizons,
within the framework of a theory with a negative cosmolog-
ical constant, i.e. � < 0, the appearence of an event hori-
zon does take place [25]. In this sense, the situation is the
same as in 2 + 1 dimensional gravity, where an analogous
of the Schwarzschild solution does not exist for zero cos-
mological constant, but for � < 0 we have the well known
Bañados–Teitelboim–Zanelli (BTZ) solution representing a
three-dimensional black hole [26]. In fact, the strong rela-
tion between these three and four-dimensional geometries
was stressed in [27], where it was shown that the BTZ black
hole solution can be translated into the black string geometry.
Different aspects of shells connecting BTZ geometries were
considered in [28–32]. Wormholes associated with charged
black strings supported by shells with a Chaplygin equation
of state were introduced in [33], while the linearized stability
of thin-shell wormholes related to non charged black strings
has been recently analyzed in [34].

The four-dimensional action for gravity plus the electro-
magnetic field is given by

S = 1

16π

∫
d4x

√−g
(
R − 2� − Fμν Fμν

)
, (1)

where g is the determinant of the metric, R is the Ricci scalar,
and Fμν = ∂μ Aν−∂ν Aμ, with Aμ the electromagnetic vector
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potential. Under the assumption that the spacetime is static
and cylindrically symmetric, the corresponding field equa-
tions admit the solution (see Ref. [25])

ds2 = −
(

α2r2 − 4m

αr
+ 4λ2

α2r2

)
dt2 +

(
α2r2 − 4m

αr

+ 4λ2

α2r2

)−1

dr2 + r2dϕ2 + α2r2dz2, (2)

Aμ =
(

−2λ

αr
+ const, 0, 0, 0

)
, (3)

where m and λ are respectively the mass and charge per unit
length, and α2 = −�/3 > 0 is related to the cosmological
constant. This geometry is singular at the axis of symme-
try (the Kretschmann scalar diverges there). Depending on
the values of these constants, we can have gtt = 0, so that
the metric (2) can present an event horizon; thus the black
string denomination. In particular, when m = 0 and λ = 0
no horizons are allowed, while if m �= 0 and λ = 0, there
is only an event horizon located at αrh = (4m)1/3. In case
that λ �= 0 the horizons correspond to the positive roots of
the fourth degree polynomial P(r) = α4r4 − 4mαr + 4λ2;
if 0 < |λ| < λe = m2/3

√
3/2 there are two horizons

satisfying αr− < αr+ < (4m)1/3, being r+ the radius
of the event one, while for the extremal charge per unit
length |λ| = λe these horizons fuse into one with radius
αre = m1/3; finally if |λ| > λe there are no horizons
and only a naked singularity at the axis of symmetry is
left.

In the present work we address the study of shells asso-
ciated to charged non-rotating black string geometries of
the form (2). We will consider both the case of inner
solutions joined to outer ones, and the case of traversable
thin-shell wormholes connecting two exterior regions of
manifolds of this kind. We will analyze the properties
of the matter supporting such spacetime geometries and
the linearized mechanical stability of the shells under-
going perturbations which preserve the cylindrical sym-
metry. As usual, we adopt units such that c = G =
1.

2 Cylindrical shells

We consider static shells and their perturbative stability anal-
ysis. We assume a static background geometry, which allows
to define the shells by applying the usual cut and paste pro-
cedure starting from two static metrics with cylindrical sym-
metry. In cylindrical coordinates xα

1,2 = (t1,2, r1,2, ϕ1,2, z1,2)

the metrics from which we start can be written in the form

ds2
1,2 = − f1,2(r1,2)dt2

1,2 + f −1
1,2 (r1,2)dr2

1,2

+ r2
1,2dϕ2

1,2 + γ 2
1,2r2

1,2dz2
1,2. (4)

From these geometries we construct a geodesically complete
manifold M = M1 ∪ M2, which can take one of the fol-
lowing two forms:

type I : M1 = {xα
1 /0 ≤ r1 ≤ a1},

M2 = {xα
2 /r2 ≥ a2}; (5)

type II : M1 = {xα
1 /r1 ≥ a1},

M2 = {xα
2 /r2 ≥ a2}. (6)

with a1,2 non null radii. The first case corresponds to join-
ing the interior and the exterior submanifolds while the sec-
ond case corresponds to joining both exterior regions.1 In
both cases, the submanifolds are joined at the hypersurface

 ≡ ∂M1 ≡ ∂M2 defined by


 :
{

H1(r1, τ ) = r1 − a1(τ ) = 0,

H2(r2, τ ) = r2 − a2(τ ) = 0.
(7)

In order to study the stability under perturbations preserving
the symmetry, we have let the radii a1(τ ) and a2(τ ) to be
functions of the proper time τ on the shell, which is given
by

−dτ 2 = −dτ1,2
2

= − f1,2(a1,2)dt1,2
2 + f −1

1,2 (a1,2)ȧ
2
1,2dτ 2, (8)

where a dot stands for a derivative respect to the proper time;
thus

dτ = f1,2(a1,2)√
f1,2(a1,2) + ȧ2

1,2

dt1,2. (9)

By adopting any of the two coordinate systems ξ i
1,2 =

(τ, ϕ1,2, z1,2) on 
, the induced metric on the shell is

ds2 = −dτ 2 + a2
1,2dϕ2

1,2 + γ 2
1,2a2

1,2dz2
1,2. (10)

Using that 0 ≤ ϕ1,2 ≤ 2π and the continuity of the geometry
across the joining surface (i.e. the continuity of the angular
component of the first fundamental form), we find the fol-
lowing relation:

a1 = a2 = a. (11)

Then, we can naturally choose ϕ = ϕ1 = ϕ2 as the angular
coordinate at the matching surface. The coordinates z1,2 have
to satisfy the condition

γ1dz1 = γ2dz2 (12)

on the shell. While the geometry must be continuous across
the joining surface, the derivatives of the metric are not forced
to such restriction. In general, there can be a jump in these
derivatives which is associated with the presence of a thin
layer of matter. The covariant form of this relation between

1 There is a third case corresponding to joining two interior submani-
folds, i.e. M1 = {xα

1 /0 ≤ r1 ≤ a1}, M2 = {xα
2 /0 ≤ r2 ≤ a2}, that

will be not considered in this work.
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derivatives of the metric and the matter on the shell are the
Lanczos equations [1–4]

8π Si j = [K ]hi j − [Ki j ], (13)

where [Ki j ] = K 2
i j − K 1

i j is the discontinuity of the extrinsic

curvature tensor across the shell, [K ] = hi j [Ki j ] is the cor-
responding trace, and Si j is the surface stress-energy tensor.
The surface stress-energy tensor satisfies the conservation
equation

∇i Si
j =

[
Tαβ

∂xα

∂ξ j
nβ

]
, (14)

where ∇i is the covariant derivative on 
 and Tαβ is the
stress-energy tensor outside 
. The right hand side of Eq.
(14) represents a flux from the bulk to the thin shell. The
extrinsic curvature tensor is given by

K 1,2
i j = −n1,2

γ

(
∂2xγ

1,2

∂ξ i∂ξ j
+ (�1,2)

γ
αβ

∂xα
1,2

∂ξ i

∂xβ
1,2

∂ξ j

) ∣∣∣∣



(15)

and the unit normals to the surface 
 pointing from M1 to
M2 are

n1,2
γ = δ

∣∣∣∣gαβ
1,2

∂ H1,2

∂xα
1,2

∂ H1,2

∂xβ
1,2

∣∣∣∣
−1/2

∂ H1,2

∂xγ
1,2

, (16)

with δ given by

δ =
⎧⎨
⎩

+1, type I geometry,

−1, for M1

+1, for M2

}
type II geometry.

(17)

The explicit calculation for this general construction yields
the normal 4-vector

n1,2
γ = δ

(
−ȧ, f −1

1,2 (a)

√
f1,2(a) + ȧ2, 0, 0

)
, (18)

where we have used that a1 = a2 = a implies ȧ1 =
ȧ2 = ȧ. In the orthonormal basis on the shell, we have that
hî ĵ = diag(−1, 1, 1) and the non-vanishing components of
the extrinsic curvature tensor

K 1,2
τ̂ τ̂

= −δ
2ä + f ′

1,2(a)

2
√

f1,2(a) + ȧ2
, (19)

K 1,2
ϕ̂ϕ̂

= K 1,2
ẑ ẑ = δ

√
f1,2(a) + ȧ2

a
. (20)

Finally, for the jump [Kî ĵ ] across the shell we obtain

[K τ̂ τ̂ ] = − 2ä + f ′
2(a)

2
√

f2(a) + ȧ2
− ε

2ä + f ′
1(a)

2
√

f1(a) + ȧ2
, (21)

[Kϕ̂ϕ̂] = [Kẑẑ] =
√

f2(a) + ȧ2

a
+ ε

√
f1(a) + ȧ2

a
,

(22)

where ε = −1 corresponds to a type I geometry and ε = 1
to a type II spacetime. In the orthonormal frame, the surface

stress-energy tensor has the form Sî ĵ = diag(σ, pϕ, pz), with
σ the surface energy density, and pϕ and pz the surface pres-
sures. From Eq. (13) we find that the energy density can be
written as

σ = −
√

f2(a) + ȧ2

4πa
− ε

√
f1(a) + ȧ2

4πa
. (23)

Analogously, from Eq. (13), the pressures pϕ = pz = p take
the form

p = 1

8π
√

f2(a) + ȧ2

(
ä + f ′

2(a)

2
+ ȧ2 + f2(a)

a

)

+ ε

8π
√

f1(a) + ȧ2

(
ä + f ′

1(a)

2
+ ȧ2 + f1(a)

a

)
.

(24)

Clearly the equality of the pressures is not a general feature
associated to cylindrical symmetry; rather, this is a conse-
quence of the particular form of the line element, with met-
ric functions gϕϕ and gzz both proportional to r2. Normal
matter satisfies the weak energy condition (WEC), which
requires that σ ≥ 0 and σ + p ≥ 0. The energy density
is always negative for type II geometries, so that the mat-
ter on the shell is exotic. For type I geometries, instead, the
energy density is positive for f2(a0) < f1(a0) and is nega-
tive for f2(a0) > f1(a0), so that the corresponding shell can
be constituted by normal or exotic matter depending on the
values of the parameters. By using Eqs. (23) and (24), the
conservation equation (14) reads

σ̇ + 2 (σ + p)
ȧ

a
= 0, (25)

where the vanishing right hand side can be understood as
a zero energy flux coming from the bulk; in this case, it is
usually said that the shell is transparent.

3 Stability analysis

In principle, if the equation of state relating the pressure with
the energy density is provided, the equations (23) and (24)
above could be integrated to obtain the time evolution of the
radius of the shell. However, we are only interested in a slight
departure from the radius a = a0 corresponding to a static
shell. We then address the stability of a static configuration
for which the energy density and pressures take the values
σ(a0) = σ0 and pϕ(a0) = pz(a0) = p0, respectively. From
the equations above we obtain

σ0 = −
√

f2(a0)

4πa0
− ε

√
f1(a0)

4πa0
(26)
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and

p0 = 1

8π

(
f ′
2(a0)

2
√

f2(a0)
+

√
f2(a0)

a0

)

+ ε

8π

(
f ′
1(a0)

2
√

f1(a0)
+

√
f1(a0)

a0

)
. (27)

Recalling that σ̇ = ȧdσ/da, the conservation equation (25)
can be recast to

σ ′ + 2

a
(σ + p) = 0. (28)

From Eq. (23) we can write the equation of motion for the
shell in the form

ȧ2 + V (a) = 0, (29)

with the potential

V (a) = f1(a) + f2(a)

2
− (2πaσ)2

− ( f1(a) − f2(a))2

(8πaσ)2 . (30)

A second order Taylor expansion of the potential V (a)

around the static solution with radius a0 gives

V (a) = V (a0) + V ′(a0)(a − a0)

+1

2
V ′′(a0)(a − a0)

2 + O(a − a0)
3. (31)

It is easy to check that V (a0) = 0. The first derivative of
the potential, using the conservation equation written in the
form (28), gives V ′(a0) = 0. For a perturbative evolution,
i.e., a little departure from the static shell radius, we assume
a linearized equation of state for the pressure:

p = η (σ − σ0) + p0 (32)

where η is a constant. Introducing this equation of state
and using (28) again, we can calculate the second deriva-
tive of the potential evaluated at the equilibrium radius, that
is V ′′(a0). The static solution is stable under radial pertur-
bations if V ′′(a0) > 0. This condition solves the problem of
the mechanical linearized stability of a cylindrical shell for
both type I and type II geometries.

Introducing the definitions S(a) = ( f1(a) + f2(a)) /2,
R(a) = ( f1(a) − f2(a)) /2 and μ(a) = 2πaσ , the potential
can be put in the form

V (a) = S(a) − μ2(a) − R2(a)

4μ2(a)
, (33)

and, after some algebraic manipulations, the second deriva-
tive V ′′(a0) can be written as

V ′′(a0) = �0 − 2μ0μ
′′
0 − 1

2μ0

(
1

μ

)′′

0
R2

0, (34)

where

�0 = S′′
0 −

[(
1

μ

)′

0

]2 R2
0

2
− 2

μ0

(
1

μ

)′

0
R0 R′

0

− 1

2μ2
0

(
R′2

0 + R0 R′′
0

)
− 2

(
μ′

0

)2
. (35)

In the expressions above and in what follows, the subscript
0 stands for functions evaluated at the static radius a0 and
for derivatives taken with respect to a and evaluated at a0.
From the conservation equation (28) we have σ ′

0 = −2(σ0 +
p0)/a0; then μ′

0 = −2π(σ0 + 2p0), so we obtain

μ′′
0 = −2πσ ′

0 (1 + 2η) , (36)

and(
1

μ

)′′

0
= 2

μ3
0

(
μ′

0

)2 + 2π

μ2
0

σ ′
0 (1 + 2η) , (37)

where η = p′
0/σ

′
0. From the definition of μ we have

σ ′
0 = 1

2πa0

(
μ′

0 − μ0

a0

)
, (38)

so that V ′′(a0) can be put in the form

V ′′(a0) = �0 − χ0(η), (39)

where

χ0(η) =
(
μ′

0

)2
R2

0

μ4
0

+ 2

a0

(
μ0 − R2

0

4μ3
0

)(
μ0

a0
− μ′

0

)
(1 + 2η) . (40)

As stated before, the condition for stability is that V ′′(a0) >

0. The subsequent analysis of the mechanical stability is car-
ried out in terms of the parameter η; in the case that 0 < η ≤ 1
this parameter can be interpreted as the square of the velocity
of sound on the shell.

4 Application to charged shells

In this section, we present examples of application of the for-
malism to both type I and II geometries. In all of them, the
metrics adopted for the construction of the spacetimes corre-
spond to black string solutions in Einstein–Maxwell theory,
given by Eq. (2), with the same negative cosmological con-
stant � in both regions M1 and M2 of the whole manifold
M. We start by considering two cases of type I geometries,
i.e. we construct spacetimes in which an interior region M1

is joined by means of a shell 
 to an exterior one M2 that
extends to infinity in the radial coordinate. Then, we analyze
two examples of type II spacetimes, corresponding to thin-
shell wormholes, with the throat located at the shell 
 which
joins the two regions M1 and M2 that compose M.
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4.1 Shells around vacuum (bubbles)

As a first example, we consider charged shells around vac-
uum2 (also called bubbles); this is with m1 = 0 and λ1 = 0
in M1, and a black string geometry with m2 > 0 and
any λ2 in M2. The interior region has no horizons, so we
only need to assume that the radius a0 of the shell is larger
than the event horizon radius of the exterior geometry if
|λ2| ≤ λe = m2/3

2

√
3/2, in order to avoid the presence of

horizons in the whole manifold M. The energy density and
the pressure at the shell in this case are given by

σ0 =
α2a2

0 −
√

α4a4
0 − 4αa0m2 + 4λ2

2

4παa2
0

(41)

and

p0 = −
αa0

√
α4a4

0 − 4αa0m2 + 4λ2
2 + m2 − α3a3

0

4πa0

√
α4a4

0 − 4αa0m2 + 4λ2
2

, (42)

respectively. The analysis is simplified by defining the dimen-
sionless parameter β = a0α, and the variables

u = β

βe
and v = λ2

λe
, (43)

with βe = m1/3
2 , so the second derivative of the potential

takes the form

V ′′(a0) = 12α2
[
u(v2 − 2u + 2u3v2 − u4) − 2η(3v4 − 7uv2 + 4u2 + u4v2 − u5)

]
u2(u4 − 4u + 3v2)(u2 − √

u4 − 4u + 3v2)
. (44)

Positive values of V ′′(a0) correspond to shells that are stable
under radial perturbations. The results are presented in Fig.
1, in the plane u–η for some representative values of v. In
the upper panel where v < 1, the range of u is bounded
from below by some value that depends on |λ2|, because our
construction assumes no horizons in M2, while in the lower
one where v > 1, no restrictions apply. The regions painted
in dark grey correspond to stable configurations where the
WEC is fulfilled, i.e. normal matter, whereas the regions in
light grey to stable ones but not satisfying this condition,
i.e. exotic matter. As normal matter is preferred, we restrict
our analysis to this case. We see that there is an important
change in the stability behavior near the extremal value λe of

2 Note that in the presence of a non vanishing cosmological constant,
the corresponding geometry is not that of the Minkowski spacetime.

the modulus of the charge per length |λ2|. For null or small
values of |λ2|, stable solutions require η > 0.5, when |λ2|
gets very close to λe stability is compatible with small and
positive values of η, while for |λ2| > λe the stable region
extends even to negative values of η. On the other hand, for
large values of u, in all cases the boundary between the stable
and unstable regions asymptotically approaches to η = 0.5.

4.2 Shells around black strings

In this second example, we adopt 0 < m1 < m2, λ1 = 0,
and any λ2. The interior region M1 corresponds to a black
string without charge, with the horizon radius located at βh =
αrh = (4m1)

1/3. To have the shell outside the horizon of the
inner geometry, we demand that β = αa0 > βh . The radius
a0 of the shell is also assumed larger than the event horizon
radius of the exterior geometry if |λ2| ≤ λe = m2/3

2

√
3/2, in

order to avoid the presence of horizons in M2. The energy
density and pressure take the form

σ0 =
√

α4a4
0 − 4αa0m1 −

√
α4a4

0 − 4αa0m2 + 4λ2
2

4παa2
0

(45)

and

p0 =
(m1 − α3a3

0)

√
α4a4

0 − 4αa0m2 + 4λ2
2 − (m2 − α3a3

0)

√
α4a4

0 − 4αa0m1

4πa0

√
α4a4

0 − 4αa0m1

√
α4a4

0 − 4αa0m2 + 4λ2
2

, (46)

respectively. We adopt again the variables u and v defined in
Eq. (43), and

w = m1

m2
, (47)

so we can write the second derivative of the potential as

V ′′(a0) = 12α2

(B − A)(AB)2u4

{
A3uw

[
2uw + u4]

+B3u
[
v2 − 2u + 2v2u3 − u4]

+ 2 η B2 [
B(A2u+4v2u−u4v2−3v4)−A3uw

]}
,

(48)

where

A =
√

u4 − 4u + 3v2, B =
√

u4 − 4uw.

The stability regions corresponding to V ′′(a0) > 0 are shown
in Figs. 2 and 3 in the plane u–η, for selected values of v and
a different value of w in each of them. The regions painted

123
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Fig. 1 Stability regions (light and dark grey) for charged shells with
radius a0 around vacuum, in the presence of a negative cosmological
constant �. The inner geometry has m1 = 0 and λ1 = 0, while the
outer one corresponds to a black string characterized by m2 and λ2.

Different values of λ2/λe are used in the plots where β = a0
√−�/3,

βe = m1/3
2 , and λe = m2/3

2

√
3/2. The WEC is satisfied in the dark grey

region but not in the light grey one

in dark grey represent the stable configurations with normal
matter at the shell, while the regions in light grey the stable
ones with exotic matter. As before, we are mainly interested
in shells with normal matter satisfying the WEC. We can see
that:

• When βh ≤ βe, or equivalently 0 < m1 ≤ m2/4, the
qualitative behavior of the configurations is very similar
to the one found for bubbles in the previous subsection,
with the only important difference being that the shell
radius should always be larger than the radius of the hori-
zon of the black string, as it can be seen in Fig. 2 in which
m1 = 0.2m2.

• If βe < βh , or equivalently m2/4 < m1 < m2, the
modulus of the charge per length |λ2| when the stability
behavior has a transition moves to λc = (4m1)

1/6(m2 −
m1)

1/2, which is smaller than the extremal one λe. This
critical value λc corresponds to the charge per length for
which the horizon β+ = αr+ of the outer geometry used

in the construction coincides with the event horizon βh

of the black string. The value of λc becomes smaller in
case that m1 approaches to m2. These features are shown
in Fig. 3, where m1 = 0.5m2.

In both cases, the transition happens when the modulus of
the charge per length |λ2| is large enough so that there are
no limitations on the radius of the shell a0 due to the outer
geometry, so the only restriction on a0 is that it should be
larger than the event horizon rh of the black string. As in
Sect. 4.1, for null or small values of |λ2| the stable solutions
occur for η > 0.5; if |λ2| is close to λe or λc depending on
the case, stability is possible for small and positive values
of η, while for |λ2| > λe or |λ2| > λc as appropriate, the
stability zone extends to negative η. Again, for large u, the
stable and the unstable regions are asymptotically separated
by η = 0.5.
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Fig. 2 Stability regions (light and dark grey) for charged shells with
radius a0 around black strings with m1 > 0 and λ1 = 0, and an exterior
geometry with m2 > 0 and any λ2; the negative cosmological constant
is � for the whole spacetime. The relation between the values of the

masses per length is m1 = 0.2m2. Different values of λ2/λe are used
in each plot, where β = a0

√−�/3, βe = m1/3
2 , and λe = m2/3

2

√
3/2.

The WEC is satisfied in the dark grey region but not in the light grey
one

4.3 Wormholes with the throat joining vacuum and
non-vacuum regions

We begin by considering wormholes which are not symmetric
across the throat. The region M1 corresponds to a vacuum
geometry with m1 = 0 and λ1 = 0, and M2 has the metric
of a black string, with m2 > 0 and any λ2. In order to have
a traversable wormhole with no horizons, the radius of the
throat a0 should be larger than the event horizon of the metric
of the region M2 when |λ2| ≤ λe = m2/3

2

√
3/2. The energy

density and pressure are in this case

σ0 = −
α2a2

0 +
√

α4a4
0 − 4αa0m2 + 4λ2

2

4παa2
0

(49)

p0 =
α3a3

0 − m2 + αa0

√
α4a4

0 − 4αa0m2 + 4λ2
2

4πa0

√
α4a4

0 − 4αa0m2 + 4λ2
2

, (50)

respectively. The negative σ0 implies that the WEC is not
satisfied and the matter is always exotic at the throat. For
the stability analysis, we use again the variables u and v

introduced in Eq. (43) to write the second derivative of the
potential in the form

V ′′(a0) = 12α2
[
u(v2 − 2u + 2u3v2 − u4) − 2η(3v4 − 7uv2 + 4u2 + u4v2 − u5)

]
u2(u4 − 4u + 3v2)(

√
u4 − 4u + 3v2 + u2)

. (51)

The results are graphically presented in Fig. 4. In the upper
panel, where v < 1, the values of u are restricted because
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Fig. 3 Idem Fig. 2, now with m1 = 0.5m2. In this case, the critical value where the transition occurs is λc = 22/33−1/2λe ≈ 0.92λe

our construction assumes no horizons in M2, while in the
lower one, where v > 1, no restrictions apply. The stable
solutions correspond to the light grey zones. We appreciate
that for null or small values of the charge per length |λ2|,
stable solutions are only possible for η > 0.5, when |λ2|
gets close to λe stable shells can be obtained for small and
positive values of η, while for |λ2| > λe the stable zone is
quite large and extends even to negative values of η. As in
the previous examples, for large values of u, the boundary
between the stable and unstable zones tends to η = 0.5.

4.4 Wormholes symmetric across the throat

This last example corresponds to wormholes which are sym-
metric across the throat, so we adopt the same metric at both

sides of the shell, i.e. we have m1 = m2 = m > 0 and any
λ1 = λ2 = λ. When |λ| ≤ λe, the radius a0 is taken larger
than the event horizon of the original metric, with the pur-
pose of having a manifold M without horizons. The energy
density and pressure for this case are simply

σ0 = −
√

α4a4
0 − 4αa0m + 4λ2

2παa2
0

(52)

and

p0 = α3a3
0 − m

2πa0

√
α4a4

0 − 4αa0m + 4λ2
, (53)

respectively. As previously, we use the variables u and v

defined in Eq. (43), but now with βe = m1/3 and λe =
m2/3

√
3/2, so the second derivative of the potential reads

V ′′(a0) = 12α2
[
u(v2 − 2u + 2u3v2 − u4) − 2η(3v4 − 7uv2 + 4u2 + u4v2 − u5)

]
u4(u4 − 4u + 3v2)

. (54)
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Fig. 4 Stability regions (light grey) for thin-shell wormholes with a
throat radius a0, in two cases of spacetimes with negative cosmologi-
cal constant �. In the first one, the throat connects a vacuum region,
i.e. m1 = 0 and λ1 = 0, with a black string geometry determined by
m2 and λ2. In the second one, two equal black string geometries with

m1 = m2 = m and λ1 = λ2 = λ are joined by the throat. In each
plot a different value of λ2/λe is used, in all of them β = a0

√−�/3,
βe = m1/3

2 , and λe = m2/3
2

√
3/2. The matter at the throat is always

exotic

The numerators in Eqs. (51) and (54) are the same, then
by considering that both denominators are always positive in
these expressions, we obtain in this case the same family of
stability regions that in the previous subsection (Sect. 4.3),
shown in Fig. 4, but now with m1 = m2 = m and λ1 = λ2 =
λ. So the same remarks mentioned above apply here.

5 Summary

We have presented two classes of cylindrically symmetric
thin shells and we have performed the stability analysis of
the static configurations under perturbations preserving the
symmetry. We have applied the formalism to the study of
spacetimes associated to black strings in Einstein–Maxwell
theory. In particular, we have mathematically constructed
bubbles, thin shells surrounding black strings, and thin-shell
wormholes. In the first and second cases, we have found that
stable configurations with normal matter are possible if the

parameters of the model are suitably chosen. For wormholes,
we have obtained that stable static solutions are possible for
selected values of the parameters, but they always require
exotic matter that violates the weak energy condition. As we
have mentioned in the Introduction, the geometry adopted in
our construction is closely related to the charged BTZ solu-
tion. Then, it is natural to compare our results with those
previously obtained in 2 + 1 dimensions [28,29]. For both
shells around black holes as for shells supporting wormhole
geometries in 2 + 1 dimensions, when the modulus of the
charge grows, the stability regions enlarge their size and after-
wards recover a form similar to that for null or low charges.
However, this does not happen in 3 + 1 dimensions. On the
other hand, the examples studied above of shells associated
to black string spacetimes show a sort of improvement in
the conditions for stability, when compared with the lower
dimensional scenario. For null charge, while the spacetimes
in 2 + 1 dimensions admitted stable configurations only for
values of the parameter η larger than unity, now we have
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found stable configurations compatible with 0 ≤ η < 1. This
is a positive feature as, at least for non exotic matter, η is usu-
ally understood as the squared velocity of sound on the shell,
and η > 1 would imply a superluminal wave propagation.
Though, in most of the examples studied in this work, the
stability with a positive and small η requires a large modulus
of the charge per length, close to the extremal one. However,
we have found the particularly interesting case of charged
shells around black strings with m2/4 < m1 < m2, in which
this transition in the behavior of the stability regions takes
place for a modulus of the charge per length parametrically
smaller than the extremal one. The effect of perturbations
that break the cylindrical symmetry is yet to be investigated,
because in some cases this type of perturbations can actually
give rise to instabilities (e.g. Gregory–Laflamme instability
[35]).
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