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Abstract We study the properties of black holes and naked
singularities by considering stationary observers and light
surfaces in Kerr spacetimes. We reconsider the notion of
Killing horizons from a special perspective by exploring
the entire family of Kerr metrics. To this end, we introduce
the concepts of extended plane, Killing throats and bottle-
necks for weak (slowly spinning) naked singularities. Killing
bottlenecks (or horizon remnants in analogy with the corre-
sponding definition of throats in black holes) are restrictions
of the Killing throats appearing in special classes of slowly
spinning naked singularities. Killing bottlenecks appear in
association with the concept of pre-horizon regime intro-
duced in de Felice (Mon Not R Astron Soc 252:197–202,
1991) and de Felice and Usseglio-Tomasset (Class Quantum
Gravity 8:1871–1880, 1991). In the extended plane of the
Kerr spacetime, we introduce particular sets, metric bundles,
of metric tensors which allow us to reinterpret the concept
of horizon and to find connections between black holes and
naked singularities throughout the horizons. To evaluate the
effects of frame-dragging on the formation and structure of
Killing bottlenecks and horizons in the extended plane, we
consider also the Kerr–Newman and the Reissner–Norström
spacetimes. We argue that these results might be significant
for the comprehension of processes that lead to the formation
and eventually destruction of Killing horizons.

1 Introduction

One of the most important exact solutions of Einstein vacuum
field equations is the Kerr metric, which in Boyer–Lindquist
(BL) coordinates can be expressed as

a e-mail: d.pugliese.physics@gmail.com
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It describes an axisymmetric, stationary, asymptotically flat
spacetime. The parameter M ≥ 0 is interpreted as the mass
of the gravitational source, while the rotation parameter
a ≡ J/M (spin) is the specific angular momentum, and J
is the total angular momentum of the source. The spheri-
cally symmetric (static) Schwarzschild solution corresponds
to the limiting case with a = 0. If the spin-mass ratio is
within the range a/M ∈]0, 1[, the spacetime corresponds
to a Kerr black hole (BH). The extreme black hole case is
defined by the relation a = M , whereas a super-spinner Kerr
compact object or a naked singularity (NS) geometry occurs
when a/M > 1.

The Kerr metric tensor (1) has several remarkably prop-
erties.

(i) The metric (1) is invariant under the application of any
two different transformations of the form PQ : Q →
−Q, where Q is one of the coordinates (t, φ) or the
metric parameter a: a single transformation leads to a
spacetime with an opposite rotation with respect to the
unchanged metric.

(ii) The Kerr solution is stationary and axisymmetric due to
the presence of the Killing fields ξt = ∂t and ξφ = ∂φ ,
respectively.
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An observer moving with uniform angular velocity along
the curves r = constant and θ = constant will see a space-
time which does not change at all (therefore, the covariant
components pφ and pt of the particle four-momentum are
conserved along the circular geodesics).1

(iii) As the metric is invariant under reflections with respect
to the equatorial hyperplane θ = π/2, equatorial trajec-
tories are confined in the equatorial geodesic plane.

For black hole and extreme black hole spacetimes, the
radii

r± ≡ M ±
√
M2 − a2, (3)

solutions of grr = 0, are the radii of the outer and inner
Killing horizons, whereas

r±
ε ≡ M ±

√
M2 − a2cos2θ, (4)

solutions of gtt = 0, are the outer and inner ergosurfaces,
respectively, with r−

ε ≤ r− ≤ r+ ≤ r+
ε . In an extreme BH

geometry, the horizons coincide, r− = r+ = M , and the
relation r±

ε = r± is valid on the rotational axis (i.e., when
cos2 θ = 1). In the Kerr BH spacetime, the lilling vector rep-
resenting time translations at infinity, ∂t , becomes null on the
outer ergosurface, r+

ε , which is, however, a timelike surface.
On the contrary, a lilling horizon is a lightlike hypersurface
(generated by the flow of a lilling vector) on which the norm
of a lilling vector vanishes. That is, the Kerr horizons are null
surfaces, S0, whose null generators coincide with the orbits
of an one-parameter group of isometries, i.e., in general there
exists a lilling field L, which is normal to S0.

Some additional properties of the Kerr spacetime include:

(iv) In the limiting case of the Schwarzschild spacetime
(a = 0), r = 2M is the lilling horizon with respect
to the Killing vector ∂t . In general, in the special case of
static (and spherically symmetric) BH spacetimes, the
event, apparent, and Killing horizons with respect to the
Killing field ξt coincide.

(v) The event horizons of a spinning BH are Killing hori-
zons with respect to the Killing field LH = ∂t +ωH∂φ ,
where ωH is the angular velocity of the horizon.

In this work, we extensively discuss the properties of the
Killing vector L = ∂t + ω∂φ in the case of NS geometries.
In BH spacetimes, this vector plays a crucial role in defining

1 We use geometrical units with c = 1 = G and the signature
(−,+,+,+), Greek indices run in {0, 1, 2, 3}. The four-velocity satis-
fies the condition uαuα = −1. The radius r has units of mass [M], and
the angular momentum units of [M]2, the velocities [ut ] = [ur ] = 1
and [uφ] = [uθ ] = [M]−1 with [uφ/ut ] = [M]−1 and [uφ/ut ] = [M].
For the sake of convenience, we consider a dimensionless energy and
an angular momentum per unit of mass [L]/[M] = [M].

thermodynamic variables. As we will see below, the veloc-
ity ω (and its limit ωH ) and the vector L (and its limit LH )
are important for defining horizons and establishing relations
between black holes and extreme black holes. In fact, it can be
shown that: (a) in the context of the rigidity theorem, ωH rep-
resents the BH rigid rotation. Stated differently, the (strong)
rigidity theorem connects the event horizon with a Killing
horizon. In fact, under certain conditions, the event horizon
of a stationary asymptotically flat solution (with matter sat-
isfying suitable hyperbolic equations) is a Killing horizon.
(b) The BH event horizon of this stationary solution is more-
over a Killing horizon with constant surface gravity (zeroth
BH law-area theorem – the surface gravity is constant on the
horizon of stationary black holes) [3,4]. (c) Finally, the sur-
face area of the BH event horizon is non-decreasing in time,
which is the content of the second BH law (the laws state
also the impossibility to achieve by a physical process a BH
state with surface gravity κ = 0.)

We note here that the surface gravity of a BH may be
defined as the rate at which the norm of the Killing vector
vanishes from the outside. (The surface gravity is related to
the acceleration of a particle corotating with the BH at the
horizon and it can be written as (SGKerr = (r+−r−)/2(r2++
a2)). It is, therefore, a conformal invariant of the metric).

Possibly, we could isolate the contribution of the rota-
tion in the expression of the surface gravity by compar-
ing it with the static (and spherically symmetric) metric of
Schwarzschild. In fact, the Kerr BH surface gravity can be
written as the combination κ = κs − γa , where κs ≡ 1/4M
is the Schwarzschild surface gravity, while γa = Mω2

H is
the contribution due to the additional component of the BH
intrinsic spin; ωH is, therefore, the angular velocity (in units
of 1/M) on the event horizon.

These laws, which depend also on the horizon angular
velocity, impose important constraints on any physical pro-
cess in the BH spacetime, but they also allow to distinguish
the static solution,a = 0, from the Kerr BH solution. The first
law of BH thermodynamics, applied to a Kerr BH spacetime,
actually relates the variation of the BH mass, horizon area and
angular momentum, including the surface gravity and angu-
lar velocity on the horizon, i.e., δM = (1/8π)κδA+ωH δ J .
In here, the term dependent on the BH angular velocity rep-
resents the “work term” of the first law, while the fact that the
surface gravity is constant on the BH horizon, together with
other considerations, allows us to associate it with the concept
of temperature. This aspect tends to emphasize the differ-
ence (also topological) between Kerr’s BH and its extreme
solution: in the extreme case, where (r± = M), it is easy
to see that the surface gravity is zero and, considering the
association with the temperature, there is TH = 0, with con-
sequences also with respect to the stability against Hawk-
ing radiation. Nevertheless, the entropy (or BH area) of an
extremal BH is not null [3–10]. (An analogue implication of
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the third law it is said that a non-extremal BH cannot reach
an extremal case in a finite number of steps.)

We investigate the properties of Kerr BHs and NSs from
the point of view of stationary observers. In particular, we
explore the characteristics of light surfaces, which corre-
spond to the limiting frequencies of stationary observers.
From the analysis of these orbital frequencies (and asso-
ciated orbits), we introduce the concept of Killing throats,
arising in NS spacetimes as the “opening” and disappear-
ance of Killing horizons. More precisely, the Killing throat
is a region bounded by a particular set of curves that we
identify with the frequency of a stationary observer, which
depends on the radial distance and the spin parameter a of
the source. We define a Killing bottleneck as a particular case
of a of Killing throat that appears in weak naked singulari-
ties (WNS). Thus, bottlenecks can be interpreted as throats
“restrictions” that characterize WNS . The concept of strong
and weak NSs depends on the value of the spin parame-
ter and has been explored in several works [11–18]. How-
ever, in general, they are also differently defined as strong
curvature singularities, for example, in [19]. Regarding var-
ious NSs properties and characteristics of the gravitational
collapse, possible formation and stability of naked singu-
larities as well as other analysis concerning observational
phenomena related to possible NSs existence, we refer also
to [20–33,37–44]. In this work, WNSs are characterized by
spin-mass ratios close to the value of the extreme BH. To
explore these NS effects and to compare BHs with NSs, it
is convenient to introduce the concept of “metric bundles”
and “extended planes”. A metric bundle is a curve on the
extended plane, i.e., a family of spacetimes defined by one
characteristic photon orbital frequency ω and characterized
by a particular relation between the metrics parameters. This
turns out to establish a relation between BHs and NSs in
the extended plane. All the metric bundles are tangent to the
horizon curve in the extended plane. Then, the horizon curve
emerges as the envelope surface of the set of metric bundles.
As a consequence, WNSs turn out to be related to a part of
the inner horizon, whereas strong naked singularities (SNSs)
with a > 2M are related to the outer horizon.

This work is organized as follows. In Sect. 2, we study
the main definitions and properties of stationary observers
and light surfaces in BH and NS Kerr geometries. Killing
throats and bottlenecks are the focus of Sect. 3. In Sect. 4,
we introduce the concept of metric bundles and discuss the
resulting connections between BHs and NSs. These results
are generalized to include the cases of the Kerr–Newman
and Reissner–Nordström spacetimes in Sect. 5. Conclud-
ing remarks and future perspectives follow in Sect. 6. This
article closes with two Appendices. The off-equatorial case
in the Kerr and Kerr–Newman geometries is considered in
Appendix A. In Appendix B, we study the areas of the hori-
zons and regions of the extended plane delimited by different

metric bundles. Throughout this work, we introduce a consid-
erable number of symbols and notations which are necessary
to explain all the details of the results we will obtain. For
clarity, we list in Table 1 the main symbols and their defini-
tions.

2 Stationary observers and light surfaces

Stationary observers have a tangent vector which is a space-
time Killing vector; their four-velocity is, therefore, a linear
combination of the two Killing vectors ξφ and ξt as:

dφ/dt = uφ/ut ≡ ω, or uα = γ (ξα
t + ωξα

φ ), (5)

with γ −2 ≡ −ε(ω2gφφ + 2ωgtφ + gtt ), (6)

where ω (a dimensionless quantity) is the (uniform) angular
velocity, while γ is a normalization factor (gαβuαuβ = −ε).

Because of the symmetries, the coordinates r and θ of a
stationary observer are constants along its worldline, con-
sequently a stationary observer does not see the spacetime
changing along its trajectory. Timelike stationary observers
have angular velocity bounded in the range

ω ∈]ω−, ω+[ where ω± ≡ ωZ ±
√

ω2
Z − ℘2,

℘2 ≡ gtt
gφφ

= gφφ

gtt
, ℘−2 ≡ gtt

gφφ
= gφφ

gtt
, ωZ ≡ − gφt

gφφ

,

(7)

(ε = +1).2 Zero Angular Momentum Observers (ZAMOs)
are defined by the condition LZAMO = 0 and have angu-
lar velocities ωZ , which depend on the spin. A ZAMO, well
defined in the ergoregion, corotates with the BH. ZAMOs
have interesting properties in the case of slowly spinning
naked singularities and certainly offer a particularly appropri-
ate and convenient description of the spacetime in the ergore-
gion – see for example [16,18,45–57]. Static observers are
defined by the limiting condition ω = 0 and cannot exist
in the ergoregion. The particular frequencies ω± provide an
alternative definition of the horizons. Since the horizons are
null surfaces, it should hold that ω+ = ω−, which is the lim-
iting angular velocity for physical observers corresponding
in fact to orbital photon frequencies. The quantity in paren-
thesis in the r.h.s. of Eq. (6) becomes null for photon-like
particles and the rotational frequencies ω±, as in Eq. (7). On
the equatorial plane, the limiting orbital frequencies are

ω± ≡ 2aM2 ± M
√
r2�

r3 + a2(2M + r)
,

ω±(r+) = ωZ (r+) = ωH ≡ a

2r+
≡ M

2ω0r+
. (8)

2 This equation corrects a typo in Eq. (8) of Ref. [18].

123



209 Page 4 of 31 Eur. Phys. J. C (2019) 79 :209

Table 1 Lookup table with the main symbols and relevant notations used throughout the article

ω± Limiting frequencies for stationary observers: Eqs. (7), (8)

ω0 = M/a Limiting frequency ω± at the singularity and frequency of the metric bundle: Eq. (9)–Sect. 4

L± Null Killing vector (generators of Killing event horizons): Eq. (10)

r±
s Light surfaces radii: Eq. (11)

ω±
H Frequencies at the horizons r±: Eq. (12)

r∓∓ Photon orbits with frequencies ω±
H at the horizons: Eq. (13)–Fig. 1

g±
ω Metric bundles in the extended plane πa : Sect. 4

a±
ω (r, ω; M) g±

ω in terms of the bundle frequency ω: Eq. (15)

a± Horizon curve in the extended plane: Fig. 8

r±
∂ (ω) closing radii of the metric bundle in π+

a (=πa for a > 0): Eq. (16)

ag Spin of metric bundle tangent to the horizons in π+
a : Eq. (17)–Fig. 13

ap Bundle origin, i.e., ag(a0) = ag(a′
0) with a′

0 = ap ≡ 4M2/a0: Figs. 14, 15, 16; Tables 2 and 3

Horizons relations I ω−1
0 ≡ a±

0 /M = 2r±(ag)
ag

≡ ω−1
H (ag), ω+

H (rg, ag) = ω0 = Ma−1
0 , ω−

H (r ′
g, ag) = ω′

0 = M/a′
0 r

′
g ∈ r−

(r+ = rg , r− = r ′
g): Fig. 13

Horizons relations II ω′
0 = 1

4ω0
, ω+

Hω−
H = 1

4 , (a+
0 (ag)a

−
0 (ag) = 4M2), a±

0 /M = 2r±(ag)
ag

where a = a0 and a = ap: Fig. 14

SNS (= SNS+ ∪ SNS−) strong naked singularities a0 > 2M , SNS+ for a0 > 4M SNS− for
a0 ∈ [2M, 4M[: Fig. 13

WNS Weak naked singularities a0 ∈]M, 2M[: Fig. 13

BH = BH+ ∪ BH− BH+ for a ∈ [a1
g, M], a1

g = 3/4M and BH− for a ∈ [0, ag1 ]: Fig. 13

Left region Fig. 13 a0 ∈ [0, 2M]
Right regionFig. 13 a0 > 2M

Up-sector Fig. 13 ag > a1
g

Down-sector Fig. 13 ag < a1
g

�± Second frequency of a metric bundle: Eq. (22)

a(�)
ω (ω

�
H ) Metric bundles parameterized for the tangent point ag : Eq. (23)

atangent (r) Tangent curve to the horizon in terms of rg : Eq. (24)

(rrealg , r�
g , r∓

g ) Solution of the tangency condition ag = a±: Eq. (25), Fig. 17

(Q±
ω )2 Metric bundles in terms of the charge Q: Eq. (35)

The following limits are valid

lim
r→∞ ω± = 0, lim

a→∞ ω± = 0, lim
r→0

ω± = ω0 ≡ M

a
. (9)

The limit a → ∞ is used to formally explore the behavior in
the strong NS singularity regime, for a given constant value
of M , and more generally in the limit a � M . As already
mentioned in Sect. 1, the Killing vector

L± ≡ ξt + ω±ξφ (10)

can be read as generator of null curves (gαβLα±Lβ
± = 0) as

the Killing vectors L±, null at r = r+, are also generators of
Killing event horizons.

The expression (7) for the frequency of a stationary
observer can be considered as an equation for the radii of
the light surfaces r±

s . The solutions are then given as func-
tions of the frequency ω and can be written as [18]

r−
s

M
≡ 2β1 sin

( 1
3 arcsin β0

)
√

3
,

r+
s

M
≡ 2β1 cos

( 1
3 arccos(−β0)

)
√

3

where β1 ≡
√

1

ω2 − 1

ω2
0

, β0 ≡ 3
√

3β1ω
2

(
ω
ω0

+ 1
)2 . (11)

3 Killing throats and bottlenecks

The concept of Killing throats emerges through the analysis
of the radii r±

s (ω, a) (the frequencies ω±(r, a)) with respect
to the orbital frequency ω (the radius r ) of light-like parti-
cles – see Figs. 2 and 3. A Killing throat in NS geometries
is a connected region in the r − ω plane, which is bounded
by r±

s (ω, a) or equivalently ω±(r, a), and contains all the
stationary observers allowed within the limiting frequencies
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Fig. 1 Left panel: frequencies ω± for fixed values of the spin a/M
for BHs and NSs. The coalescence of the Killing horizons r+ and r−
in the extreme black hole geometries and the emergence of a Killing
throat and a Killing bottleneck in the NS geometries are clear – see also

Figs. 2, 11, 27, 26 and 28, and center panel: killing horizons, r±, and
radii (r−− , r++ ) as given in Eq. (13). Right panel: frequencies ω± in r±
and (r−− , r++ ) as functions of a/M

]ω−, ω+[. Conversely, a BH Killing throat is either a discon-
nected region in the Kerr spacetime (in a sense similar to the
concept of a path-connected space) or a region bounded by
non-regular surfaces in the extreme Kerr BH spacetime. A
Killing bottleneck in a NS spacetime is a narrowing of the
Killing throat which appears only for specific naked singu-
larities and involves a narrow range of frequencies and orbits
– Fig. 1. The limiting case of a Killing bottleneck occurs in
the extreme Kerr spacetime, as seen in the BL frame, where
the narrowing actually closes3 at the BH horizon r = M .

More generally, the Kerr horizons determine the following
frequencies:

ω±
H ≡ a

2r±
≡ ω±(r±) with ω+

H < ω−
H for a > 0

and ω±
H = 1

2
for a = M. (12)

It should be noted then that while the horizons radii are func-
tions of the metric parameters only, meaning that there is
only one frequency, ω±

H , on the horizons r±, respectively,
the Killing bottlenecks depend on both frequency and radius,
corresponding to the fact that the throat never closes, but in
the limit of the extreme Kerr spacetime.

Considering again the horizons frequencies ω±
H , we intro-

duce the radii r∓∓ representing the set of photon orbits with
frequencies ω±

H at the BH horizons

r−− : ω−(r−− ) = ω−(r−) = ω−
H where

r−− = 1

2

⎛
⎝

√
32M3r−

a2 − a2 + 6M
√
M2 − a2 − 22M2 − r−

⎞
⎠

(13)

r++ : ω+(r++ ) = ω+(r+) = ω+
H , where

3 Killing throats and bottlenecks, represented Figs. 1 and 2, were
grouped in [34] in structures named “whale diagrams”, considering
the escape cones, particles motion and collisionals problems in the Kerr
and Kerr–Newman spacetimes – see also [35,36].

r++=1

2

⎛
⎝

√
32M3r+

a2 −a2 − 6M
√
M2 − a2 − 22M2 − r+

⎞
⎠ ,

(14)

with r−− < r− < r+ < r++ – see Fig. 1. In Sect. 4, this
property is displayed in a different context, showing a close
connection between BHs and NSs. Moreover, the Killing
horizons, r±, are defined as the tangent (envelope surfaces)
of the curves defined by the conditions ω±(r, a) = constant.
The existence of r++ > r+ implies that an observer could
eventually measure the frequency of the outer horizon ω+

H on
the equatorial plane, while no information can be obtained
from r−− for the inner horizon frequency ω−

H . In this sense,
we may call this property as inner horizon confinement. This
situation can be used to distinguish between slow rotating
BHs and fast spinning BHs since the distance (r++ − r+)

decreases with the spin. The existence of these radii may be
related to the bottleneck presence.

Figure 2 shows the formation of the Killing throat as the
spin of the naked singularity varies. The emergence of the
Killing bottleneck in terms of the frequency (ω − r plane)
and of the radius (r −ω plane) is evident in the case of weak
naked singularities, i.e., slow spinning singularities. We spec-
ify below the limiting spin values which define weak naked
singularities. To evaluate the effects of the spacetime drag-
ging on the formation of a Killing bottleneck, we investigate
in Sect. 5 the Kerr–Newman geometry, the limiting static case
of the Reissner Nordström geometry, and the off-equatorial
case.

Three distinct phases are significant in the process of for-
mation of bottlenecks:

(1) Coalescence of the Killing horizons, which occurs in
the extreme Kerr BH solution;

(2) Formation of the Killing throat and emergence of the
bottleneck in weak NSs;

(3) Disappearance of the Killing bottleneck in strong NSs.
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Fig. 2 Equatorial plane of the Kerr spacetime. Killing throat: zoom of
the Killing bottleneck. Upper panels: the plane ω-r/M with plots of ω±
for different spins a/M . Left upper panel: light surfaces for different
BHs to NSs. As a/M changes for weak naked singularities, the nar-
rowing of the light surfaces is shown explicitly. Right upper panel: light
surfaces in the bottleneck and the corresponding relevant radii. Bottom

panels: the plane r/M−ω with plots of the radii of stationary observers
r±
s for different spins a/M . Center and right bottom panels: zoom on

the Killing bottleneck and relevant radii. The radii r±
I I I (solutions of

∂3
r ω± = 0) are shown as functions of the spin a/M . The radii r∂ and
rβ are defined in Eqs. (16) and (B1), respectively

The analysis carried out in Figs. 2 and 5 suggests that the
Killing bottlenecks can be defined through the conditions
r±
I I I : ∂3

ωr
±
s = 0 and ω±

I I I : ∂3
ωr

±
s = 0. On the other hand,

the radii r±
I I : ∂2

ωr
±
s = 0 and, analogously, ω±

I I : ∂2
r ω± = 0

characterize the curvatures of the curves ω± and r±
s .

Killing bottlenecks, identified in [18] as ripples in the r−ω

plane (see Figs. 3, 4), were interpreted in the BL frame as

“remnants” of the disconnection between the Killing throat
present in BH-geometries and the singular bottleneck of the
extreme BH. The radii r±

I I I and the frequencies ω±
I I I , as

shown in Fig. 5, define closed and limited surfaces. This
implies that a Killing throat can always exist, but a Killing
bottleneck appears only for certain frequencies and values
of the dimensionless spin a/M . In fact, r−

I I I is defined for

123



Eur. Phys. J. C (2019) 79 :209 Page 7 of 31 209

Fig. 3 Plots of the surfaces r±
s (in units of mass) versus the frequency

ω for different spin values a/M , including BH and NS geometries. The
surfaces r±

s are represented as revolution surfaces with height r±
s (ver-

tical axes) and radius ω (horizontal plane). Surfaces are generated by

rotating the two-dimensional curves r±
s around an axis (revolution of

the function curves r±
s around the “z” axis). Thus, r = constant with

respect to the frequency ω is represented by a circle. The disks in the
plots are either r = M , r = r±(black) or r = r+

ε = 2M

Fig. 4 Plots of the frequency surfaces ω±(r, θ) as functions of the radial distance r/M in Cartesian coordinates (x, y) for different spin values a,
including BHs and NSs

Fig. 5 Center-right panels. The radii r±
I I and r±

I I I , solutions of ∂2
r ω± =

0 and ∂3
r ω± = 0, respectively, are shown as functions of the spin a/M .

Black regions correspond to r < r±. Left panel: The frequencies ω±
I I

and ω±
I I I , solutions of ∂2

ωr
±
s = 0 and ∂3

r r
±
s = 0, respectively, are

shown as functions of the spin a/M . Regions bounded by the horizons
frequencies ω±

H are black shaded

NSs with spin a ∈]M, a f ], where a f = 1.840M . On the
other hand, r+

I I I and ω+
I I I are not closed and ω+

I I I tends to
the horizon frequency ω−

H > ω+
H for very small spins. This

means that the Killing bottleneck actually survives only for
a ∈]M, a•], where, r−

I I I = r+
I I I at a• = 1.668M < a f .

However, the bottleneck frequencies satisfy the inequalities
ω−
I I I < ω+

H < ω−
H < ω+

I I I . Increasing the spin a/M , at
constant mass, a bending of the frequency ω− appears.4

4 Note that the Killing bottleneck and Killing throat inherit some of
the properties of the Killing vectors, particularly, regarding confor-
mal transformations of the metric or vectors. Consider a Killing throat

There are several notable radii associated with the fre-
quencies ω± and light surfaces r±

s , which are related to the
extremes and saddle points of the curves in the region �+

ε

(see [18]). The function �ω ≡ �±ω = ω+ ± ω− is consid-
ered in Figs. 6 and 7. The radius r�, solution of ∂r�ω = 0,

defined by two Killing vectors (ξi , ξ j ). The linear combination aαξα

defines a Killing vector and we can define a Killing field up to a confor-
mal transformation. In other words, L = ξt + aφξφ identifies a Killing
throat up to a conformal transformation. The simplest case is when
one considers a conformal expanded (or contracted) spacetime where
ξ̃2 ≡ g̃(L , L) = �2g(L , L). This holds also for a conformal expanded
Killing tensor L̃ ≡ �L.
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Fig. 6 Left and center panels: curves ω± = constant in different geometries with spacetime dimensionless spin a/M . Horizons are black thick
lines. Right panel: curves �−ω ≡ ω+ − ω− = constant and notable radii – see Fig. 5

Fig. 7 Right panel: plane ω − r for a NS with spin a = 1.001M .
The plots are for the frequency difference �−ω ≡ ω+ − ω−, the sum
�+ω ≡ ω+ + ω−, and the killing bottleneck for the surfaces ω±. The

radii r−
� and critical points of the curves ω± are also shown. Note the

role of the static limit r+
ε and the r−

� in the bottleneck definition. Right
panel: curves ω± on r−

� , i.e., solutions of ∂r�
−ω = 0

clearly shows the presence of closed surfaces for r±
I I I and r±

I I ,
and provides a characterization of the Killing bottleneck. An
analysis of ω± and �ω in Figs. 6 and 7 shows the emergence
of horizons as the envelope surface in the plane r − a of
the limiting frequencies ω±. This important aspect will be
addressed in details in Sect. 4, revealing the role played by
the Killing horizons in BHs–NSs connections.

4 Unveiling BHs–NSs connections

In this section, we explore the entire parameterized family
of Kerr solutions with a/M ≥ 0. To this end, we introduce
the concept of extended plane πa , where the entire collec-
tion of metrics of a parametrized family of solutions can be
considered.

We may say that a quantity Q(a) in the plane πa induces a
Q− a realization of the extended plane, where a is a param-
eter that characterizes the entire family of solutions. For the
case considered in this work, a is the dimensionless spin
parameter. A special and simple example of an extended
plane realization is given in Fig. 8, where we investigate
constant frequency surfaces defining families of spacetime

geometries that we call “metric-bundles”, g±
ω , labeled by a

frequency parameter ω = constant. Such definitions are set
from the properties of stationary observes and their limiting
frequencies ω±. In the extended plane, naked singularities
and black holes can belong to the same metric bundle. In the
extended plane of Fig. 8, BHs horizons r± correspond to the
spin-curve a±(r) ≡ √

r(r − 2M); we shall see that in such a
plane the BHs horizons a±(r) define properties for all possi-
ble Kerr geometries, including BHs and NSs, that unveil an
interesting connection between BHs and NSs.

Metric bundles g±
ω

Here, we specify the idea of metric bundles for the Kerr
family of solutions. Solving Eq. (8) for the spin a, we obtain
the following two quantities

a±
ω (r, ω; M) ≡

2M2ω ±
√
r2ω2

[
M2 − r(r + 2M)ω2

]

(r + 2M)ω2 ,

(15)

which are plotted in Figs. 8 and 9 as functions of r/M , for
different values of the frequency ω. Note that in the region
r > r+

ε , negative orbital frequencies are possible because
they are associated to the retrograde (counterrotating) motion
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Fig. 8 Spins a±
ω versus r/M for different frequencies. The black region is for r < r+ and r+ is the BH outer horizon. See also Fig. 9 for a 3D

representations of these regions

Fig. 9 Kerr geometries: surfaces a±
ω (in units of mass) versus the radius

r/M for different frequencies ω, including BH and NS geometries –
see also Eq. (15). 3D representations of a±

ω versus r/M for different
frequencies – see also Fig. 8. Each surface is a metric bundle gω for a
fixed value of ω0 = constant. The corresponding metric bundle origin
is a0 = M/ω0. The surfaces a±

ω are represented as revolution surfaces
with height a±

ω (vertical axes) and radius r/M (horizontal plane). Sur-
faces are generated by rotating the two-dimensional curves a±

ω around
an axis (revolution of the function curves a±

ω around the “z” axis). Thus,

a = constant with respect to the radius r/M is represented by a circle
under this transformation. The disks in the plots are either a = M or
r = r+

ε = 2M . The surfaces a±
ω are green and pink colored, respec-

tively (as mentioned in the legend). Horizon surfaces determined by
a± = √

r(2M − r) are gray surfaces. For each fixed frequency ω = ω

there is an associated spin ā ≡ ω̄−1 (see the discussion in Sect. 4). In
the BH range, the surfaces a±

ω are in the region r < r−, where r− is the
inner horizon

with respect to the central object; this fact implies the possi-
bility of negative values of a±

ω for ω > 0 – see Fig. 8. How-
ever, in this section, we restrict our analysis to the ergore-
gion �+

ε , where a > 0 and ω > 0–see Figs. 8 and 9. Each
spacetime of the Kerr family is represented (restricted to the
equatorial plane) in the extended plane of Fig. 8 by a constant
surface a±

ω /M = constant (horizontal lines in Fig. 8).
The metric bundles gω ≡ g±

ω are defined by the curves
a±
ω

∣∣
ω

of constant frequency ω in πa– Fig. 8. Each gω̄ =
a±
ω

∣∣
ω̄

for a fixed frequency ω̄ is represented by closed and

bounded curves which are continuous almost everywhere in
πa . Below, we will discuss extensively the properties of these
curves.

The bundles gω̄ contain an (almost) continuum and infinite
set of metric parameter values a/M . Each value of a/M sets a
specific Kerr geometry. From Fig. 8, it is clear that eventually
some bundles contain both BHs and NSs spacetimes, others
define only BHs, while none of the bundle is constituted by
NS only. In fact, all the metric bundles are tangent at least in
one point to the horizons a±. Thus, from the quantities (15)
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Fig. 10 Left panel: regions a±
ω > M (NS) and a±

ω ∈ [0, M] (BH)
versus r/M . The ergoregion �+

ε , the NS and the BH regime are shown.
Right panel: �−aω ≡ a+

ω − a−
ω = constant in the plane r − ω. The

arrows indicate increasing values of �−aω. The curve a = M and r∂ (ω)

are shown. Inside panel: The frequency ω+
∂ , spins a± = √

r(r − 2M),
which define the BHs horizons and a+

ω∂
defined in Eq. (16) as functions

of r/M

an alternative definition of BHs Killing horizons r± emerge.
Indeed, from Fig. 8, it follows that the horizons a± arise as
the envelope surfaces of the curves a±

ω (r), i.e., the metric
bundles gω = a±

ω

∣∣
ω

in πa . This will be a crucial property of
the metric bundles with significant consequences that allow
us to connect NSs to BHs in the extended plane. In fact, since
the curve a± is tangent to all metric bundles gω, the (inner
and outer) horizons contain all the frequencies ω defining
each metric bundle and, therefore, describing both NSs and
BHs in the extended plane.

From Fig. 8, it follows that a metric bundle has its origin
a0 on the vertical axis r = 0 of πa and closes on the tangent
point to a±. The closeness of the metric bundles is due to the
spacetime rotation. To investigate the solutions (15), which
define the closed bundles, we solve the condition a+

ω = a−
ω

and find

a+
ω = a−

ω on
r±
∂ (ω)

M
= ±

√
ω2 + 1

ω
− 1

where a±
ω (r∂ ) ≡ a∂ = 2ωr∂ and

a+
ω∂

= 2M
√
r√

r + 2M
= 2rω+

∂ where ω+
∂ = M√

r(r + 2M)
.

(16)

The frequency ω+
∂ of Eq. (16) is a solution of the equation

r+
∂ = r (see Fig. 10); the function ω+

∂ (r) is, therefore, the fre-
quency associated to the orbits r+

∂ , where a+
ω = a−

ω defines
the metric bundle. In fact, ω+

∂ (r) does not depend on the
spacetime spin because the information on the correspond-
ing geometry can be extracted from πa through r+

∂ , i.e., from
the condition a+

ω = a−
ω . Consequently, ω+

∂ is a function of
the radius r = r+

∂ . The pairs (r+
∂ , ω+

∂ (r)) identify the cor-
responding spin origin a0 (also origin of the metric bundle),
which is defined by the frequencies ω+

∂ (r) and a+
ω = a−

ω at
r+
∂ – Fig. 10. Asymptotically, for very large values of r/M ,

the value ω+
∂ = 0 is approached as shown in Fig. 8, where

a+
ω = a−

ω is valid on the line a = 0, that is, approaching the
limiting geometry of the static and spherically symmetric
Schwarzschild spacetime.

We note that r−
∂ is negative for positive values of the fre-

quency. As we are restricting our analysis in this work to
the case ω > 0, we shall not consider r−

∂ ; nevertheless, an
analysis of the case ω < 0 would, in fact, provide addi-
tional information about the spacetime structure even in the
equatorial plane. A very small ω+

∂ , on the other hand, corre-
sponds to a very large (origin) spin a0 = M/ω. Note that the
spin a0 corresponds to the frequency ω0 = M/a, which was
introduced in Eq. (8) by considering the behavior of the sta-
tionary observer frequencies near the singularity r = 0; this
is of importance in NS geometries as described in Sect. 3. The
properties of this special frequency ω0 have also been exten-
sively discussed in [18]. More generally, as noted in Sects. 2
and 3, the dimensionless spin parameter a/M is related to
the quantity M/ω though the frequencies of the light surfaces
(see [18]). Then, the function a+

ω∂
(r) in Eq. (16) is obtained as

a±
ω (r, ω+

∂ ). As shown in Fig. 10, the condition a+
ω∂

(r) = a±
is valid only at the spacetime singularity r = 0; otherwise,
a± < a+

ω∂
(r) < 2M , while the condition a+

ω∂
(r) = 2M (a

NS) is reached asymptotically for large values of r/M .
Note that the asymptotic limit of a+

ω∂
(r) = 2M is relevant

as it corresponds to a metric bundle g±
ω at constant frequency

ω = 0.5, which defines the point of the envelope corre-
sponding to the extreme Kerr BH solution a = M . Figure 12
refers to the analysis of Fig. 8 and sketch the correspondence
between BHs and NSs derived from the analysis of a±

ω . The
envelope a± of the a±

ω curves is defined as the set of points
(a/M, r/M) for which ∂ωa±

ω = 0, i.e., as the curve tangent
to all a±

ω or also as the boundary of the region filled by the
curves a±

ω . Then, small changes of a and shifts along the
orbit radius r leave ω almost constant as a±

ω are continuum
functions.
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Fig. 11 Left panel: radii {r�, rβ, r∂ , rν , rπ } an the spin a∂ , according
to the Eqs. (B5), (16) and (B1), as functions of the frequency ω. Left
panel: Spins a±

ω = constant given in Eq. (15) in the plane r/M −ω. Coa-
lescence of the Killing horizons r+ and r− in the extreme black hole

geometries and the emergence of a Killing throat and Killing bottleneck
in the NS geometries are shown – see also Figs. 1, 2, 27, 26 and 28.
Here �±a = a+

ω ± a−
ω . The radius r∂ satisfies the equation �−a = 0.

The radii r� ≡ r±
� : ∂r�

±a = 0, and {rβ, rν , rπ } are limiting radii

Fig. 12 Schematic representation of the BHs–NSs correspondence.
See also the ag(a0) function of Fig. 13. Right first panel: The spin
a = 2M/ω between the planes a = 0 and a = ∞– cf. Eq. (12). Third
and fourth panels: Representation of the BHs–NSs correspondence. An

own-up-arrow indicates the relation NS–BH, defining the outer horizon
r+. An up-down arrow determines the inner horizons, which are totally
included in the BH. The limiting cases a = 0, a = M , a = 2M and
a = ∞ are also shown

The relation between the radius r±
∂ , the spin a±

∂ and fre-
quencies ω± has to be confronted with Eq. (12) for the fre-
quencies ω±

H at the horizons and radii r± of the BH Killing
horizons. These quantities play an important role also for the
Killing bottleneck emergence considered in Sect. 3, as the
surfaces a±

ω (ω) = constant are related to the solutions ω±(a)

of Eq. (8) and shown in Fig. 11. The relation r±
∂ ω = a±

ω /2
of Eq. (16) is also used in Fig. 12 to unveil some BHs and
NSs properties: The points on the lines a0 = constant for
a0 ∈]M, a•] lead to the Killing bottleneck emergence of
Fig. 11.

BHs and NSs in metric bundles gω

As discussed above, a metric bundle gω can comprise only
BHs or BHs and NSs. Moreover, the horizons describe BHs
and NSs in the extended plane. In the remaining of this sec-
tion, we describe this last aspect and the BHs-NSs relation
more closely.

Firstly, Fig. 10-left represents BHs and NSs in the ω − r
plane. The plane is divided into regions, where the metric
bundles gω include BHs or NSs; there are regions with only
BHs or NSs and transition regions that cross different sec-
tions and are connected to Killing horizons and bottlenecks
– see also Fig. 11. A special transition region is, for example,
around the extreme BH horizon r = M with frequency value
ω = 1/2, which corresponds to the extreme Kerr BH.

We concentrate on the restricted π+
a ⊂ πa plane deter-

mined by a ≥ 0 in Fig. 8. The restriction of the extended
plane πa to π+

a exploits the symmetry by reflection around
the axis a = 0, where negative origins of metric bundles
build up the horizons −a± < 0. The plane has the follow-
ing remarkable sections: PS , PL, P�, PH, and P⊗. The
line PS = (r = 0, a = constant) includes BHs and NSs.
PS represents the collection of all origins a0. A variation of
the dimensionless spin of the singularity (at r = 0) corre-
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sponds to a variation of a0 in PS . This line also represents
the singularity frequencies ω0 = M/a0. Moreover, we define
PL = (r∂ , a∂ ) and the set PH = (a±, r) for the Killing
horizons. Curves a±

ω at constant ω closes on PL and have
origins in PS . The line P� = (a = 0, r) describes the lim-
iting case of the Schwarzschild solution. P� crosses PH in
r = 0 and r = 2M . Finally, the set P⊗ = (a = M, r)
describes the extreme Kerr spacetime and crosses PH at
a± = M and r = M . The collection of all the points
aω = constant generates the light-curves shown in Fig. 11,
where the Killing bottleneck and Killing throat emerge at
aω/M > 1.

According to Fig. 8, metric bundles can be classified in
two classes. (1) The first class includes the curves a±

ω tangent
to r−, including those bundles which are “entirely” contained
in the BH sector of π+

a , i.e., a ∈ [0, M] and r ∈ [0, r−]. (2)
The second class includes metric bundles tangent to the outer
horizon r+, containing BHs and NSs in the same bundle.
These two classes are separated by the limiting bundle g±

ω

with origin a0 = 2M and tangent to the maximum of a±; that
is, the point in π+

a with r = M , for a = M and frequency
ω = 0.5, describing the extreme Kerr spacetime. Bundles
with origins in the BH sector are completely contained in
an “inaccessible” region between the singularity, r = 0, and
the inner horizon r−. Bundles with origin in the the naked
singularity sector a > M comprise BH and NS geometries,
which are, therefore, related because they are contained in
the same metric bundle. (Notice that the definition of g±

ω ,
through the stationary observes definition, provides a BH-
NS relation). The case of very strong NSs (very large a/M ,
asymptotic value a ≈ +∞) corresponds to the limiting point
r+ ≈ 2M and a ≈ 0 – see Fig. 8. This suggests that the NS
sector is closely related to the BH sector. We explore this
connection more deeply below.

The horizons as an envelope surface of the metric bundles
An important consequence of the approach presented here

is that it allows us to establish a relation between BHs and
NSs. In fact, the outer horizon in π+

a emerges as an envelope
surface of metric bundles with only NSs origins. That is, the
BH outer Killing horizon r+ relates a BH with a ∈ [0, M]
with a NS with a ∈]2M,∞]. The inner horizon in π+

a can
be constructed by metric bundles with NS and BH origins.
Viceversa, the BH horizons are tangent to all the metric bun-
dles. All the BHs and NSs frequencies ω± are, therefore,
related to the horizon frequency ωH , and all horizon frequen-
cies are the limiting orbital photon frequencies in NS and BH
spacetimes – Fig. 8. As the horizon is tangent to all the metric
bundles, each metric bundle is defined by one frequency ω,
which coincides with the horizon frequency ωH on the tan-
gent point in the extended plane. Frequencies ω in (15) are
actually the limiting frequencies ω±. It follows that the met-
ric bundles, connected the singularities frequencies ω0, are

defined by the origins of the metric bundles and the horizon
frequencies ωH .

Remarkably, the construction of the inner horizon r− is
confined to metric bundles contained entirely in the BH sec-
tor. This fact could lead to important consequences, when
considering the collapse towards a BH and the process of
formation of the inner horizon. These metric bundles are
all confined in the π+

a region r ≤ r− and a ≤ M . This
implies that the inner horizon r−(ā) of a BH with spin ā is
related to a metric bundle with origin a0 in the BH or WNS
(a ∈ [M, 2M]) regions, while the outer horizon r+(ā) is
related to a NS metric bundle.

Before continuing, it is convenient to return to the concept
of metric bundle, as shown in Fig. 8, and analyze three par-
ticular curves in detail: (1) the horizontal lines a = constant
of πa ; (2) the vertical lines r = constant and; (3) the curves
a± corresponding to horizons.

(1) The horizontal lines a= constant
For a BH or a NS with a0 ∈ PS , there are two curves

a±
ω of the bundle, which are tangent at a point p ∈ PH on

the horizons. Each metric bundle g±
ω (a0) is associated to a

constant frequency, ω0 = M/a0, defined by the bundle origin
a0. Considering a bundle, there is a pair of points p1(a) =
(a, r1(a)) and p2(a) = (a, r2(a)) with a = constant and
r1(a) < r2(a), which are located respectively on the two
curves of the bundle. A special case is the pair of points
present on the origin line, PS , where r1(a0) = r2(a0) = 0.
Also the horizons PH for the extreme Kerr spacetime are
special. Note that, in general, the condition r1(a) < r2(a)

on the horizon for a = aH ∈ a±(r) leads to Eq. (13). On
the orbits (r1(a), r2(a)), light-like orbital frequencies ω± are
equal to ωa(r1) = ωa(r2) = M/a, where ωa ∈ (ω+, ω−).
There are two special geometries associated to the closure
points PS and PH: PS represents the singularity r = 0 with
ωa(0) = ωa(0) = M/a, corresponding to a spacetime with
spin a. Moreover, the second special geometry is always a
BH, whose (inner or outer) horizon has the frequency ωH =
M/a, i.e., the frequency of the bundle. We investigate the
spin ag of this specific spacetime below.

We note that metric bundles cross each other in π+
a . This

means that, in a fixed spacetime with a fixed radius, there are
two limiting frequency values ω±. Therefore, the maximum
number of crossing points between metric bundles is two.
Consequently, there are two crossing metric bundles with
origins at a = 1/ω±, respectively.

(2) Vertical lines r = constant
Let us now focus on the vertical lines in π+

a and the inter-
sections on each metric bundle. For a fixed orbit r , there are,
in general, two Kerr geometries corresponding to the spins
a1(r) < a2(r) of the same bundle. In addition, there are
the following limiting cases: 1. At r = 0 there is an infi-
nite number of origins, where a1(0) = a2(0) on a bundle.
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2. The point rt is the tangent point of the vertical line to
the bundle, satisfying the condition a+

ω (rt ) = a−
ω (rt ) – see

Eq. (16) and Fig. 10. The condition r+
∂ = r± is satisfied only

in special geometries aR . In general, for r ∈]0, r+
∂ [, there are

two geometries a1 < a2, corresponding to two BHs or one
BH and one NS. This implies that at a fixed r , there are two
geometries (a1, a2) with frequencies ω = 1/a. The case of
the geometries identified in the extended plane by the vertical
lines will be clarified at the end of this section because it is
necessary to consider the tangency conditions as shown in
Fig. 17. With respect to this property, a1 < a2, there are two
exceptions represented by the metric bundles with vertical
lines tangent to the horizon. There are two asymptotic cases,
where a1 = a2; these cases with respect to the horizon points
(a = 0, r = 0) and (a = 0, r = 2M) correspond to the limit
of the Schwarzschild spacetime – Fig. 17. In general, a verti-
cal line r = r̄ on a metric bundle gω0 defines two geometries
with ω+ = ω0 and ω− = ω0. More details on this point will
be addressed at the end of this section. In other words, this
property relates limiting frequencies of different spacetimes.
This result is in agreement also with the results presented in
Sect. 3.

(3) The horizon surfaces a±
All the metric bundles have the frequencies ωH = 1/a±

at the horizon in the extended plane. As the metric bundle
frequency ω0 is also a limiting photon orbital frequency ω+
or ω− and as all frequencies ω0 represent also the horizon
frequency ωH , then the limiting photon frequencies ω± on
an orbit r in all the spacetimes a ∈ [0,∞[ are the horizons
frequencies ωH in the extended plane. Viceversa, the set of
the horizon frequencies ωH in the extended plane is the col-
lection of all the limiting orbital photon frequencies ω± in
any BH or NS spacetime. This issue will be discussed in
detail below.

BHs–NSs correspondence
The relation between BHs and NSs can be formalized by

introducing the functions ag(a0) and aR(a0) of the origin a0

as follows

∀ a0 > 0, ag ≡ 4a0M2

a2
0 + 4M2

where ag ∈ [0, M]
and lim

a0→0
ag = lim

a0→∞ ag = 0, ag(a0 = 2M) = M,(17)

and aR(a0) ≡
√

4
√

(a0 + M)MM − (a0 + 4M)M .(18)

The behavior of these functions is plotted in Fig. 13. For
a fixed value of the origin a0, the function ag(a0) defines
univocally the outer r+ or the inner r− horizon. This relation
includes the Schwarzschild limiting case, which corresponds
to the limit a/M → +∞, and the extreme Kerr spacetime,
which is connected with the naked singularity value a = 2M
– see also Fig. 12. More precisely, ag(a0) is the solution of
the equations a±

ω (r±, ω0) = a, where ω0 = M/a0 – while

Fig. 13 Plots of the spins ag and aR defined in Eq. (17) as functions of
the origin a0/M . BH and NS regions are gray shaded. ag is a represen-
tation of the BHs–NSs correspondence – see also Fig. 12. The sectors
and regions corresponding to strong naked singularities (SNS) and weak
naked singularities (WNS) are explicitly shown (cf. definitions given in
Sect. 4). Here a−

0 = M , a+
0 = 4M : ag = a+

g , a1
g = (3/4)M = ag(a

−
0 )

aR(a0) is the solution of the equations r∂ (a0) = r±, provid-
ing information about the orbits where the curves a±

ω close
at the horizons. The analysis of off-equatorial and charged
generalizations considered in Sect. 5 reaffirms this result.
According to Fig. 8, each point rH on the horizon is univo-
cally related to a NS or a BH metric in the π+

a plane. Each
frequency ω is in correspondence with a point rH on r− or r+.
In this sense, we might say that the information contained on
the horizon (the frequency ωH ) is extracted by the functions
a±
ω .

Furthermore, it is immediate to see that from the expres-
sion ag(a0) of Eq. (17), we obtain a relation between the
horizon tangent spin (horizon frequency) and the bundle ori-
gin (bundle frequency), namely, ω−1

0 ≡ a±
0 /M = 2r±(ag)

ag
≡

ω−1
H (ag); in particular, from ω−1

0 ≡ a±
0 /M = ω−1

H (ag),
it is seen that the bundle frequencies ω0 represent all (and
only) the horizon frequencies on the tangent point, i.e.,
ωH (ag(a0)) = ω0. This implicitly relates also the horizons
frequencies with the singularity frequencies; there are then
particular BH spacetimes, where the outer horizon r+ or
the inner and outer horizon r± are defined by bundles with
NSs. We detail this aspect below. Here we note that there is
only one fixed point for the transformation ag(a0), namely
a0 > ag , and a0 = ag for a0 = 0.

We now introduce the concept of couples of related metric
bundles, say, BD and BC (see Fig. 14). In the first couple,
the first bundle has its origin in the NS region (tangent to
the outer horizon) and the second bundle is completely or
partially contained in the BH region (tangent to the inner
horizon). The two bundles with origins (a0, a′

0) share equal
tangent spin ag . That is, if a0 > a′

0, then the bundle with
origin a0, frequency ω0 = Ma−1

0 , has the contact spin ag in
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Fig. 14 Below right panel: the functions r−(r+) (red line) and r+(r−)

(black line) (on the lines a=constant of the extended plane). The region
r± × r∓ ∈ [0, 2M] × [0, 2M] describes BH horizons in the extended
plane along the red and black lines or, equivalently, the dotted lines,
according to the symmetries enlightened in the plot. Below left panel:

the solutions a±
0 /M = 2r±(ag)

ag
as functions of bundle origin a0; they

correspond to a = a0 and a = ap , i.e., ag(a0) = ag(ap) and

ω−1
0 ≡ a±

0 /M = 2r±(ag)
ag

≡ ω−1
H (ag), determining the related BC or

BD bundles – Table 2. Upper panels: Recurrence relation for the point

ag[n] as function of the starting points a0. BD bundles have coincident
cycles (BB and DD) with the exception of the initial point; BB-CC bun-
dles have partially coincident cycles. Cycles (with the exclusion of the
initial point a0) are entirely confined in the BH region. Models XX with
X = {A, B, C, D} are defined in Fig. 15. For a fixed a0, ag[n] decreases
with the number of cycles. The importance of the bundle with origin
a0 = 2M is also shown; this is related to the extreme Kerr BH and
there is a maximum for each cycle; a0 = 2M is the fixed point of the
transformation a0 = ap . The difference G[a0] ≡ a0 − ag increases
reaching G[2M] = 1M = 2M − ag only for the first cycle – Table 2

rg ∈ r+ with horizon frequency ω+
H (rg, ag) = ω0 = Ma−1

0 .
The second bundle of the couple has its origin at a′

0, fre-
quency ω′

0 = M/a′
0, tangent spin ag in r ′

g ∈ r− and horizon

frequency ω−
H (r ′

g, ag) = ω′
0 = M/a′

0. Bundles gω0 and gω′
0

determine, in the sense of the envelope surface, respectively,
the outer horizon r+ = rg and the inner horizon r− = r ′

g
of the BH spacetime with spin ag . The relation between the
tangent points (ag, rg) and the origin a0 and the relations
between BHs and NSs through the bundles will be addressed
in full details below. Importantly, the condition of the bun-
dle correspondence, i.e., ag(a0) = ag(a′

0), leads to the non-
trivial solution a′

0 = ap ≡ 4M2/a0 (see DD and BB model
bundles of Figs. 14, 15, and 16 and Tables 2 and 3). In terms
of the horizon frequency (equal to the bundles frequencies),
there is ω′

0 = 1
4ω0

; in fact, using Eq. (12), this relation can

be written in compact form as ω+
Hω−

H = 1
4 (or we can write

a+
0 (ag)a

−
0 (ag) = 4M2), which is independent of the spin a,

in general. In Fig. 14, the solutions a±
0 /M = 2r±(ag)

ag
corre-

spond to a = a0 and a = ap.

In the second couple, BC, the origin spin of one bundle a′
0

is the tangent point ag(a0) of the second bundle with origin
a0 (therefore, a′

0 is always a BH and the other bundles are all
BHs). An example of these couples are the models BB and
CC of Figs. 14, 15, and 16 and Tables 2 and 3.

To enlighten some properties of the BC and BD bundles,
we consider the difference G[a0] ≡ (a0 − ag) as a function
of a0 and the recurrence relation for ag , i.e., ag[n + 1] =

4a[n]M2

a[n]2+4M2 where a[0] = a0. Then, ag[n + 1] decreases with
the cycle order n (see Fig. 14). In fact, in BC bundles, the
cycles are confined to the inner horizon in the extended plane
(apart from the starting point a0). Naturally, the only fixed
point, ap = a0, of this relation is in a0 = 2M , corresponding
to the extreme BH.

Bundles BD have coincident cycles and bundles BC have
partially coincident cycles; therefore, BD and BC bundles
are related by partially coincident cycles (see Table 2 and
Fig. 14).

To conclude this analysis, we note that it is possible to find
a linear relation between the horizons curves (in the extended
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Fig. 15 Left and enter panels: models XX where X = {A, B, C, D}
considered in Table 3. The spin aω as a function of r/M for different
origins a0 with tangent point (rg, ag) on the horizon curve. The spins
ag < aog are represented on Xi < Xo, where aog (Xo) corresponds to the
outer spin of the bundle for r = rg . X = A: origin a0 = 1/2, frequency
ω = 2; X = B: a0 = 1, ω = 2; X = C a0 = 2, ω = 1/2; X = D
a0 = 4, ω = 0.25. The bundle D is related to C as ag(D) = ag(B). The

model D (B) defines r+(ag) (r−(ag)) for the BH spacetime with spin
a = ag . (Center panel:) shaded region is delimited by the horizon curve.
Models XX are shown. Inside panel: bundles parameterized in terms of
the horizon frequency ωH of Eq. (23) are shown with ag values. Right
panel: the shaded region is r > r+

ε = 2M . Frequencies ω1=constant of
Eqs. (21), (22) in terms of the frequencies ω2 and r

Fig. 16 Below panel: solutions ∂r a±
ω = ∂r a± in the plane r/M − ω.

Bundles frequencies and the contact point to the horizons are repre-
sented for ω = 0.5. The CC model of Fig. 15 and Table 3, where
rg = M and ag = M . Inside panel: The black curve is the horizon
a± and the function ∂r a±; there are the two vertical asymptotes for
the point (a = 0, r = 0) and (a=0,r=2M) corresponding to the limit-
ing static geometry. Models XX are shown with bundle frequencies for
the evaluation of (∂r a±

ω (X)), where X = {A, B, C, D} is considered in

Table 3 and Fig. 15. Considering the models curves (∂r a±
ω (X)), their

intersections with ∂r a± provide the tangent point rg and the tangent spin
point ag . Moreover, they indicate the bundle curve a+

ω or a−
ω tangent

to the horizon, as well as the tangent line inclination. Upper panels:
atan = constant in terms of (r, rg); the black thick curve is atan = M ;
curves for some special values of the r and rg are also shown. These
are related to the models XX, where X = {A, B, C, D} is considered in
Table 3 and Fig. 15

plane) by re-expressing the curve of the inner horizon as a
function of the outer horizon (on the lines a = costant) and,
viceversa, i.e., r−(r+) and r+(r−) – Fig. 14.

BH–NS correspondence: one-to-one relation
There is a one-to-one correspondence between the points

of the horizons, the horizon frequencies, and the spins a ∈
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Table 2 Recurrence relation ag[n] for different starting points, see also
Fig. 14. BD bundles with coincident cycles (BB and DD) are clearly
denoted (excluding the initial point) and partially coincident cycles in

BC bundles are also shown. Cycles (with the exclusion of the initial
point a0) are entirely confined in the BH region. Models XX where
X = {A, B, C, D} are defined in Fig. 15

a0 ag[1] ag[2] ag[3] ag[4] ag[5] ag[6] ag[7]
1 (BB) 0.8 0.689655 0.616366 0.562903 0.521586 0.48837 0.460889

2 (CC) 1. 0.8 0.689655 0.616366 0.562903 0.521586 0.48837

4 (DD) 0.8 0.689655 0.616366 0.562903 0.521586 0.48837 0.460889

1/2 (AA) 0.470588 0.445902 0.424787 0.406451 0.39033 0.376008 0.363172

ap(1/2) = 8 0.470588 0.445902 0.424787 0.406451 0.39033 0.376008 0.363172

ag(1/2) = 0.470588 0.445902 0.424787 0.406451 0.39033 0.376008 0.363172 0.351579

Table 3 Models XX, where X = {A, B, C, D} as defined in Fig. 15

Models AA-model BB-model

Bundle frequency: ω0 = 2 ω0 = 1

Tangent point rg : rg = 2/17 rg = 2/5 ∈ r−
Bundle spin ag at rg : ag = 0.470 ag = a−

ω (rg) = 4/5 (D)

a+
ω (rg) = 0.474 (Ao > Ai ) a+

ω (rg) = 13/15 (Bo > Bi )

Horizon frequency ωH at rg : ω−
H(rg, ag) = 2 ≡ ω0 ω−

H(rg, ag) = 1 ≡ ω0

Bundle frequency for r+ or r−: ω+
H (rg, ag) = 1/8 ω+

H (rg, ag) = 1/4 (Di )

Horizon frequency (Xo): ω−
H (rg, a+

ω (rg)) = 1.984 ω+
H (rg, a+

ω (rg)) = 0.126 ω−
H (rg, a+

ω (rg)) = 0.865 ω+
H (rg, a+

ω (rg)) = 0.289

Models CC-model DD-model

Bundle frequency: ω0 = 1/2 ω0 = 1/4

Tangent point rg : rg = 1 rg = 8/5

Bundle spin ag at rg : ag = 1 ag = 4/5 (B)

a+
ω (rg) = 5/3 (Co > Ci ) a+

ω (rg) = 3.644

Horizon frequency ωH at rg : ω−
H(rg, ag) = 1/2 ≡ ω0 ω+

H(rg, ag) = 1/4 ≡ ω0 (Bi )

Bundle frequency for r+ or r−: ω−
H (rg, ag) = 1 (B)

Horizon frequency (Xo): ∅ ∅

[0,∞[ for NSs or BHs. BHs are related to a part of the r−
curve, SNSs (a > 2M) correspond to r+, and WNSs (a ∈
[M, 2M]) are in correspondence with the envelope surfaces
of the inner horizon, i.e., a− ∈ π+

a for r ∈ [0.8M, M]. The
limiting cases of Schwarzschild, a = 0, and extreme Kerr
BH, a = M , are connected with the limit a = ∞ and the
double point a0 = 2M , respectively.

In fact, we can say that ∀ā ∈]0,+∞[, ∃! ω̄0 ≡ M/ā and,
viceversa, ∀ω̄0 there is one and only one a0 ∈]0, M] : ω̄0 =
ωH , where ωH is the horizon frequency, i.e., we connect
points of PS to points of PH of the horizons by considering
that each metric bundle relates univocally an origin a0 of PS
with a tangent point of PH. (ag is solution of a0 = ω−1

H ).
Any origin of the metric bundle g±

ω0
, associated to a frequency

ω0 = constant, is associated to one and only one point p± :
p− ∈ r− or the outer p+ ∈ r+, according to the origin a0.

A special case is the extreme Kerr BH solution, where
the origin spin a0 = 2M , associated to the metric bundle
gω0 of constant frequency ω0 = 1/2, crosses the horizons at

r± = M and a± = M . In general, for a fixed origin a0, there
are two frequencies ωH and ω0 ≡ M/a0 �= ωH , respectively,
where ω0 = M/a0 is the frequency of the metric bundle gω0 ,
and ωH �= ω0 is the horizon frequency defined by the spin
a± defined by the tangent point. p± ≡ (a±, r±) ∈ π+

a .
The one-to-one BHs–NSs correspondence is described by

the function ag as given in Eq. (17) and illustrated in Fig. 13.
We can say that each BH solution is connected to one and
only one NS in π+

a , as it emerges from the analysis of the
Killing horizons and light frequencies on the equatorial plane
and, viceversa, each NS is related to one BH. These con-
siderations include the limiting cases of the Kerr extreme
spacetime, where the associated metric bundle has origin
a0 = 2M , and the limiting case of the static Schwarzschild
BH, which is connected to the NS with a = +∞. The BH–
NS relation allows us to consider a spin shift from an initial
BH1 (NS1) source as corresponding to a shift of the respec-
tive NS1 (BH1); therefore, the pair BH1 − NS1 shifts to the
pair BH2 − NS2. The segment aBH1 − aNS1 of PS ∈ π+

a
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transforms into aBH2 − aNS2 , becoming larger or smaller
depending on the curve ag as shown in Fig. 13.

To conclude this section, we analyze the relation between
the tangent radius rg on the horizon and the bundle origin a0.
We start with a description of Fig. 13.

Analysis of figure 13
Figure 13 represents the spin a ∈ BH versus a0. Spins

a ∈ BH and a0 are connected through ag . The sectors and
regions in this figure are determined by the following special
boundary spins, considering that a0 ∈ [0,+∞] and ag ∈
[0, M]:

• the origin a−
0 = M distinguishes NSs from BHs;

• the spin a0 = 2M defines the left region where a0 ∈
[0, 2M] (for BH and WNS) and right region where a0 >

2M (for SNSs = SNS− ∪ SNS+);

• the spin a1
g ≡ ag(a

−
0 ) = 0.8M defines the up-sector

where a ∈ [a1
g, M] (for BH+) and the down sector where

a ∈ [0, a1
g[ (for BH−);

• the spin a+
0 = 4M : ag = a+

g distinguishes strong naked
singularities SNS+ and SNS−.

Consequently,

• a bundle origin a0 in the BH-region corresponds through
the horizon curve to BH− singularities (ag : a0 ∈
BH �→ ag ∈ BH−);

• origins a0 in the WNS-region correspond to ag ∈ BH+.

Therefore, ag ∈ BH = BH−∪BH+ correspond, through the
tangency with the inner horizon curve a−, to ao ∈BH∪WNS;

• the origin a0 in SNS− corresponds to ag ∈ BH+;
• the origin a0 in SNS+ corresponds to ag ∈ BH−.

Therefore, ag ∈ BH = BH− ∪ BH+ is related to a0 ∈
SNS− ∪ SNS+.

Because ∂a0ag ≥ 0, increasing the origin spin a0 ∈ BH ∪
WNS and the tangent spin ag ∈ BH− ∪ BH+ increases the
left region. Let us consider the BHs and NSs correspondence
determined by the tangent point spin ag . Note that a fixed
origin a0 ∈ SNS+ (down-right region) corresponds to the

outer horizon tangent point (we identify ag(a0) ∈ BH). This
is sufficient for the determination of the spin a−

0 ∈ BH− and
the origin of the bundle metric tangent to the inner horizon in
(ag, r−

g ); therefore, this defines the inner horizon r−
g of the

BH− spacetime with spin ag .
Similarly, in the right-up region there are couples follow-

ing related geometries (ag, a0): (1) BH+ − WNS and (2)
BH+ − SNS−.

We note that the origins SNS± (a0) are in correspondence
with a ag ∈ BH; also the a0 ∈ WNS and a0 ∈ BH are in
correspondence with a ag ∈ BH.

Therefore, in general there is a correspondence a0 �→
ag ∈ BH �→ a′

0, i.e, the origin of the bundle defines a tangent
point to the horizon ag and r+ or r− in the spacetime with
ag; correspondingly, there is the bundle with origin a′

0 whose
tangent point to the horizon is agand r− or r+, respectively.

Therefore, the following triple relations hold

[a0 ∈ SNS+ �→ ag ∈ BH− �→ a′
0 ∈ BH]︸ ︷︷ ︸

(a)

, [a0 ∈ SNS− �→ ag ∈ BH+ �→ a′
0 ∈ WNS]︸ ︷︷ ︸

(b)

; (19)

↘↗↖↙[
a0 ∈ WNS �→ ag ∈ BH+ �→ a′

0 ∈ SNS−]
︸ ︷︷ ︸

(c)

, [a0 ∈ BH �→ ag ∈ BH− �→ a′
0 ∈ SNS+]︸ ︷︷ ︸

(d)

(20)

The geometries of the triple relations given in Eq. (19) are
bounded together by a0 ∈ a+ and the inner horizon r−; on
the other hand, the geometries of the two relations in Eq. (20)
are bounded together by a0 ∈ a−. The geometries of the last
two triple relations are bounded by ag . The sets ((b) and (c))
and ((a) and (d)) are related by an exchange of spins a0, a

′
0.

Bundles corresponding to the tangent a = ag (same tangent
point spin) belong to triplets connected by arrows. We shall
see this also below considering some examples – see also
Table 2.

The black hole area, delimited by the (outer) horizon, is a
crucial quantity, determining the thermodynamic properties
of BHs. Given the relevance of this concept, we study in
Sect. 1 some properties of the areas of the regions delimited
by metric bundles and compare them with the horizon area
A+

r± = π/2 in the extended plane π+
a , i.e., the region in the

plane π+
a bounded by the horizon curve a±.

To conclude, we show that the horizons frequency ωH

defines the bundles frequencies. We will resume part of the
discussion carried out in relation with Eq. (17). We also inves-
tigate the limiting frequencies obtained from the bundles
crossing and some properties of the tangents to the horizons
in the extended plane.

On the frequencies
The bundle frequency is a limiting photon-like frequency,

ω+ or ω− as introduced in Sect. 2, at the point (a, r) of the
bundle. The second, limiting photon frequency at the point
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(a, r), ω− or ω+, respectively, is determined by the bundles
crossing. As previously discussed, there is a maximum of
two bundles at the intersection. This second frequency is,
therefore, the solution of a±

ω1
(r̄) = a±

ω2
(r̄), where ω1 is the

known frequency of the bundle gω1 , r̄ is a fixed point of
the bundle. The second photon frequency ω2, identifying the
related bundle gω2 , is a function of ω1 and r̄ :

a+
ω1

= a±
ω2

: for ω
(+,±)
1 = �− (21)

a−
ω1

= a−
ω2

: for ω
(−,−)
1 = �+

�± ≡ −
(r − 2)

[(
r2+4

)
ω2 ± 4

√
r2ω2

2

[
1−r(r+2)ω2

2

]]

16r3ω2
2 + (r − 2)2(r + 2)

.

(22)

The solutions a±
ω1

for ω2 = constant are shown in Fig. 15.
Note that the limiting curve for the constant frequencies
curves ω

(+,±)
1 , ω

(−,−)
1 is r+

∂ of Eq. (16) – see also Figs. 10,
11.

By definition, the frequency ω is constant along the bun-
dle; thus, the bundle frequency ω is the bundle origin fre-
quency ω0 = M/a0 and, particularly, the frequency at
(ag, rg), where ag is the bundle spin at the tangent point
rg on the horizon curve. We can show that the bundle fre-
quency coincides with the horizon frequency at the tangent
point rg , that is, ω0 = ωH (ag, rg).

First, note that the bundle frequency ω = ω0 is defined
in [0,∞]. The analysis of the frequency variation domain
gives us indications that both the inner ω−

H and outer horizon
frequency ω+

H define the bundle frequency, as there is ω+
H ∈

[0, 1/2] and ω−
H ∈ [1/2,+∞[ (for a ∈ [0, M]) – see also

Fig. 1. Then, condition ω0 = ωH , where ωH is the union
ω+
H ∪ω−

H , leads to ag(a0), relating the tangent-point-spin ag
and the bundle origin a0 = ω−1

H (ag).
Figure 15 and Table 3 show some notable numerical exam-

ples, proving that the bundle frequencies are, in fact, the hori-
zon frequency at the tangent point to the horizons. Connec-
tions between the two bundles gω1 and gω2 at equal ag , which
are related to the horizons points r±(ag), are also shown in
Table 3. The tangent spin ag can be also obtained from the
relation aω(r±, ω0) = a by solving for a0(a) and represent-
ing the result as ag(a0) in Eq. (17).

Then, we can consider the bundle on the horizon (r = rg)
with the bundle frequency ω expressed as the origin fre-
quency ω = ω0. In terms of frequencies, from ωH = ω,
we obtain a = 4ω∗/(4ω2∗ + 1), where ω∗ ∈ [0, 1/2] for
ωH = ω+

H (r+) = ω∗, and ω∗ ≥ 1/2 for ωH = ω−
H (r−).

This shows also the role of the inner horizon frequency.
This relation can be also found from the spin ag(a0), where
a0 = ω−1

0 . Note that we can eliminate the frequency ω from
a±
ω of Eq. (15) and parametrize the metric bundles in terms

of a and r , using the condition ω = ωH in a±
ω . In this case,

there is a ∈ [0, M] as the spin is the horizon tangent-point
spin ag:

a(�)
ω (ω

�
H ) ≡ (�)

√
a2r2

[
8r� − a2(r(r + 2) + 4)

] + (�)ar�

a2(r + 2)
,

where (�) = ±; � = ∓. (23)

The bundles a(�)
ω (ω

�
H ) are, therefore, parameterized for

the tangent point a = ag – see Fig. 15. From the condition
of coincidence between bundle and horizon in the extended
plane (i.e., a±

ω = a±), we obtain r = 2
4ω2+1

and assuming
r = r±, then ω = ωH .

On the tangent lines
A relevant aspect of the metric bundle is that it is tangent to

the horizon the extended plane. The tangent line with respect
to the horizon is horizontal only for extreme Kerr BH (where
the line a = constant has a double contact point on the tan-
gent bundle) and asymptotically vertical in the static case. To
study the tangents at the horizon, we consider the variations5

∂r a± = (M − r)/
√−(r − 2M)r , with a±

ω in the form of
Eq. (15) (or, alternatively, Eq. (23)). The tangent curve is:

atangent (r) ≡ r(M − rg) + Mrg√−(rg − 2M)rg
where rg ∈ [0, 2M],

(24)

and the tangent point rg is a parameter.
The bundle-horizon tangent line at the point (rg, ag) is

provided by the relation ∂r a±
ω = ∂r a±, where a± is the hori-

zon curve in the extended plane. These solutions are shown
in Fig. 16, where some properties of the tangents are high-
lighted.

The solution of the tangency condition ag = a± leads to
the functions rrealg and r�

g :

ag = a± : rrealg

M
≡ 2a2

0

a2
0 + 4M2

and
r�
g

M
≡ 8M2

a2
0 + 4M2

.

(25)

5 The definition of metric bundle, tangent to the horizon in the extended
plane presented in this work, should not be confused with the definition
of bundle metric and of the tangent bundle of a differentiable mani-
fold in differential geometry. A metric on a vector bundle is a choice
of smoothly varying inner products on the fibers. While the a tangent
bundle TM could be defined as the disjoint union of tangent vectors in
M . Although different in their definitions, it is clear that the concepts
introduced in this analysis can be read in terms of tangent bundles in a
differential manifold, providing a deep insight on the properties consid-
ered here. While it is not the goal of this work, it is worth noting that we
may consider the horizon as a one-dimensional surface embedded in the
extended plane considered as R2 (including the reflection π−

a ). For a
general and smooth curve c(r) in R2, the associated tangent bundle may
be seen as a regular surface in R4, written as T (r, ε) = [c(r), εc′(r)]
with ε ∈ [−1, 1]. The metric bundles identify at every point on the
horizon a tangent vector. We study the tangent to the horizons and the
metric bundles ending Sect. 4.
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Fig. 17 Tangent radius r±
g of Eq. (25) as a function of the tangent

spin ag . Inside panel: (rrealg , r�
g ). The gray region represents SNS with

a0 > 2M and the shaded regions are values of r�
g . The models XX

are also shown, where X = {A, B, C, D} is considered in Table 3 and
Fig. 15

Viceversa:
r∓
g

M
≡ r∓(ag)

M
= 1 ∓

√√√√
(
a2

0 − 4M2
)2

(
a2

0 + 4M2
)2 . (26)

Figure 17 shows that (rrealg , r�
g ) coincide with (r−

g , r+
g ). The

functions (rrealg , r�
g ) and (r−

g , r+
g ) reveal some properties

enlightened in Table 3 and further interesting symmetry prop-
erties of the NS–BH correspondence. Figure 17 shows the
relation between the tangent point rg on the horizon and the
bundle origin a0. Moreover, it points out the correspondence
between the two metric bundles gω0 and gω1 , with equal tan-
gent spin ag and with different origin in BH and in NS. As
made explicit in Table 3, such bundles are related to the con-
struction of the inner and outer horizon r±(ag) of the BH
spacetime with a = ag .

It is clear that rrealg is a combination of r±
g and provides

the tangent point rg(a0) for the origin a0. In fact, by fixing
a0 there is only one tangent point in rrealg equal to r−

g for
a0 < 2M , or else equal to r+

g for a0 > 2M ; however, the

second point at a0 on the curve r�
g (shaded region) has no

immediate meaning with respect to the bundle gω0 ; on the
other hand, the point r�

g (a0) provides the second horizon
(r− or r+) in the spacetime with a = ag . Therefore, the
connecting bundle gω0 with gω1 is tangent to the horizon
at r�

g (ag). This case has been also represented in Table 3
with respect to the BB and DD models. Note that the CC
model, extreme Kerr spacetime, corresponds to a0 = 2M
and rrealg = r�

g = M (r+
g = r−

g = M).

We return to the analysis of (rrealg , r�
g ) (r±

g ) in Fig. 17. Let
us consider as an example the BB and DD models. For a0 <

2M the bundles are tangent to the inner horizon (note also
the saddle point at a0/M = 2/

√
3 ≈ 1.1547). According

to the DD model a0 = 4M , the correct tangent point is on
rrealg = r+

g . The second point, for a0 = 4M , on the r�
g = r−

g

is the tangent point rg(B) in the BB model with a0 = M .
The BB and DD models share same tangent spin ag .

In conclusion, in this BH spacetime:

the outer horizon is r+ = rg(D) = rrealg (D) = r+
g (D)

= r�
g (B) = r+

g (B),

the inner horizon is r− = rg(B) = rrealg (B) = r−
g (B)

= r�
g (D) = r−

g (D). (27)

Consequently, we could say that rrealg (a0) represents the hori-
zon curve a± as the envelope surface in the extended plane
(note that asymptotically, for large values of a0, rrealg (a0)

approaches 2M from left). On the other hand, r�
g (a0) pro-

vides information on the corresponding metric bundle and the
second horizon for a = a0. By using the couple (rrealg , r�

g ),
it is sufficient the knowledge of the bundle origin to charac-
terize the BH spacetime defined by the tangent bundle.

5 The Kerr–Newman geometries

The investigation of Sects. 3 and 4 is performed here for the
case of Kerr–Newman (KN) and Reissner–Nordström (RN)
spacetimes and in the region outside the equatorial plane of
the Kerr spacetime. This further analysis will allow us to bet-
ter evaluate the role of the frame-dragging. The analysis of
Fig. 8 is presented in Fig. 20 for electrically charged geome-
tries with a = 0. We prove that the closure of the metric
bundles is a consequence of the rotation of the singularity:
the correspondent curves, defining the BHs horizons for the
static RN case, are open; the analysis of the KN case repre-
sented in Fig. 20 better shows the influence of the spin in the
bending and separation into the two families of closed curves
on the equatorial plane.

The Kerr–Newman geometry corresponds to an electro-
vacuum axially symmetric solution with a net electric charge

Fig. 18 Kerr–Newman solution – the equatorial plane. Plot of the hori-
zons r±/M (purple) and static limit r+

ε /M (gray) as functions of a/M
and Q/M – Eq. (28)
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Fig. 19 Kerr–Newman spacetimes. The frequencies ωH = ω±(r±) at
the horizons r± – see Eq. (29). Left panel: curves ω = constant. Arrows
indicate the increasing magnitude of the frequencies ω−

H (purple), ω+
H

(gray). Right panel: 3D plot of the frequencies ω±
H as functions of the

dimensionless spin a/M and charge Q/M

Q, described by metric (1) with �K N ≡ r2+a2+Q2−2Mr .
The solution a = 0 and Q �= 0 constitutes the static case of
the spherically symmetric and charged Reissner–Nordström
spacetimes. The horizons and the outer and inner static limits
for the KN geometry are respectively

r∓ = M ∓
√
M2 − (a2 + Q2),

r∓
ε = M ∓

√
M2 − a2 cos2 θ − Q2, (28)

are depicted in Fig. 18. KN naked singularities are defined
for QT 2/M2 > 1, where QT 2 ≡ (a2 + Q2) is the total
KN charge. This condition implies that either Q2 > M2 or
a2 > M2 give rise to a NS – [13–15]. Following Sect. 3, the
frequencies ω±

H ≡ ω±(r±) at the horizons r± are given by

ω−
H =

aM
(

2M
√
M2 − (a2 + Q2) − Q2 + 2M2

)

4M2a2 + Q4 ,

ω+
H = aM

2M
√
M2 − (a2 + Q2) − Q2 + 2M2

(29)

and are represented in Fig. 19. In this section, we consider
the problem faced in the Sects. 3 and 4 and analyze the entire
range Q2 ≥ 0 and a2 ≥ 0. We test the conjectures presented
in Sect. 4 and reproduce the analysis of Sect. 3, in particular,
for the case of spherical symmetry, when the frame-dragging
due to the source’s spin is absent, isolating the effects of
the electric charge from the rotation component of the total
charge QT . In doing so, we generalize the extended plane
π+
a used in Sects. 3 and 4, considering a two-parameter fam-

ily of solutions and passing from the (1 + 1) dimensional
problem of the Kerr spacetimes to a (1 + 2) problem of the
KN solutions. Fixing one of the two components of the total
charge, we can obtain an entire parametrized family of Ein-
stein solutions. The off-equatorial case will also be briefly
addressed.

In order to understand the effects of the two charge param-
eters a and Q, it is useful to look at the solutions (28) in the
extreme cases. The axial symmetry of the metric is due to the
presence of the spin of the central singularity . The presence
of the electric charge actually “balances” the effects of the
spin in several ways, as we shall see below. In fact, we con-
sider on the equatorial plane the static limits and the horizons
of Eqs. (28) as follows

static limits: r±
ε

∣∣
θ=π/2 = M ±

√
M2 − Q2,

implying Q/M < 1 or Qε± = √−(r − 2M)r; (30)

and r±
ε

∣∣
θ=π/2 = M for Q = M, (31)

BHs horizons: a± =
√

−Q2 − r(r − 2M)

or also Q± =
√

−a2 − r(r − 2M). (32)

Here, a± and Q± are solutions of r± = r . On the equatorial
plane, there are two static limits, independently of the spin,
only for KN BHs or NSs having Q < M . In other words,
the charge component of the KN–NS (and only for NSs) is
not “predominant” with respect to the spin, i.e., for KN–NSs
with a ≥ M but Q < M . On the equatorial plane, the static
limits r±

ε can be compared with the event horizons of the
RN BH geometry, as in the Kerr geometry the static limit r+

ε

coincides the Schwarzschild horizon r = 2M . Conversely,
this similarity appears even more clearly in the definition of
Qε± in Eq. (30), which is equal to the horizons a± in the
a − r plane of the Kerr geometry. When Q = M , there is
one static limit radius only, independently of the spin a/M .
In this sense, the spacetime dragging is totally balanced, on
the equatorial plane, by the electric charge Q2 > M2. For
(θ �= π/2, θ �= 0), a static limit exists provided the charge
satisfies the condition Q2 ≤ M2 − a2 cos2(θ). On the other
hand, for Q = M (a = M) the Killing horizon is defined for
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Fig. 20 Equatorial plane of the Kerr–Newman spacetimes: the sur-
faces ω± = constant as functions of the radius r/M and the electrical
charge Q/M – Eq. (34), for different spins. This is a generalization of

the analysis shown in Fig. 8 to the case Q �= 0. The black region is for
r < r± and the gray region is the ergosurface �+

ε . See also Fig. 25

a = 0 (Q = 0) only. The photon orbital frequencies in the
KN geometry are

ω∓ =
aM

(
Q2−2Mr

) ∓ M
√
r4

[
a2 + Q2+(r − 2M)r

]

a2
[
r(r+2M) − Q2

] + r4
.

(33)

Analogously to Eq. (15), we can define the functions

a∓
ω =

∓
√
r4ω2

{
ω2

[
Q2 − r(r + 2M)

] + M2
} + ωM(Q2 − 2rM)

ω2
[
Q2 − r(r + 2M)

] , and

(34)

(Q±
ω )2 ≡ r

{
ω2

[
a2(r + 2M) + r3

] − 4aM2ω − rM2 + 2M3
}

(aω − M)2 , (35)

where, in particular, for the RN static case (a = 0), we find

RN : (Q±
ω )2 = r

(
r3

M2 ω2 − r + 2M

)

or ω± = ±M
√
Q2 + (r − 2M)r

r2 . (36)

Note that while the horizons r± can be re-parametrized for the
total chargeQT and its variation with respect to the parameter
QT is exactly the same as for the corresponding radii r± in the
RN or Kerr solution, the surfaces ω± do not depend directly

on QT ; this means that the two parameters play a different
role in the solutions ω±=constant, although the envelope sur-
faces depend on QT alone. For Q = 0, the surfaces a±

ω are
shown in Fig. 30. The surfaces ω± = constant of Eqs. (34)
are shown in Figs. 20 and 25. This is a generalization of the
case Q �= 0 of the analysis shown in Fig. 8. Also in this
case, we consider some limiting solutions to fix the different
contributions of the two charge components:

lim
r→0

Q±
ω = 0, lim

r→0
a±
ω = M

ω
, lim

r→0
ω± = M

a
. (37)

An analysis of the spins a±
ω = constant for the static limits

r±
ε on the equatorial plane is shown in Fig. 23.

Equation (37) show that in the limits considered the fre-
quency is related to the spin source independently of the
electric charge – Fig. 21. This suggests that we should define
the origin of the KN metric bundles g±

ω as dependent on
the spin a/M only. It should be considered that the Killing
horizons are characterized by the “rotation charge”, but ω±

H
does not “carry” any electric charge; that is, we can always
define metric bundles considering ω0 = M/a and the hori-
zon frequencies. Explicitly, we can generalize the analysis of
Sect. 4, considering a surface ag(a0; Q) in the case a0 �= 0,
where Q is a parameter, and we obtain
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Fig. 21 Equatorial plane of the Kerr–Newman spacetimes. The frequencies ω± = constant, charge Q±
ω = constant, and spins a±

ω = constant for
some limiting cases – Eq. (37)

a0 = 2M2 − Q2 ∓ 2M
√
M2 − (a2 + Q2)

a
(r∓),

a∓
g (a0) =

a0
(
2M2 − Q2

) ∓ 2M
√
a2

0

(
M2 − Q2

) − Q4

a2
0 + 4M2

(38)

where a0 > aL(Q) ≡
√

− Q4

Q2 − M2 implying

Q2 ∈]0, M2[, (39)

– Figure 24. Adopting a notation analogue to the one used
in Sec. 4, we solve the equation a±

ω (r±, ω0) = a (similarly,
we could have used Q±

ω ) and introduce the two functions
a±
g . However, we can exploit the fact that all the curves in

Figs. 20 and 25 tend to the point (r = 0, Q = 0), that is, to the
Kerr singularity. Approaching the static limit in the extended
plane, we consider the solutions of Q±

ω (r±
ε , ω0) = Q:

Qε
ω ≡ √

2
√
a2 − aa0 + √

2M
√
a(a0 − a) (40)

as shown in Fig. 22.
We can see that in the extended plane it is necessary to

consider the entire range of parameter values (a/M, Q/M),
including the BH case to describe the NSs (Fig. 23). For the
equatorial plane, the analysis carried out for the case Q = 0
is confirmed also in presence of an electric charge. For pre-

Fig. 22 Charge Qε
ω, solution of Q±

ω (r±
ε , ω0) = Q defined in Eq. (40)

dominant spins, any curve ω = constant crosses the horizons
at some points. We also see the bending of the curves limited
above from the inner horizon r−, confirming the results of
Sect. 4, although with differences which are evident as the
electric charge increases. The generalization of the analysis
of Fig. 10 is presented in Figs. 27 and 28. We will not enter
into the details of this analysis; instead, we only mention that
in the KN case a more articulated situation for the Killing
throat and bottleneck appears, when the effects of the electric
charge are combined with those of the frame-dragging. The
frequencies ω± are plotted as functions of r/M for differ-
ent values of the charge Q/M and spin a/M in Fig. 26. In
these plots, the static and axisymmetric cases are compared
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Fig. 23 Spins a±
ω = constant on the static limits r±

ε on the equatorial plane

Fig. 24 Left panel: three dimensional plot of a0/M , Eq. (38), as a func-
tion of a/M and the charge Q/M . Right panel: spin ag/M as a function
of a0/M for different charge to mass ratios Q/M . Inside panel: plot of

aL (Q), where aQ ≡ √
M2 − Q2, ag is defined for Q ∈]0, M[ and

ag ≥ aL (Q) – see Eq. (38). BH Killing horizons are defined by the
condition a ≤ aQ (for a > 0)

and the contribution of an electric charge are confronted with
those of weak NS geometries. In the static geometries, the
Killing throat and bottleneck still appear, while the effects of
the rotation emerge as a disruption of the symmetry around
the axis ω = 0 of the static case and become evident in the
coalescence phases of the horizons.

Figures 29, 31 and 30, on the other hand, show the solu-
tions of ∂2

r ω± = 0 and ∂3
r ω± = 0 defining the Killing bot-

tlenecks of naked singularities, which are generalizations of
the analysis presented in Fig. 5 for the case Q = 0 (Kerr
spacetime). The surfaces a±

ω (r, θ) are shown in Fig. 30, giv-
ing a view of the solutions for the light surfaces in the off-
equatorial case.

This analysis confirms the results of Sects. 3 and 4 and the
role of the frame-dragging (Figs. 24, 25, 26).

6 Concluding remarks and future perspectives

In this work, specially in Sect. 3, we explored the Killing
throats and bottlenecks, arising from the properties of station-
ary observers in the Kerr geometries. In the case of WNSs
(a/M ∈]1, 2]), the Killing throats show “restrictions”, which
we identify as Killing bottlenecks (Figs. 27, 28). To explore

the properties of the bottlenecks, we introduced in Sect. 4 the
concept of extended plane, which is a graph relating a par-
ticular characteristic of a spacetime in terms of the param-
eters entering the corresponding spacetime metrics. More
precisely, the analysis of some peculiar characteristics of the
bottlenecks, defined as horizons remnants, indicated some
links between BHs and NSs (and in particular WNSs). To
compare the BH and NS characteristics, it was convenient
to introduce in Sect. 4 the concept of metric bundles, i.e.,
curves in the extended plane π+

a , representing a collection
of metrics defined by a particular photon orbital frequency,
named metric bundle frequency. The bundle frequencies (and
the orbital limiting frequencies in any point on the equato-
rial plane of any spacetime of the family) are all and only
the frequencies of the horizon defined in the extended plane.
This analysis has been done mainly on the equatorial plane of
axisymmetric geometries. Metric bundles show, in fact, the
remarkable property to be tangent to the horizon curve in the
extended plane, the space where the curves representing the
metric bundles are defined. In the case of the the equatorial
plane of the Kerr metric, the extended plane is essentially
equivalent to the function that relates the frequency with the
spin. Notably, the metric bundle associated to the extreme
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Fig. 25 Equatorial plane of Kerr–Newman spacetimes: the surfaces
ω± = constant as functions of the radius r/M and the spin a/M –
Eq. (34), for different charges Q. This is a generalization to the case

Q �= 0 of the analysis shown in Fig. 8. The black region is for r < r±
and the gray region represents the ergosurface �+

ε . See also Fig. 20

Kerr BH corresponds to a regular curve tangent to the hori-
zon with bundle origin a0 = 2M . As proved in Sect. 4, all
the metric bundles are tangent to the horizon in the extended
plane π+

a and the horizon emerges as the envelope surface of
the metric bundles in π+

a . A bundle frequency corresponds
to one limiting photon orbital frequency for all BHs or some
BHs and NSs geometries. The bundle frequency coincides
with the frequency at the (inner or outer) horizon curve, which
is tangent to the metric bundle. On the other hand, the metric
bundles are all defined by all and only the frequency of the
horizon in π+

a . Viceversa, all the horizon frequencies in the
extended plane are metric bundle frequencies. In Sect. 5,
we consider the static and electrically charged Reissner–
Nordström spacetime and the Kerr–Newman axisymmetric
electrovacuum solution and show that the bending (closing)
of the curves of the metric bundles is due to the rotation
of the gravitational source. Therefore, we can say that the
horizons frequencies determine the BHs and NSs limiting
photon orbital frequencies. This fact establishes a connection
between BHs and NSs: the inner BH horizon is connected to

BH and WNS origin bundles, whereas the outer horizon sets
the BHs–SNSs correspondence. In the extended plane, NSs
are associated with portions of the horizon. In this sense, the
inner horizon is partially constructed by BH metric bundles.
The inner horizon is associated with WNS origins. This last
property turns out to be related to the Killing bottlenecks
appearing in the light surfaces. Interestingly, the outer hori-
zon in π+

a is generated by SNSs metric bundles only. This
fact has the interesting consequence that only the horizon
frequencies determine the frequencies ω± at each point, r ,
on the equatorial plane of a Kerr BH or NS geometry: all the
frequencies ω±(r) on the equatorial plane are only those of
the horizon in π+

a , the horizon in π+
a contains information

about all limiting photon orbits also in NS spacetimes. In
Secs. 3 and 4, we have also introduced the concept of inner
horizon confinement. In this sense, NSs are “necessary” for
the construction of horizons. The outer horizon is associated
with a NS (the bundle origin) in the extended plane and the
inner horizon to a WNS or a BH. Therefore, we believe that
this result could be of interest for the investigation of gravi-
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Fig. 26 Equatorial plane of the Kerr–Newman spacetime: the frequen-
cies ω± given in Eq. (34) as functions of r/M for different values of the
charge Q/M and spin a/M . The limiting cases of the Kerr spacetime
(Q = 0) is shown in the first upper left panel and the static Reissner–
Nordström geometry with a = 0 is the second left upper panel. The

analysis shows the emergence of coalescence of the Killing horizons
r+ and r− in the extreme black hole geometries and the emergence of
a Killing throat and Killing bottleneck in the NS geometries – see also
Figs. 1, 2 , 11, 27 and 28

Fig. 27 Equatorial plane of the Reissner–Nordström spacetime: generalization of the analysis of Figs. 10 and 28 for the case a = 0 and Q �= 0

tational collapses in which connections between NS and BH
solutions are expected and emerge [58–60].

Some further aspects of these properties are currently
under investigation. Firstly, it would be necessary to further
analyze the off-equatorial case and test the results of Sect. 4 in
other kinds of geometries. In a future analysis, we shall ana-

lyze other axisymmetric spacetimes admitting Killing hori-
zons and consider the possible thermodynamic implications
of the results discussed here, particularly, in relation to the
possibility of formulating the BH thermodynamic laws in
terms of metric bundles. We also point out that metric bun-
dles and horizons remnants seem to be related to the concept
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Fig. 28 Equatorial plane of the Kerr–Newman spacetime: generalization of the analysis of Fig. 10 to the case Q �= 0 – see also Fig. 27

of pre-horizon regimes. There is a pre-horizon regime in the
spacetime when there are mechanical effects allowing circu-
lar orbit observers, which can recognize the close presence
of an event horizon. This concept was introduced in [1] and
detailed for the Kerr geometry in [61,62]. The pre-horizon
was identified and analyzed in [2], leading to the conclusion
that a gyroscope would observe a memory of the static case in
Kerr metric. Clearly, this aspect could be of relevance during
the gravitational collapse [23,63–65].

We now summarize the main aspects of our analysis focus-
ing on the possible interpretation of the main results.

(i) We identified bottlenecks essentially as horizon rem-
nants. Similar interpretations have been presented in
[1,2,61,62], by using the concept of pre-horizons,
and in [34], by analyzing the so-called whale dia-
grams. These structures could play an important role for
describing the formation of black holes and for testing
the possible existence of naked singularities. Notably,
the concept of remnants, as expressed here, refers to
and evokes a sort of spacetime “plasticity”, which nat-
urally led to the introduction in Sect. 4 of the concept of
the extended plane. In this new frame, we found several
properties emerging from and affecting the spacetime
geometries when we consider an entire family of solu-
tions as a unique geometric object.

(ii) Considering the Kerr family as a single object, the geo-
metric quantities (for example, the horizons) defined for
a single solution acquire a completely different signifi-
cance when considered for the entire family.

(iii) Considering metric bundles with WNS, we found that
the inner horizon is confined in the metric bundle frame-
work.

(iv) We proved the existence of a connection between black
holes and naked singularities. To each BH corresponds
the pair (WNS, SNS) or the pair (BH, SNS). This corre-
spondence is important for the definition of the Killing
horizons.

(v) We proved that WNSs (SNSs) are necessary for the
construction of the inner (outer) Killing horizon. This
result could shed light on the physical meaning of NSs
solutions.

To conclude, we present a schematic summary of the main
results presented in this work.

• Analysis of Killing throats and definition Killing bot-
tlenecks for particular naked singularities – Sect. 3. To
define Killing throats, we study the limiting photons sur-
faces r±

s and frequencies ω± which are defined in Eq. (11)
and Eq. (8), respectively. We also interpret bottlenecks as
horizons remnants in weak naked singularities.

• Inner horizon confinement – Sect. 3. In Eq. (13), we iden-
tify the photon orbits characterized by the horizons orbital
frequencies. The radii r∓∓ represent the set of photon
orbits with frequencies ω±

H at the BH horizons – Eq. (13)
– Fig. 1. The inner horizon confinement, according to the
constraints on r−− , is in agreement with the confinement
of the metric bundles containing BHs and WNSs (see
Sect. 4).

• Definition of the extendedplaneπa andmetric bundles gω

in Sect. 4. Metric bundles are curves in πa tangent to the
horizons characterized by the limiting photon frequency
ω+ or ω−.

• Tangency condition and horizon construction in the
extended plane. We demonstrate that the horizon curve
corresponds to the envelope surface of the metric bun-
dles. All the metric bundles are tangent to the horizon
curve and all the points of the horizons are associated to
one and only one metric bundle tangent to that point –
Figs. 14, 15, 16 and Tables 2 and 3. Consequently, all
the limiting photon orbital frequencies (on the equatorial
plane) are all and only the frequencies of the horizon
curve in πa , related to two metric bundles, with frequen-
cies ω0 and �±, respectively. Particularly, through the
relationship between metric bundles and horizons in π+

a ,
a NS or BH metric can be parameterized in terms of the
horizon frequency identified by the corresponding metric
bundle. The inner and outer horizons in π+

a correspond to
envelope surfaces. We analyze the lines a = constant (i.e.
a single spacetime of the metric bundle) and r = constant
in the extended plane – Fig. 8 and classify the singularities
according to the horizon construction as shown in Fig. 13,
i.e., strong naked singularities, SNS = SNS+ ∪ SNS−,
having a0 > 2M with SNS+ for a0 > 4M and SNS− for
a0 ∈ [2M, 4M[; WNS – weak naked singularities with
a0 ∈]M, 2M[ and BH = BH+ ∪ BH− with BH+ for
a ∈ [a1

g, M], a1
g = 3/4M and BH− for a ∈ [0, ag1 ].

• Demonstration of the confinement of metric bundles with
origin in BHs and WNSs and identification and study of
the corresponding bundles. In Table 2, we proved the
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confinement of the bundles in the extended plane delim-
ited by the inner horizon curve. The horizon and bundle
frequencies are related by the relation ω+

0 ω−
0 = 1/4.

• Properties of horizons and bundles. For the entire fam-
ily of Kerr geometries, we established the relations
between metric bundles and horizons. We found two rela-
tions which can be specified in detail as follows. Rela-
tions I: ω−1

0 ≡ a±
0 /M = (2r±(ag)/ag) ≡ ω−1

H (ag),
ω+
H (rg, ag) = ω0 = Ma−1

0 , ω−
H (r ′

g, ag) = ω′
0 = M/a′

0
where r ′

g ∈ r− (r+ = rg , r− = r ′
g) – Fig. 13. Relation II:

ω′
0 = (4ω0)

−1, ω+
Hω−

H = 1/4, (or equivalently
a+

0 (ag)a
−
0 (ag) = 4M2), a±

0 /M = (2r±(ag))/ag where
a = a0 and a = ap – Fig. 14.

• Properties of specific spacetimes. We studied the metric
bundles corresponding to a single BH spacetime (with
equal tangent spin ag). We analyzed the Kerr spacetime
in terms of metric bundles – Sect. 4.

• Proof of the BH–NS relation through the properties of
the corresponding metric bundles.

• Analysis of the frequencies �± of the spacetime by
using the maximum crossing of two metric bundles –
Eq. (22). We proved he existence of the corresponding
metric bundles and analyzed its significance for the hori-
zon construction and properties of a BH spacetime –
Tables 2 and 3; Figs. 13, 14, 15, 16,17 and Eqs. (19)
and (27).

• Identification of the Killing throats and bottlenecks and
metric bundles in the static and charged Reissner Nord-
ström solution and in the axisymmetric, electrically
charged, Kerr–Newmann spacetime. We proved that the
bending (curvature) of the Kerr metric bundles in πa

is related to the frame-dragging of the spinning space-
times. We noticed the different roles played by the elec-
tric and rotational charges – Eq. (28). We studied the
metric bundles (Q±

ω )2 in terms of the electric charge Q –
Eq. (35). In Sect. 1, we analyzed the off-equatorial case
of the Kerr and Kerr–Newman geometries. In Sect. 1, we
considered the relations between the areas of the hori-
zon and of the metric bundles regions in the extended
plane.
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Appendix A: analysis of the Kerr and Kerr–Newman
geometries: the off-equatorial case

In this appendix, we summarize the analysis presented in
Sects. 3, 4 and 5 for off-equatorial stationary observers in
Kerr and Kerr–Newman spacetimes. We focus on the pre-
sentation of the corresponding plots which contain all the
relevant information for this case (Figs. 29, 30, 31).

Appendix B: areas of the horizon and of the metric bun-
dles regions in π+

a

In this section, we analyze the area of the regions of π+
a in

Fig. 8 bounded by the curves a±
ω for ω = constant, between

PS and PL, including the entire collection of spacetimes
g ∈]g−

ω , g+
ω [ bounded by (g−

ω , g+
ω ). We compare this region

with the (inaccessible) section in π+
a bounded by the horizons

r±.
First, note that each region bounded by g±

ω can be decom-
posed into other non-disjoint metric bundles. In fact, as can
be seen in Fig. 8, the metric bundles g±

ω cross each other
in π+

a . This corresponds to the fact that for a fixed point
p = (a/M, r/M) ∈ π+

a , different frequencies are possible,
i.e., a light-like particle can have different orbital frequencies
corresponding to the two solutions ω±. To explore this aspect
and also the BH–NS connection, we introduce the radii

rβ/M ≡ 2

4ω2 + 1
, rν/M ≡ 1 − ω

ω
,

rπ/M ≡
√

1
ω2 + 6

ω
− 7ω + ω − 1

2ω
, (B1)

which are plotted in Fig. 11 as functions of the frequency ω. It
is clear that the functions {rβ, rν, rπ } are limiting radii. A gen-
eralization of this study is also discussed in Sect. 5, where we
consider the Reissner–Nordström and Kerr–Newman geome-
tries.

The areas A correspond to the regions of the extended
plane π+

a bounded by a±
ω and are confronted here with the

areas of the region bounded by the horizons A+
r± = π/2. An

analysis of these areas is shown in Fig. 32. We can write the
areas A as functions of the frequency ω of the metric bundles
g±
ω or, equivalently, the spin origins a0 = M/ω, as follows
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Fig. 29 Kerr–Newman spacetimes: off-equatorial analysis. Solutions
of ∂2

r ω± = 0 (orange and dashed curves) and ∂3
r ω± = 0 (dotted and

dotted-dashed curves), defining the Killing bottleneck of naked sin-

gularities. Solutions of gtt = 0 (black), defining the static limits, and
g−1
rr = 0 (red) defining the horizons. See also Fig. 31 for the case Q = 0

(Kerr spacetimes)

A(ω) = | fA(r, ω)|r∂+ − fA(r, ω)|0 | ,

fA(r) ≡ ω
[
c1ω + 4 log

[
(r + 2)ω2 + � + 1

] + (r − 3)�
] + i

(
1 − 3ω2

)
log(2[� − i(r + 1)ω]) − 4ω log(r + 2)

ω2 , (B2)

A = 1

ω2

[
3ω − 4ω log

(
r+
∂ + 2

) + i
(
3ω2 − 1

)
log(2 − 2iω)

+ i log
(−2ir+

∂ ω
) + ω

{−3iω log
(−2ir+

∂ ω
) − 4 log

(
ω2 + 1

)

+ 4 log
[(
r+
∂ + 2

)
ω2 + 1

]}]
, (B3)

where dimensionless quantities r → r/M have been used.
We also define the quantities Ā(ω) ≡ fA(r)|c1=0 and

� ≡ √
1 − r(r + 2)ω2, where fA(r, ω) is a function of the

frequency ω = M/a0 of the metric bundle and of the radius
r . Moreover, c1 is an integration constant. From Fig. 32, it is
clear that the areaA is a decreasing function of the frequency
ω, which is in agreement with the results of Fig. 8. Indeed,

the metric bundles shrink at the origins a0 < M , that is, for
frequencies ω0 = M/a > M , where g±

ω are all contained in
r ∈ [0, r−]. Viceversa, the area grows as the spin-mass ratio
of the NS increases. The right panel of Fig. 32 shows an area
A = constant with respect to the frequency ω and the radius
r/M . Special cases correspond to the limiting geometriesP�
and P⊗.

Finally, the evaluation of the areas inπ+
a takes into account

the curvature of the curves in the plane. Therefore, it is nec-
essary to consider some relative quantities reported below
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Fig. 30 Kerr spacetimes: off-equatorial analysis. The surfaces a±
ω (r, θ) as functions of the radial distance r in Cartesian coordinates (x, y) for

different frequencies values ω, including BHs and NSs – see also Figs. 31, 27 and 28. The spin functions are in Eq. (33) for Q = 0

Fig. 31 Kerr geometries: off-equatorial case. Solutions of ∂2
r ω± = 0

(orange and dashed curves) and ∂3
r ω± = 0 (dotted and dotted-dashed

curves), defining the Killing bottlenecks of naked singularities, gtt = 0

(black), defining the static limits, and g−1
rr = 0 (red), defining the hori-

zons. See also Fig. 29 for the case Q = 0 (Kerr spacetimes)

and represented in Fig. 32. Considering the quantities

�±aω ≡ a+
ω ± a−

ω ; where �+aω = 4M

(r + 2M)ω
,

�−aω =
2
√
r2ω2

[
M2 − r(r + 2M)ω2

]

(r + 2M)ω2M
, (B4)

and using r+
∂ in Eq. (16), we can obtain the area A of

the regions bounded by the curves a±
ω , between the points

PS and PL. The curves bending the area A are related to
solutions of the equation ∂2

ω�−aω = 0, which is solved
for r/M = √

(3ω2 + 2)/ω2/(
√

3 − 1), while the only
solutions ∂2

r/M�−aω = 0 are for the frequencies ω =√
2M2/(

√
r(r + 2M)(r + 3M)M) in the frequency range

ω ∈]0, 1.78015[, where the distance between the two curves

is extreme. These quantities, considering the variation of
�−aω with respect to the frequencies and the radius r respec-
tively, are related to the curvature of the �−aω, where the
extreme radius as function of the frequency ω is

r1
�+

ω

M
= 1

3

⎛
⎝ 3

√
27

ω2 + 3

√
81

ω4 + 60

ω2 − 27 + 10

+ 3

√
27

ω2 − 3

√
81

ω4 + 60

ω2 − 27 + 10 − 5

⎞
⎠

ω ∈ [0, 1.178] (B5)

r2
�+

ω

M
= 1

3

(
2
√

7 cos

[
1

3
cos−1

(
10ω2 + 27

7
√

7ω2

)]
− 5

)
,

ω > 1.178. (B6)
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Fig. 32 The areas A of the regions of the extended plane πa bounded
bya±

ω of Fig. 8. The areasA, Ā andAr± = π/2 of the region bounded by
the horizons r± in π+

a -region a ≥> 0-A+
r± are defined in Eq. (B2). Left

panel: area A as a function of the frequency ω. The areas Ar± and 2Ar±
are also shown. Frequencies corresponding to solutions Ar± = A and
2Ar± = A are pointed with vertical lines. The corresponding geome-
tries (a = M/ω) are shown. Center panel: area A as a function of the

frequency ω and radius r/M . The role of the frequencies ω = 2 and
ω = 0.5 is indicated. Right panel: curves A = constant as functions of
the frequency ω and radius r/M . The curvesA = 0 are red colored. The
area A, radius r+

∂ and ω−1 are also plotted. Negative areas correspond
to solutions a < 0. See also Fig. 9 for a 3D representation of these
regions
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