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Katarzyna Leszczyńska1,a, Mariusz P. Da̧browski1,2,3,b, Tomasz Denkiewicz1,3,c

1 Institute of Physics, University of Szczecin, Wielkopolska 15, 70-451 Szczecin, Poland
2 National Centre for Nuclear Research, Andrzeja Sołtana 7, 05-400 Otwock, Poland
3 Copernicus Center for Interdisciplinary Studies, Sławkowska 17, 31-016 Kraków, Poland

Received: 18 December 2018 / Accepted: 3 March 2019 / Published online: 12 March 2019
© The Author(s) 2019

Abstract We study the spontaneous baryogenesis scenario
in the early universe for three different frameworks of varying
constants theories. We replace the constants by dynamical
scalar fields playing the role of thermions. We first obtain the
results for baryogenesis driven by the varying gravitational
constant, G, as in the previous literature, then challenge the
problem for varying fine structure constant α models as well
as for varying speed of light c models. We show that in each
of these frameworks the current observational value of the
baryon to entropy ratio, ηB ∼ 8.6 · 10−11, can be obtained
for large set of parameters of dynamical constants models
as well as the decoupling temperature, and the characteristic
cut-off length scale.

1 Introduction

The problem of an excess of the matter over the antimatter
in the universe we observe, is one of the biggest mysteries
of contemporary cosmology. Why do we live in the particle-
filled universe and not in the anti-particle-filled universe is
not an obvious issue, especially taking into account that the
anti-particles are observed in the particle-filled universe, too.
There are series of explanations to the mystery appealing to
the earliest stages of the universe evolution such as to the
Planck scale quantum gravity era [1] or even before that,
as suggested for example in the context of the multiverse
concept [2,3]. However, despite the fact, that it is generally
agreed, that quantum gravity does not preserve any global
quantum numbers (as is evident from the lost of baryon
number in the process of a star collapse forming a black
hole), inflationary expansion is considered to dilute any such
matter–antimatter asymmetry. Then, one should look for the
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solution of the problem in the subsequent stages of the evolu-
tion of the universe. The first attempt to explain the problem
was given in the renowned paper by Sakharov [4].

As it is often referred, he suggested three necessary con-
ditions for the matter–antimatter asymmetry to occur in the
universe: the baryon number B violation interactions have
to appear; charge C and charge-parity CP violating parti-
cle processes have to be possible; departure from thermal
equilibrium to shift the densities of particles with respect to
antiparticles have to be present. This idea of Sakharov was
developed in many ways [5].

An idea of the spontaneous baryogenesis was later intro-
duced by Cohen and Kaplan [6,7]. In fact, they challenged
the third Sakharov’s condition, i.e. the departure from ther-
mal equilibrium, postulating instead a spontaneous breaking
of CPT symmetry already at the thermal equilibrium which
generates the shift of the energy of the baryons with respect to
the energy of anti-baryons in the universe which is responsi-
ble for the baryon asymmetry. An exit from thermal equilib-
rium takes place at some decoupling temperature, but once
generated, baryon asymmetry is frozen-in in this scenario.
Baryogenesis is driven by a scalar field – the thermion– which
decays after the baryon asymmetry is established [8,9]. The
role of the thermion can also be played by some gravitation-
ally motivated scalar such as Ricci or Gauss–Bonnet scalars
and their combinations – such scenarios are called gravita-
tional baryogeneses [10–16]. Baryogenesis in the context of
other theories such as in Lorentz symmetry violating models
has also been studied [17].

The baryon asymmetry problem is usually referred to the
observational number ηB , which is the ratio of the baryon
number density, nB , to the entropy density, s (or the photon
number density, nγ ). According to the latest measurement by
the Planck satellite [18], the dimensionless baryon density
�Bh2 = 0.02225 ± 0.00016 gives the baryon asymmetry
equal to
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ηB = nB

s
= (8.678 ± 0.062) · 10−11, (1.1)

where ηB = 3.9 · 10−9�Bh2. The entropy density and the
photon number density are related by s ≈ 7.04nγ .

In this paper we concentrate on the spontaneous baryoge-
nesis approach with the baryon asymmetry generating fields
being motivated by the dynamical physical constants. The
paper is organised as follows. In Sect. 2 we briefly sketch the
idea of spontaneous baryogenesis. In Sect. 3, which is the
main body of this work, we discuss how to generate baryon
asymmetry in spontaneous baryogenesis scenario where the
role of a thermion is played by dynamical constants such as
the varying gravitational constant G, varying fine structure
constant α, and the varying speed of light c. In Sect. 4 we
summarise our results and give conclusions.

2 Spontaneously generated baryon asymmetry in the
universe

As it was mentioned in the Introduction, unlike the Sakharov
baryogenesis, the spontaneous baryogenesis is based on two
assumptions [6,7]: (1) baryon number violating interactions
appear in thermal equilibrium; (2) CPT is not an exact
symmetry of the early universe since its expansion violates
Lorentz symmetry and a time-reversal. There is a relation
between the Hubble parameter evolution and the size of CPT
violation which can be tighten to the “effective” baryon num-
ber violating interactions. These being initially large, after the
universe cools down and can be approximated by zero tem-
perature, become gradually negligible so that baryon number
violating interactions become CPT invariant and then allow
the Lorentz invariant vacuum as we observe now.

The key point is to consider a scalar field ϕ – in the orig-
inal approach called thermion [6,7] – which spontaneously
breaks the baryon symmetry by a term in the action

L = λ2(∂μϕ)Jμ
B , (2.1)

where λ is a characteristic cut-off length scale of the sponta-
neous baryogenesis model (l pl � λ < lGUT ; l pl is the Planck
length and lGUT is the Grand Unified Theory length scale),
Jμ
B is the baryon current, and the Greek indices run from 0

to 3. After integrating (2.1) by parts, one obtains

L = λ2ϕ(∂μ J
μ
B ) , (2.2)

which means that the baryon current Jμ
B cannot be conserved

(or otherwise, ∂μ J
μ
B cannot be zero). If it was conserved,

the baryon number would be preserved and so there was no
baryon asymmetry in the universe. The underlying idea here
is to replace the term ∂μ J

μ
B by some operator which violates

the baryon number and additionally can also give rise to a
decay of thermion field at late time to finally reach baryon
conservation at the late universe.

Considering a homogeneous and isotropic Friedmann
Universe

ds2 = −c2dt2 + a2(t)

×
[

dr2

1 − kr2 + r2dθ2 + r2 sin2 θdϕ2
]

, (2.3)

(xν = (x0, x1, x2, x3) = (ct, r, θ, ϕ), d/dx0 = d/(cdt),
k = 0,±1) we can write down (2.1) as

L = λ2(∂0ϕ)J 0
B ≡ μB�nB (2.4)

where �nB describes the difference in the number density
of particles and antiparticles:

J 0
B = �nB = nB − nB̄ . (2.5)

In fact, the term (2.4) describes a CPT violating interaction
which leads to different spectra for baryons and antibaryons.
More precisely, the term (2.4) breaks first, the CP symme-
try and then the time symmetry due to having a nonzero vev
< φ̇ > �= 0, which finally leads to a CPT violation [11–13].
The CPT symmetry ensures that particles and antiparticles
equilibrate with the same thermal distribution, which is not
a case when the symmetry is broken. Therefore, the interac-
tion (2.1) or (2.2) contributes to the Einstein equation by the
energy–momentum tensor made out of these baryon number
violating terms and shifts the energy of baryons with respect
to the energy of antibaryons of about 2μB . This shift is then
interpreted as a chemical potential, which enters the parti-
cle/antiparticle Hamiltonian through the term [8]

μB = EB − EB̄ ∼ λ2φ̇, (2.6)

where EB is the energy of a baryon and EB̄ of an antibaryon.
For the antiparticles the chemical potential is μB̄ = −μB .

The thermodynamical quantities of some species “i” – the
number density ni , the energy density, εi = −ρi c2, and the
pressure density Pi – are specified by the integrals over their
distribution functions:

ni = gi
(2π h̄)3

∫
f ( �p)d3 �p , (2.7)

εi = gi
(2π h̄)3

∫
f ( �p)E( �|p|)d3 �p , (2.8)

Pi = gi
(2π h̄)3 c

∫
f ( �p) | �p|2

3E(| �p|)d
3 �p , (2.9)

where E is the energy, p is the momentum, gi is a number of
the internal degrees of freedom, i.e. gi = 2 for a photon, and
1/(2π h̄)3 is a unit size of the phase space. The distribution
function reads as [8,19]:

f ( �p) = 1

(e(EB−μB )/kBT ± 1)
(2.10)

and due to the homogeneity and isotropy of the Friedmann
universe it does not depend on the spatial coordinates and
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the momentum direction, so f (�x, �p) → f (p). The sign “+”
stands here for fermions (Fermi–Dirac statistics), “−” for
bosons (Bose–Einstein statistics), and kB is the Boltzmann
constant. Given this, an excess of a baryon number over an
antibaryon number (2.5) can be written as

�nB = gi
(2π2h̄)3 ×

∫ ∞

0
d3 �p

×
[

1

e(EB−μB )/kBT ± 1
− 1

e(EB+μB )/kBT ± 1

]
,

(2.11)

which by using (2.5) and (2.6) gives an approximate result
for the particle–antiparticle excess as

J 0
B = �nB 	 gi

6

k2
B

(h̄c)3 μBT
2. (2.12)

The entropy density, s, for bosons (here: the radiation) is
given by:

s = g∗s
2π2

45

k4
B

(h̄c)3 T
3 (2.13)

and g∗s is the effective number of degrees of freedom, which
differs from g∗ present in the solution of the integral (2.8)
for the energy density:

εi = g∗
π2

30

k4
B

(h̄c)3 T
4. (2.14)

When all the species have the same temperature and the equa-
tion of state may be approximated by p 	 1/3ρi c2, these
quantities appear equal, g∗s = g∗. Since above the temper-
ature T ∼ 200 GeV all the particles are relativistic, we can
find the value of g∗ = 106.75 by summing up their internal
degrees of freedom [8,19].

By combining Eqs. (2.6) and (2.12) we can write the final
expression for the baryon asymmetry parameter:

ηB = �nB

s
= 15g

4π2g∗s
1

k2
BT

μB , (2.15)

which has a dimension of (K/J) in SI units. Another parameter
describing the preference of matter over antimatter is the
baryon to photon number ratio, ηBγ = �nB/nγ . However,
until the photon decoupling (T ∼ 0.3 eV) the photon density
number nγ vary significantly throughout the epochs of the
evolution of the Universe. For this reason, the entropy density
s, which remains more or less constant at all energies, seems
to be a better quantifier of the baryon asymmetry.

3 Dynamical constants driven baryogenesis

An idea of varying physical constants is in a way analo-
gous to the idea of running coupling constants in quantum

field theory, i.e. that there is some interaction due to perhaps
unknown physics, which causes these constants to vary in
time and possibly in space. In practice, what one does is that
one replaces the constants of nature by some physical fields,
which have their own dynamics. The first fully quantitative
framework for this was developed for varying gravitational
constant (as a coupling constant of gravitational interaction)
by Jordan [20] and Brans–Dicke [21]. They were motivated
by the earlier Large Number Hypothesis of Dirac [22,23]
being the consequence of even earlier ideas of Weyl [24] and
Eddington [25]. Among the rich set of fundamental constants
(for a review see Refs. [26–29]) the series of them are subject
to dynamical studies. These are the gravitational constant G
[21], the proton to electron mass ratio μ = mp/me [30], the
fine structure constant α = e2/h̄c [31,32] (h̄ is the Planck
constant and c is the speed of light) and related to this charge
of an electron e [33] or permittivity of vacuum ε0 [34], and
the velocity of light c [35].

Though one usually considers the dynamics of the con-
stants separately, the models in which two of the constants
vary instantaneously have also been considered. Out of them
the most natural are modified varying both G and c mod-
els [36–38] since these constants show up together in the
Einstein–Hilbert action for gravity and in the Einstein field
equations. In fact, they can be classified as an extension of
Brans–Dicke models into a varying c case. Another extension
of this type which is based on Brans–Dicke model are varying
both G and α models [39]. On the other hand, varying both α

and c models would not perhaps make so reasonable because
α and c are related via the definition of the fine structure con-
stant and the effects of changes of these constants would have
to be indicated separately in the construction.

Our main idea here is to have the scalar fields which are
responsible for the dynamics of the constants such as G,
α, and c to play the role of a thermion in the spontaneous
baryogenesis scenario as described in Sect. 2. In the following
we will discuss all these three varying constants scenarios in
that context.

3.1 Dynamical gravitational constant G driven
baryogenesis

The action for (varying G) Brans–Dicke theory reads as [21]:

S = SBD + Sm + SB , (3.1)

where:

SBD = c3

16π

∫
d4x

√−g

(
φR − ω

φ
∂μφ∂μφ

)
, (3.2)

Sm =
∫

d4x
√−gLm , (3.3)

SB = c3

16π

∫
d4xλ2

G∂μφ Jμ
B , (3.4)
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where SBD is the standard Brans–Dicke action, Sm is the mat-
ter action, φ is the Brans–Dicke scalar field, ω is a constant
Brans–Dicke parameter. We have added an extra term, SB ,
which describes the interaction responsible for baryogene-
sis [8]. The quantity λG is the characteristic cut-off scale for
G-varying baryogenesis models. It is worth to mention that
we have used the notation for the action (3.2) with the speed
of light being c3 rather than c4 in front of the integral. Here
we follow the notation of Refs. [40,41] compensating one c
to be kept in the definition of the null coordinate x0 = ct
rather than x0 = t as in most of the textbooks (e.g. [42]).
We will come back to this problem in Sect. 3.3 where the
models with varying speed of light are considered (cf. also
the detailed discussion of Ref. [43]).

The scalar field φ is related to the varying gravitational
constant G as

φ(xν) = 1

G(xν)
. (3.5)

The action (3.1) varied with respect to the metric yields the
field equations:

G ν
μ = 8πφ−1

c4

(
Tm

ν
μ + TBD

ν
μ + TB

ν
μ

)
,

where the tensors Ti ν
μ are given by

Tm
ν
μ = gμσ

2√−g

∂

∂gσν

(√−gLm
)

, (3.6)

TBD
ν
μ = c4

8π

(∇μ∇νφ − δν
μ�φ

)

+ c4

8π

(
∂μφ∂νφ − 1

2
δν
μ∂βφ∂βφ

)
, (3.7)

TB
ν
μ = c4

16π
λ2
Gδν

μ∂σ φ Jσ
B , (3.8)

and the equation of motion of the field φ takes the form:

�φ = 8π

c4(3 + 2ω)
Tm

+ λ2
G

3 + 2ω
φ

(
∂μ J

μ
B + J γ

B�μ
μγ + 2

φ
∂μφ Jμ

B

)
,

(3.9)

where �μ
μγ are the Christoffel connection coefficients.

Assuming that the field (3.5) is homogeneous and isotropic
we can write the Friedmann equation for the flat Universe as
follows:

H2 = 8π

3φ
ρm − HHφ + ω

6
H2

φ + cλ2
G

6
Hφ J

0
B, (3.10)

where H denotes the Hubble parameter, Hφ = φ̇/φ is the
rate of variation of G(t) and ρm is the matter energy density

with corresponding pressure, pm . The acceleration equation
is given by

ä

a
= −4π

3φ

(
ρm + 3pm

c2

)
− 1

2
HHφ

−1

6
(3 + 2ω)H2

φ − 1

2
Ḣφ − cλ2

G

3
Hφ J

0
B , (3.11)

In order to calculate (2.15), we need to solve the equation of
motion (3.9), which for Friedmann metric takes the form:

φ̈ + 3H φ̇ = 8π

(3 + 2ω)
(1 − 3w)ρm

− λ2
Gc

2

3 + 2ω
φ

[
J̇ 0
B + 3H J 0

B + 2
φ̇

φ
J 0
B

]
, (3.12)

where w is an index of the barotropic equation of state p =
wρmc2, and p is the pressure.

The main problem with the set of Eqs. (3.10)–(3.12) (com-
pare Ref. [44] for example) is that in radiation dominated
universe the first term on the right-hand side of Eq. (3.12)
vanishes. This, after additionally neglecting the last term of
baryogenesis which is in fact small, leads to a pure scalar
field (or stiff-fluid) domination with a simple integral

φ̇ ∝ a−3(t). (3.13)

Despite this solves easily, still the solutions of the whole set
of equations for a(t) and φ(t) are non-trivial. In fact, one can
postulate the power-law solutions which would include both
an early universe “scalar field domination” and late universe
radiation domination together. However, as it has been shown
in Ref. [45] that the unique power-law solutions which allow
current acceleration of the universe a ∝ t4/3, φ ∝ t−2 are
possible for the dust (p = 0) models if one also adds a
specific scalar field potential. Because the matter applied is
dust, then the relation (3.13) is modified accordingly.

In fact, if one neglected radiation also in the Friedmann
equation (3.10), then one would get a unique solution which
would pick up some specific powers in the scale factor and
scalar field power-law time dependence. However, in our case
we deal with the early universe and so radiation is the crucial
component. Because of that we need to rely on the relation
(3.13), though modified slightly by the baryogenesis term
which is pretty small. The solutions which in fact keep rela-
tion (3.13) valid but also include radiation have been studied
in Ref. [46]. In particular, it was found that there exist two
regimes in which simple power-law solutions (with radia-
tion and the scalar field present) exist. One of them applies
close to a big-bang a → 0, where the scalar field is domi-
nating (behaving as a stiff-fluid), and another to the late time
evolution a → ∞, when the radiation comes to dominate.
The first solution gives a simple power law for the scale
factor a ∝ t1/3, while the second gives standard radiation-
dominated power law behaviour a ∝ t1/2.
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What is crucial here is that there exist solutions fulfilling
set of Eqs. (3.10)–(3.12) which include radiation and asymp-
tote from the power-law solution a ∝ t1/3 to possibly another
power law solution a ∝ t1/2. They can be parametrised by
the values of some extra parameter which takes some specific
value for the asymptotic a ∝ t1/3 solution. In other words,
we can consider the solutions which are in stiff-fluid regime,
but which are slightly modified by the presence of radiation.
Such an approach have been applied to Brans–Dicke theory
already in Refs. [47–49] though only some simple examples
of baryogenesis out of the whole set of admissible values
of the extra parameter (in Ref. [47] parameter n) have been
studied.

In the following we will explain the above approach step
by step.

We start with the value of the chemical potential (2.6)
which now reads as:

μB = c3

16π
λ2
G φ̇. (3.14)

Given this, we find (2.12) for the varying G case, which is:

J 0
B = giλ2

G

96π h̄3 k
2
B φ̇T 2 , (3.15)

and in the next step, by inserting (3.15) into (3.12) we obtain
the modified with baryogenesis term equation of motion for
the scalar field:

φ̈ + 3H φ̇ = −2β(T 2φ̇2 + T Ṫφφ̇)

1 + βT 2φ
, (3.16)

where β is constant with the dimension of m5K−2s−4 J−1:

β = c4

16π(3 + 2ω)

gi
6

k2
B

(h̄c)3 λ4
G . (3.17)

The Eq. (3.16) can be solved, but as it can be proven
numerically, the contribution from the right-hand side is
small because during baryogenesis the temperature does not
change significantly, i.e. Ṫ ≈ 0. Besides, for the length scale
λG in the range lPl ∼ 10−35 m < λG < lGUT ∼ 10−31 m,
βT 2 � 1 for considered temperatures 1013 GeV < T <

1015 GeV, and for 500 < ω < 40,000. Consequently, the
right hand side of (3.16) can be neglected and the equation
of motion simplifies to

φ̈ + 3H φ̇ = 0 , (3.18)

which immediately gives the solution (3.13). Without any
loss of generality in looking for the power law solutions we
will describe the dynamics of the field φ by making an ansatz
for the variability of the gravitational constant G:

1

φ(t)
= G(t) = G(t0)

[
a(t)

a(t0)

]q
, (3.19)

where a dimensionless parameter q is a measure of the vari-
ation of G(t) ≡ G, and a(t) ≡ a, a(t0) ≡ a0 are the
scale factors at times t and t0. For q = 0, G(t) is equal
to a currently measured value of the gravitational constant,
G(t0) = G0. The parameter q (which is equivalent to a
parameter n = 1/(3 − q) of Ref. [47]) also measures the
deviation from a ∝ t1/3 as mentioned earlier. Applying the
ansatz (3.19) into (3.18) yields

ä

ȧ
+ (2 − q)

ȧ

a
= 0 , (3.20)

which has the following solution:

a(t) = ain [1 + (3 − q)(t − tin)Hin]
1

3−q , (3.21)

ȧ(t) = ȧin [1 + (3 − q)(t − tin)Hin]
q−2
3−q (3.22)

and allows us to find the Hubble parameter H :

H(t) = Hin [1 + (3 − q)(t − tin)Hin]−1 , (3.23)

which then gives the values of φ and its derivative φ̇ as the
functions of time:

φ(t) = φin [1 + (3 − q)(t − tin)Hin]−
q

3−q , (3.24)

φ̇(t) = −qφin Hin [1 + (3 − q)(t − tin)Hin]−
3

3−q . (3.25)

The indices “in” denote the initial values of the scale factor
ain , the Hubble parameter Hin = ȧin/ain and the field φin =
1/Gin at the beginning of baryogenesis, when t = tin . It is
worth mentioning that in the limit q → 0 the above solutions
give an asymptotic early time behaviour a ∝ t1/3 as it should
be following the work of Ref. [46].

In fact, the scale factor (3.21) is a superposition of a solu-
tion for pure radiation and for pure stiff fluid which mimics
the scalar field. In the above mentioned limit q → 0, the
solutions (3.21) and (3.24) solve simultaneously the whole
set of the field Eqs. (3.10), (3.11), (3.18), when satisfied:

ρm0 = 3φin

8π

(
ain
a0

)6 (
2Hin

3 − q

6 − q

)2

×
(

1 − q − ω

6
q2

)
. (3.26)

for the radiation energy density taking form in the Brans–
Dicke theory:

ρm = ρm0

(a0

a

)6
. (3.27)

Notice that in order to get (3.18) the contribution (3.4) from
baryogenesis term has been neglected in the Friedmann equa-
tion for the same reason for which we neglected it in the equa-
tion of motion (3.18). In fact, if we have also dropped radia-
tion contribution in the Friedmann equation so ρm0 = 0, we
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would obtain the condition linking the values of q-parameter
and ω: q = (

√
3/ω)(−√

3±√
2ω + 3) which would restrict

the freedom of choice of q in a similar way as in the dust
case considered in Ref. [45].

In order to define the temperature dependence of φ we
combine Eqs. (3.10), (2.14), (3.23), (3.24), and (3.25). Due to
the fact that the right hand side of (3.12) is negligible, we feel
excused to neglect the term cλ2

G/6Hφ J 0
B in the Friedmann

equation. This gives a time–temperature relation in our model
as

[1 + (3 − q)(t − tin)Hin]
6−q
3−q

= φin H
2
in

(
1 − q − ω

6
q2

) [
8π3g∗
90c2

k4
B

(h̄c)3

]−1

T−4 ,

(3.28)

which can be implemented into (3.25) and together with eq.
(2.15) and (3.14) gives the final expression for the baryon
asymmetry:

ηB = −qφin Hin
15c3

16π

λ2
Ggi

8π2g∗
1

k2
BT

×
⎡
⎣φin H

2
in

(
1 − q − ω

6
q2

) (
8π3g∗
90c2

k4
B

(h̄c)3

)−1

T−4

⎤
⎦

− 3
6−q

.

(3.29)

The quadratic equation in (3.28) relates ω with the param-
eter q and gives a bound on the allowed values of the field φ.
For ω > 0 the bound is given by

q ∈
(

−3 − √
9 + 6ω

ω
; −3 + √

9 + 6ω

ω

)
, (3.30)

while for ω < 0 it reads as

q ∈
(

−∞; −3 + √
9 + 6ω

ω

)

∪
(

−3 − √
9 + 6ω

ω
;+∞

)
. (3.31)

The limits for q for some specific ω has been listed in Table 1.
In order to be consistent with the current measurements, we
take ω = 40,000 and the corresponding limit for q [50–52].
Despite the fact that ω could have been smaller in the early
Universe, taking ω = 40,000 seems to be justified by the
fact that it has small impact on the decoupling temperature
TD in (3.29).

We limit ourselves to consider the negative values of q,
only (G decreases during the evolution of the universe). The
positive values of q would result in negative ηB , hence a uni-
verse with an excess of antimatter on matter. The currently
measured value of ω imposes even stronger bound onto the

Table 1 Limits for the parameter q for some specific values of ω (ω =
−3/2 for conformal relativity, ω = −1 for superstring theory, ω = ∞
for Einstein gravity limit)

ω q

−1.5 2

−1 (−∞; 3 − √
3) ∪ (3 + √

3; ∞)

1000 (−0.0805; 0.0745)

5000 (−0.0352; 0.0340)

10,000 (−0.0248; 0.0242)

40,000 (−0.0123; 0.0122)

∞ 0

Fig. 1 The decoupling temperature, TD , as function of the parameter
q, in the model with varying G using the currently measured value
of the asymmetry, ηB 	 8.6 · 10−11. The thin line corresponds to
ω = 1000, the middle line corresponds to ω = 10,000, and the thick
line to ω = 40,000. The plots were made for λG = 10−19 Gev−1,
ain = 10−25, and Hin = 108 GeV

value of q and narrows the limit to the range (0; 0.0122)

(see Table 1). Nevertheless, the parameter ω does not have a
strong influence onto TD for the values of q taken from this
range. Its influence becomes more pronounced for smaller q
(see Fig. 1). An interesting observation from (3.31) is that
for the well-known from the literature case – the confor-
mally invariant gravity [53], ω = −3/2 – an allowed value
of q is positive, so this theory seems to contradict observed
baryon asymmetry. On the other hand, the limit of q for the
low-energy superstring gravity [54], ω = −1, allows cre-
ation of the observed baryon asymmetry in a G-varying uni-
verse. Note, that in the general relativistic limit, ω → ∞, the
parameter q vanishes, and according to (3.19), the value of
G remains constant as it should be.
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Fig. 2 The decoupling temperature, TD , as function of the parameter
q, in the model with varying G using the currently measured value of
the asymmetry, ηB 	 8.6 · 10−11. The thick line corresponds to λG =
10−19 GeV−1, the middle line corresponds to λG = 2 · 10−19 GeV−1,
and the thin line to λG = 4 · 10−19 GeV−1. The plots were made for
ω = 40,000, ain = 10−25, and Hin = 108 GeV

We have found that the Brans–Dicke baryogenesis gives
a currently measured value of the baryon asymmetry, ηB ,
for large range of the parameters q and TD . In order to be
consistent with the results of BBN (− 0.10 < �G/G <

0.13) [27]), we have taken q ∼ 10−3. This results in the
decoupling temperature TD ∼ 1014GeV. The measurements
of CMB indicate that q should be rather of the order of
10−2 (− 0.083 < �G/G < 0.095), which corresponds to
a change of G between the recombination (z ≈ 103), and
today (z = 0) [27]. In fact the parameter q characterising the
dynamics of G can be calculated from the formula:

q = − log1+zG

(
1 + �G

G

)
, (3.32)

where zG is a corresponding value of the redshift for which
�G/G was measured.

We have performed calculations and plotted the results
with the initial condition for the scale factor ain = 10−25 and
the corresponding Hubble parameter Hin = 108 (calculated
from �CDM). However, shifting the beginning of baryoge-
nesis even from ain = 10−25 to ain = 10−30 only slightly
changes ηB . Therefore, the second most relevant parameter
to drive baryogenesis is the fundamental length, λG . In this
case, a small change in the value of λG results in a big change
in the decoupling temperature, TD (see Fig. 2). The baryon
to entropy ratio ηB (3.29) as a function of the parameter q
for three possible values of the temperature TD (see the plot

on the left), as well as a function of temperature TD for three
values of q (see the plot on the right) has been presented in
Fig. 3.

3.2 Dynamical fine structure α driven baryogenesis

In this section we examine the application of the mechanism
of spontaneous baryogenesis to the Bekenstein–Sandvik–
Barrow–Magueijo (BSBM) [55] model of the varying fine
structure constant α. Such models were first proposed by
Teller [56], and later by Gamow [57], following the origi-
nal path of the Large Number Hypothesis by Dirac [22,23].
A fully quantitative framework was developed by Beken-
stein [33] in which a change in the fine structure constant
α was fully identified with a variation of the constant elec-
tric charge, e0 (cf. also Ref. [58]). By assuming that α can
vary, we also assume that the electric charge become space–
time dependent. This gives a path to a charge conservation,
but maintains the Lorentz invariance, which is usually vio-
lated in the theories of varying α, where e and h̄ are kept
constant, and c varies. The electric charge variability was
introduced by defining a dimensionless scalar field, ε(xμ),
and as a consequence, e0 was replaced by e = e0ε(xμ). The
electromagnetic tensor was then redefined to the form

Fμν = [(εAν)′μ − (εAμ)′ν]/ε ,

where the standard form of it can be restored for the constant
ε. For simplicity, in [55,58] an auxiliary gauge potential,
aμ = εAμ, and the electromagnetic field strength tensor,
fμν = εFμν , were introduced, as well as a variable change:
ε → ψ ≡ ln ε was performed. The field ψ in this model
couples only to the electromagnetic energy, disturbing nei-
ther the strong, nor the electroweak charges, nor the particle
masses.

The BSBM baryogenesis action is composed of

S = Sg + Sψ + Sem + SB (3.33)

and

Sg = c3

16πG

∫
d4x

√−gR , (3.34)

Sψ = 1

c

∫
d4x

√−g

(
−�

2
∂μψ∂μψ

)
, (3.35)

Sem = 1

c

∫
d4x

√−g

(
−1

4
fμν f

μν

)
e−2ψ , (3.36)

SB = c3

16πG

∫
d4x

√−gλ2
α(∂μψ)Jμ

B , (3.37)

where Sgis the gravitational action, Sem is the electromag-
netic part of the theory with the kinetic term Sψ and SB is the
baryogenesis term with the field ψ derivatively coupled to
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Fig. 3 The baryon to entropy ratio ηB (3.29) as a function of the param-
eter q (left) and the decoupling temperature TD (right) in the varying
G model. The horizontal dashed lines indicate the currently measured
value of the asymmetry, ηB 	 8.6 ·10−11. The plot on the left was made
for three different values of TD . The thick line corresponds to temper-
ature TD = 2 · 1013 GeV, the line in the middle to TD = 6 · 1013 GeV

and the thin one to TD = 2 · 1014 GeV. The plot on the right presents
the relation ηB(TD) for three values of the parameter q. The thick line
corresponds to q = − 0.002, the line in the middle to q = − 0.005, and
the thin line to q = − 0.010. Both plots were made with the initial con-
ditions for baryogenesis: ain = 10−25, Hin = 108 GeV, ω = 40,000,
λ = 10−19 GeV−1

the baryon current Jμ
B . Similar to the original BSBM theory,

the coupling constant � = h̄c/λ, is a constant introduced for
dimensional reason (J/m), where λ is considered the length
scale of the electromagnetic part of the theory. The constant
λα is a cut-off length scale of the spontaneous baryogenesis
model and is taken to be λPl < λα < λGUT . The field ψ is
given by:

ψ = 1

2
ln

∣∣∣∣ α

α0

∣∣∣∣ (3.38)

and is dimensionless. The field equations read as

G ν
μ = 8πG

c4

(
Tem

ν
μ + Tψ

ν
μ

+ TB
ν
μ

)
, (3.39)

where the tensors Ti ν
μ are given by:

Tψ
ν
μ

= �∂νψ∂νψ − 1

2
�δν

μ

(
∂βψ∂βψ

)2
, (3.40)

Tem
ν
μ = −

(
1

4
δν
μ fαβ f αβ − gσν fσβ f β

μ

)
e−2ψ , (3.41)

TB
ν
μ = c4

16πG
λ2

αδν
μ∂σ ψ Jσ

B . (3.42)

and the equation of motion of the field ψ is:

�ψ = 2

�
e2ψLem + c4

16πG

λ2
α

�

(
∂μ J

μ
B + J γ

B�μ
μγ

)
. (3.43)

The Friedmann equation for the flat Friedmann metric
(2.3) and the homogeneous field ansatz ψ = ψ(t) reads
as

H2 = 8πG

3

(
ρem + �

2c4 ψ̇2
)

+ cλ2
α

6
ψ̇ J 0

B , (3.44)

where ρem is the electromagnetic field energy density which
will be, later on, re-scaled as follows:

Tem
0

0 = −ρemc
2 = −ρ̃emc

2e−2ψ , (3.45)

The acceleration equation is given by:

ä

a
= − 4πG

3

(
ρem + 3pem

c2

)

− 8πG

3c4 �ψ̇2 − cλ2
α

3
ψ̇ J 0

B , (3.46)

where pem is the electromagnetic pressure which we re-scale
as:

Tem
1

1 = pem = p̃eme
−2ψ.

Similarly to the Sect. 3.1, where the varying G baryogenesis
was discussed, the interaction (3.37) violates the CPT sym-
metry. This results in a different thermal distributions for par-
ticles and antiparticles and contributes to the stress–energy
tensor. this contribution may be understood as a chemical
potential:

μ = c3

16πG
λ2

αψ̇ . (3.47)

This together with (2.15) leads to the baryon to entropy ratio
in the form:

ηb = �nB

s
= 15c3

16πG

λ2
αgi

8π2g∗s
1

k2
BT

ψ̇. (3.48)
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In order to calculate (3.48), we need to solve the equa-
tion of motion of the field ψ (3.43). For the pure radiation
Lem vanishes, so we can safely neglect this term. Since we
assumed, that the field ψ is homogeneous and isotropic and
only the null component of Jμ

B gives a contribution to the dif-
ference in the number densities, we can reformulate (3.43)
to:

ψ̈ + 3H ψ̇ = c4

16πG

λ2
αc

�

(
d

dt
J 0
B + 3H J 0

B

)
. (3.49)

When we insert (2.5), (2.12), and (3.47) into (3.49), we can
try to estimate the value of the right hand side of this equation
and its impact onto the evolution of ψ as:

ψ̈ + 3H ψ̇ = 2β̃ψ̇T Ṫ

1 − β̃T 2
, (3.50)

where β̃ is a constant of unit K−2:

β̃ = gi
6�

k2
B

(h̄c)3

(
c4

16πG
λ2

α

)2

. (3.51)

We assume that the temperature of the Universe in a short
period of baryogenesis did not change significantly (Ṫ ≈ 0).
We also evaluate the value of β̃T 2, which for λα = λPl and
ωλ of the order of few tens of MeV, is much smaller than
one. For this reason we are excused to simplify (3.50) to:

ψ̈ + 3H ψ̇ = 0. (3.52)

In order to solve (3.52) we need to describe the dynamics
of α by an explicit dependence on the scale factor a(t). We
make the following ansatz for α:

α(t) = α(t0)

[
a(t)

a(t0)

]m
, (3.53)

where a constant parameter m measures a change in α and
the index “0” denotes the current values of the fine structure
constant, α(t0) = α0, and the scale factor, a(t0) = a0. A
scenario with no variation of α can be restored for m = 0.
By inserting (3.53) into (3.52) we find that:

ä(t)

ȧ(t)
+ 2

ȧ(t)

a(t)
= 0. (3.54)

The above equation can be integrated from t to tin , where
time tin stands for the onset of baryogenesis. This gives

a(t) = ain [1 + 3Hin(t − tin)]
1/3 . (3.55)

where a(tin) = ain , and H(tin) = Hin are, respectively,
the initial value of the scale factor, and the corresponding

Hubble parameter. The scale factor (3.55) differs from the
one which is expected for the radiation dominated Universe.
The presence of the scalar field ψ(t) shifts its value from
a ∼ t1/2 to a ∼ t1/3, this means that the solution (3.55)
scales like a solution for the stiff fluid.

By using (3.38), (3.53) and (3.55) we can find that

ψ(t) = 1

2
ln

∣∣∣∣[1 + 3Hin(t − tin)]
m
3

(
ain
a0

)m∣∣∣∣ (3.56)

and

ψ̇(t) = 1

2
mHin [1 + 3Hin(t − tin)]

−1 . (3.57)

In the limit m → 0 the solutions (3.55) and (3.56) solve
simultaneously all the field equations when:

ρem0 =
(

3

8πG
− �m2

8c4

) (
Hin

6

6 + m

)2 (
ain
a0

)6+m

,

(3.58)

for ρem0 being a positive constant in the expression for the
energy density of the stiff fluid:

ρem = ρem0

(a0

a

)6
. (3.59)

In order to write ηB as a function of the temperature T , we
combine the Friedmann equation (3.44) and the energy den-
sity (2.13) to yield

[1 + 3Hin(t − tin)]
6−m

3

=
(

3

8πG
− �m2

8c4

) [
π2gi
30c2

k4
B

(h̄c)3

(
a0

ain

)m
]−1

H2
inT

−4 ,

(3.60)

and finally express (3.48) in terms of temperature as:

ηB = 1

2
mHin

15c3

16πG

λ2
αgi

8π2g∗s
1

k2
BT{

H2
inT

−4 ×
(

3

8πG
− �m2

8c4

)

[
π2gi
30c2

k4
B

(h̄c)3

(
a0

ain

)m
]−1

⎫⎬
⎭

− 3
6−m

. (3.61)

We have found that it is possible to achieve the currently
measured value of the baryon asymmetry, ηB , in the BSBM
model of baryogenesis, as well as in the model of varying G
discussed in 3.1. A possible parameter space is presented in
Fig. 4 for three different values of λα . We have compared the
ansatz (3.53) with the measurements of time variation of α
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Fig. 4 The decoupling temperature, TD , as function of the parameter
m, in the model with varying α using the currently measured value
of the asymmetry, ηB 	 8.6 · 10−11. The thin line corresponds
to λα = 4 · 10−19 GeV−1, the middle line corresponds to λα =
2 · 10−19 GeV−1, and the thick line to λα = 10−19 GeV−1. The initial
conditions are: ain = 10−25 and Hin = 108 GeV

to find the order of magnitude of the parameter m. We have
found m to be in the range:

m = − log1+zα

(
1 + �α

α

)
, (3.62)

where zα is a corresponding value of redshift for which �α/α

has been measured. Using the bound from Ref. [31,32] we

have decided to restrict m to be of the order of 10−6. This
corresponds to the decoupling temperature TD ∼ 1016 GeV.
In our model m takes positive values only, which stands for
the smaller α in the past. However, positive m can also be
admitted according to the so-called α–dipole measurement
[31,32]. Similarly to the model of G-driven baryogenesis,
any small change in the initial value of the scale factor a(t) at
the moment of baryogenesis does not have any strong impact
on ηB . The sensitivity of ηB increases with the growth of m.
Again, the second most significant parameter is the length
λα , which was chosen to be of the order of 10−19 GeV (see
Fig. 4). The baryon to entropy ratio ηB (3.61) as a function
of the parameter m for three values of the decoupling tem-
perature TD (see the plot on the left), as well as a function of
the temperature TD for three values of m (see the plot on the
right) has been shown in Fig. 5.

3.3 Dynamical speed of light c baryogenesis

Early ideas about varying speed of light c were even dis-
tributed by Einstein [59] and then many years later recalled
by Petit [60–62] and Moffat [35,63]. Moffat developed a fully
consistent theory which was designed to alternatively solve
all the problems of standard cosmology which were orig-
inally resolved by the inflationary scenario [64]. Different
types of varying speed of light models were also suggested by
Albrecht and Magueijo [65], Barrow and Magueijo [36,66],
and further developed by Magueijo [67–70]. These models
are also useful to solve the standard cosmological problems
such as the horizon problem, the flatness problem, the �-
problem, and has recently been proposed to solve the singu-
larity problem [71]. Another different class of varying speed

Fig. 5 The baryon to entropy ratio ηB (3.61) as a function of the
parameter m (left) and the decoupling temperature TD (right) in the
varying α model. The horizontal dashed lines indicate the currently
measured value of the asymmetry, ηB 	 8.6 · 10−11. The plot on
the left was made for the three values of the decoupling temperature:
TD = 1017 GeV (thin left line), TD = 0.6 · 1017 GeV (middle line) and

TD = 0.4 · 1017 GeV (thick right line). The plot on the right was made
for three values of the parameter m: m = 2.5 · 10−5 (thin left line),
m = 10−5 (middle line), and m = 0.5 ·10−5 (thick right line). All plots
were made for: ain = 10−25, Hin = 108 GeV, λ = 10−4 GeV−1, and
λα = 10−19 GeV−1
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of light models was given by Avelino and Martins [72,73].
All the above models have recently been subject to statistical
evaluation against observational data [74] showing the pref-
erence of Moffat’s models, which we have selected to study
in the context of baryogenesis.

Here we combine the most recent Moffat’s approach [75]
with the theory of the spontaneous baryogenesis. The appro-
priate action is made up of three terms:

S = S� + Sm + SB , (3.63)

where

S� = 1

16πG

∫
dx4√−g

(
�R − κ

�
∂μ�∂μ�

)
, (3.64)

Sm =
∫

dx4√−gLm , (3.65)

SB = 1

16πG

∫
dx4λ2

c(∂μ�)Jμ
B . (3.66)

The action (3.64) is the gravitational action with the field �

coupled to the curvature and the kinetic term with a constant
κ . We also introduce the matter term Sm , since at the moment
of baryogenesis the Universe was filled-in with radiation. The
baryon asymmetry is produced by the interaction term (3.66).
As in the previous chapters, the length λc is the cut-off length
of the applicability of the theory, Jμ

B is the baryon current,
and its null component describes a difference in the particle
and the antiparticle number densities (cf. Eq. (2.5)). Similarly
to the Sect. 3.1, we follow the notation of Refs. [40,41,43]
for the Einstein–Hilbert action.

This means that we take xν = (x0, x1, x2, x3) and so (2.3)
is replaced by

ds2 = −(dx0)2 + a2(x0)[
dr2

1 − kr2 + r2dθ2 + r2 sin2 θdφ̃2
]

, (3.67)

where x0 = c(t)t (cf. the discussion of Appendix A in Ref.
[65]). As a consequence, the dynamics of the speed of light
field � is given by:

�(xν) = c3(xν) , (3.68)

which differs from the Moffat’s definition of the � field in
[35] and also in other references which take � = c4 [36,65].
However, both formulations are equivalent.

In fact, the original Moffat’s theory consists of the action
representing the dynamics of four scalar fields. In a later
paper [75] a vector field was driving the spontaneous viola-
tion of SO(3, 1) Lorentz invariance, while a dimensionless
scalar field, minimally coupled to gravity, was responsible
for quantum primordial fluctuations. Nevertheless, unlike in
[35], we are dealing with a small Lorentz violation, and con-
sequently with a small change in the speed of light c. In this

paper we do not intend to explain the fast exponential expan-
sion of the early universe to make it alternative to inflation
and for this reason we have dropped the part of the Moffat’s
theory, which exhibits the strong Lorentz symmetry breaking
and therefore, the large change in c (c ≈ 1028c0, where c0 is
the current value of the speed of light). The Lagrangian for
the quantum primordial fluctuations has not been included,
either. At the moment of baryon asymmetry generation, this
term is not relevant anymore, and can safely be neglected.

The variation of (3.63) with respect to the metric gμν leads
to the field equations:

Gν
μ = 8πG

�4/3

(
Tm

ν
μ + T�

ν
μ + TB

ν
μ

)
, (3.69)

where the tensors Ti ν
μ are given by:

Tm
ν
μ = gμσ

2√−g

∂

∂gσν

(√−gLm
)

, (3.70)

T�
ν
μ = �4/3

8πG

(
1

�
∇μ∇ν� − δν

μ��

)

+�4/3

8πG

κ

�2

(
∂μ�∂ν� − 1

2
δν
μ∂β�∂β�

)
, (3.71)

TB
ν
μ = �1/3

16πG
λ2
cδ

ν
μ∂γ �J γ

B . (3.72)

The equation of motion of the field � takes the form:

�� = 8πG

(3 + 2κ)�1/3 Tm

+ λ2
c

3 + 2κ
�

(
∂μ J

μ
B + J γ

B�μ
μγ + 2

�
∂μ�Jμ

B

)
,

(3.73)

where �μ
μγ are the Christoffel connection coefficients, and

Tm is the trace of the radiation energy–momentum tensor.
We assume the barothropic equation of state of the fluid
p = wρc2, which gives the trace Tm = −ρc2(1 − 3w) and
vanishes for pure radiation field, w = 1/3. The Eq. (3.73)
reads then as:

�′′ + 3H̃�′ = − λ2
c

3 + 2κ
�

(
J 0
B

′ + 3H̃ J 0
B + 2H̃� J 0

B
′)

,

(3.74)

where (′) stands for the derivative with respect to the coor-
dinate x0, H̃ = a′/a is the Hubble parameter, and H̃� =
�′/�. Both, H̃ and H̃� are of the unit m−2, instead the
usual s−2. This is a consequence of a chosen definition of
the action (3.63) and of coordinates in (3.67). The sponta-
neous baryogenesis occurs when CPT symmetry is broken
in the Universe, which is in thermal equilibrium. This leads
to a conclusion that particles, as well as the antiparticles are
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in thermodynamical equilibrium, but possess different ener-
gies. This is what we call the energy shift and can find it
by investigating the contribution of (3.66) to the total energy
density. The chemical potential takes the form:

μB = EB − EB̄ = λc

16πG
�1/3�′. (3.75)

Unlike in the previous Sects. 3.1 and 3.2 of varying G and
varying α, here not only the derivative of the field �′ enters
the chemical potential μB , but also the field � itself. The
ratio of the baryon asymmetry to the entropy density is given
by:

ηB = 15gi
4π2g∗s

1

k2
BT

μB , (3.76)

which together with (3.75) yields:

ηB = λ2
c

16πG

15gi
4π2g∗s

1

k2
BT

�1/3�′. (3.77)

In order to find the value of (3.77), we need to solve the
equation of motion (3.74). First, we find J 0

B , which is the
matter–antimatter excess:

J 0
B = gi k2

B

6h̄3

λ2
c

16πG
�−2/3�′T 2 (3.78)

and then insert (3.78) into (3.74). This gives a relation, which
connects � and its derivatives with the temperature T :

�′′ + 3H̃�′ =
2χ

(
2
3�−2/3�

′2T 2 + �1/3�′T T ′
)

1 − χ�1/3T 2 ,

(3.79)

where χ is a constant of the unit K 2ms−1:

χ = −gi k2
B

6h̄3

λ4
c

16πG(3 + 2κ)
. (3.80)

It has been checked, that the right hand side of (3.79) is
small, and so it can safely be neglected. A resulting simplified
equation of motion is then:

�′′ + 3H̃�′ = 0. (3.81)

In order to solve (3.81), we make an ansatz for the field � as
follows:

�(x0) = c3
0

[
a(x0)

a(x0
0 )

]3n

. (3.82)

where x0
0 = c0t0 and n is a parameter, which indicates the

variation in c (presumably small since we deal with approx-
imate Lorentz symmetry). In the limit n → 0, a currently
measured value of the speed o light c0 is restored and the
field is just equal to � = c3

0. We will denote a(x0) ≡ a and
a(x0

0 ) ≡ a0, later on. The solution of (3.81) is:

� = �in

[
1 + 3H̃in(n + 1)

(
x0 − x0

in

)] n
n+1

, (3.83)

where �in = c3
0(ain/a0)

3n is the initial value of the field
at the beginning of baryogenesis, x0

in = cintin , , and H̃ is
the initial value of the Hubble parameter. The solution (3.83)
solve the full set of the field equations in the limit n → 0
when:

ρ̃m0 = 3�
2/3
in

8πG

(
ain
a0

)6 (
3Hin

n + 1

n + 3

)2 (
1 + 3n−3κ

2
n2

)
,

(3.84)

for ρ̃m0 being a positive constant in the expression for the
energy density of the stiff fluid:

ρ̃m = ρ̃m0

(a0

a

)6
. (3.85)

Taking the derivative of (3.83), we find the final expression
for the baryon asymmetry ηB :

ηB = λ2
c

16πG

15gi
4π2g∗s

1

k2
BT

× 3nH̃in�
4/3
in

[
1 + 3H̃in(n + 1)

(
x0 − x0

in

)] 1
3 n−1
n+1

.

(3.86)

The relation (3.86) is a function of the temperature T and
the x0-coordinate. In order to express ηB as a function of tem-
perature only, we use the temperature dependent expression
for the energy density of relativistic particles (2.14), which
depends on temperature, as well as on the speed of light c
at a given moment. For this reason, we find it reasonable to
replace c3 in the denominator by the field �. By combining
the modified Eq. (2.14) with the Friedmann equation for a
flat universe:

H̃2 = 8πG

3
�−2/3 (ρm + ρ� + ρB) , (3.87)

where:

εm =ρm�2/3 = g∗
π2

30

k4
B

h̄3�
T · �2/3 , (3.88)
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ε� =ρ��2/3 = �4/3

8πG

(κ

2
H̃2

� − 3H̃ H̃�

)
, (3.89)

εB =ρB�2/3 = �4/3

16πG
λc H̃� J 0

B , (3.90)

we can find an approximate time–temperature relation in the
varying c models for the radiation dominated epoch. In order
to do so, we have neglected εB in (3.87) treating this term as a
small perturbation on the background of the main fluid, which
is radiation (similarly as we did in (3.81)). This leads to:

[
1 + 3H̃in(n + 1)

(
x0 − x0

in

)]−1/3

=
[
�

7/3
in H2

in

(
90h̄3g−1∗
8π3Gk4

B

) (
−3κ

2
n2 + 3n + 1

)
T−4

] n+1
n−6

.

(3.91)

The limits for the parameter n are as follows

n ∈
(

3 − √
9 + 6κ

3κ
,

3 + √
9 + 6κ

3κ

)
, (3.92)

for κ > 0, and

n ∈
(

−∞,
3 + √

9 + 6κ

3κ

)
∪

(
3 − √

9 + 6κ

3κ
,+∞

)
,

(3.93)

for κ < 0. For κ = 0, n > −1/3. Finally, we find that the
baryon asymmetry reads as

ηB = λ2
c

16πG

15gi
4π2g∗s

1

k2
BT

3nH̃in�
4/3
in

×
[
�

7/3
in H2

in

(
90h̄3g−1∗
8π3Gk4

B

)(
−3κ

2
n2 + 3n + 1

)
T−4

] 3−n
n−6

.

(3.94)

In summary, for the Moffat’s model of the varying speed
of light, c, we have found the parameter space, for which
the desirable asymmetry is possible for a given range of the
parameter n and the temperature TD (see the Fig. 6). We have
found a relation between n and the constant κ from (3.91).
The limits on the n values has been shown in the Table 2. We
have noticed, that the limits corresponding to the negative
and positive κ partially overlap and have decided to proceed
the calculation only for positive κ , even though there are no
observational or experimental bounds on its value. Neverthe-
less, for the chosen order of magnitude of the parameter n,
the influence of κ onto the final result is negligible. How-
ever, κ becomes more relevant, when bigger n is taken into
account. In order to estimate an order of magnitude of n,
we have assumed that any possible c variation would find its
manifestation in the variation of the fine structure constant

Fig. 6 The decoupling temperature, TD , as function of the parameter
n, in the model with varying c using the currently measured value of
the asymmetry, ηB 	 8.6 · 10−11, and for κ = 100. The thin line
corresponds to λc = 4 · 10−19 GeV−1, the middle line corresponds to
λc = 2 · 10−19 GeV−1, and the thick line to λc = 10−19 GeV−1. The
initial conditions are: ain = 10−25 and Hin = 108 GeV

Table 2 Limits for the parameter n for some specific values of κ

κ n

−1 (−∞, −1.5774) ∪ (− 0.4227, + ∞)

− 1
2 (−∞, −3.6330) ∪ (− 0.3670, + ∞)

0 (−1/3, +∞)

1 (−0.2910, 2.2910)

10 (−0.1769, 0.3769)

100 (−0.0723, 0.0923)

1000 (−0.0248, 0.0268)

10,000 (−0.0081, 0.0083)

1010 (−0.0248, 0.0242)

∞ 0

and thus it would become visible in the measurement of the
α-time variation. By comparison of the value of �α/α with
the ansatz (3.53) we have achieved the following expression
for n:

n = log1+zα

(
1 + �α

α

)
. (3.95)

Calculated limits on the parameter n have turned to be of the
order of ∼ 10−6. The corresponding temperature for baryo-
genesis is about 1016 GeV. However, the value of n does not
need to be necessarily compared with the results for time
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Fig. 7 The baryon to entropy ratio ηB (3.94) as a function of the param-
eter n (left) and the decoupling temperature TD (right) in the varying
c model. The dashed lines indicate the currently measured value of the
asymmetry, ηB 	 8.6 · 10−11. The plot on the left was made for the
three values of the decoupling temperature: TD = 0.5 · 1017 GeV (thin

left line), TD = 0.2 · 1017 GeV (middle line) and TD = 0.1 · 1017 GeV
(thick right line). The plot on the right was made for the three values of
the parameter n: m = 10−5 (thin left line), m = 5 · 10−6 (middle line),
and m = 2 · 10−6 (thick right). All plots were made for: ain = 10−25,
Hin = 108 GeV, λc = 10−19 GeV−1, and κ = 100

variation of α, and one could consider even a bigger change
of the speed of light. Our model favours the positive values
of n, and thus the increase of the speed of light. This is not in
the spirit of the varying speed of light models, which solve
the basic cosmological problems and stand as an alternative
to the inflation theories. In Fig. 7 we have shown the baryon
to entropy ratio ηB (3.94) as a function of the parameter n
for three possible values of the temperature TD (see the plot
on the left) and as a function of the temperature TD for three
possible values of n (see the plot on the right).

4 Results and conclusions

In this paper we have investigated the scalar fields for the
dynamical constants: the gravitational constant G, the fine
structure constant α, and the speed of light c, which, as we
have assumed, could drive the baryogenesis in the universe.
The spontaneous baryogenesis model was investigated, in
which the baryon number violating processes occur in ther-
mal equilibrium, while the Universe allows a period of CPT
symmetry breaking. We have formulated and solved the
dynamical equations for the scalar fields corresponding to
varying G, α, and c, acting as thermions. We have applied
some special ansätze for the scale factor for each of the fields,
as given in (3.19), (3.53), and (3.82), which related the scalar
fields with the evolution of the scale factor, and the result-
ing parameters q, m, and n which measured the degree of
variability of G, α, and c, accordingly. We have calculated
the cosmological equations and used them to find the rela-
tion between the time t and the temperature T in the radia-
tion dominated epoch. We have used the standard statistical

mechanics tools in order to introduce the temperature depen-
dence into the fields φ(G(x0)), ψ(α(x0)), �(c(x0)) (where
the coordinate x0 = ct), and in order to calculate the baryon
asymmetry ratio ηB of the net number density of baryons and
antibaryons to the entropy density of photons.

As a result of our calculations, we have obtained similar
conclusion as in the previous literature i.e. that varying G
can drive baryogenesis in the universe. Our main new results
(not yet considered in the literature) are obtained for vary-
ing fine structure constant α models, as well as for varying
speed of light c models. We have shown that in each of these
frameworks the current observational value of the baryon to
entropy ratio ηB ∼ 8.6 × 10−11 can be obtained for large set
of parameters q,m, n, as well as the decoupling temperature
TD , and the characteristic cut-off length scale λ. This means
that not only varying-G-driven baryogenesis is possible, but
also varying-α-driven and varying-c-driven baryogeneses are
admissible.

It is advisable to note that there exist models in which two
of the three considered in this paper constants vary simul-
taneously [36–39]. However, in the most interesting case of
varying G and α it has been shown that an overall evolution
of the universe is determined by G and follows Brans–Dicke
model so and extra influence of α on baryogenesis is not
expected to be large. It is then expected that similar small
effect of c-variability would remain in both varying G and
c models. The detailed quantitative considerations of such
models will be considered in some future work.
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