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Abstract Renormalization schemes and cutoff schemes
allow for the introduction of various distinct renormalization
scales for distinct couplings. We consider the coupled renor-
malization group flow of several marginal couplings which
depend on just as many renormalization scales. The usual
β functions describing the flow with respect to a common
global scale are assumed to be given. Within this framework
one can always construct a metric and a potential in the space
of couplings such that the β functions can be expressed as
gradients of the potential. Moreover the potential itself can be
derived explicitely from a prepotential which, in turn, deter-
mines the metric. Some examples of renormalization group
flows are considered, and the metric and the potential are
compared to expressions obtained elsewhere.

1 Introduction

Originally multi-scale renormalization group (RG) flows
were introduced to deal with physical problems involving
distinct energy scales [1]. On the other hand it is plausible
to consider multi-scale RG flows motivated by purely formal
arguments:

In dimensional regularization marginal couplings (i.e.
dimensionless in d = 4) acquire a dimension d − 4 which
requires the introduction of a scale μ, and in perturbation
theory the corresponding renormalized couplings depend on
t ≡ log(μ2/μ2

0) where μ0 serves to define initial condi-
tions for the running couplings. In the presence of several
marginal couplings ga , a = 1 . . . ng , it is standard to intro-
duce a single scale μ common to all couplings, since this
allows to construct RG equations for Green functions with
respect to an overall change of scale. However, a priori it is
allowed and possible to introduce as many parameters μi or
τi ≡ log(μ2

i /μ
2
0i ), i = 1...ng . An overall change of scale

a e-mail: ellwange@th.u-psud.fr

can still be defined provided all τi are related to an overall
scale t .

In the presence of an ultraviolet (UV) cutoff � the renor-
malization group can also be used to describe the running of
bare couplings with � keeping the renormalized couplings
fixed. A UV cutoff � must not necessarily be universal: Con-
sider, for example, a momemtum space cutoff of propagators
which decrease rapidly for p2 > �2. A priori it is possible to
chose different cutoffs for different fields. Although the num-
ber of fields (counting multiplets as single fields) does not
necessarily coincide with the number of marginal couplings
one obtains again the possibility to introduceng parameters τi
now defined as τi ≡ log(�2

i /μ
2
0). Distinct momentum space

cutoffs can also be introduced in the form of distinct form
factors attached to the vertices corresponding to marginal
couplings, as it happens automatically in the case of com-
positeness. Actually the so-called gradient flow in field space
(not to be confused with the here considered gradient flow
for couplings/β functions), originally introduced for gauge
fields on a lattice [2], serves also as a UV cutoff for correlation
functions of composite operators and could be generalized to
distinct cutoffs for distinct couplings. Finally Pauli–Villars
regularization allows for several distinct cutoffs as well.

Subsequently we will use the idea of ng scales τi indepen-
dently from whether these refer to renormalization points μi

or to UV cutoffs �i .
Computing the radiative corrections to vertices associated

to ng marginal couplings the various couplings and scales
will mix at least in higher loop order. Consequently, in general
each coupling ga will depend on each scale τi leading to a
system of β functions

β i
a(g) ≡ ∂ga

∂τi
. (1.1)

Assuming as many couplings ga as scales τi and linearly
independent β i

a(g) this set of partial derivatives can formally
be inverted to give ∂τi

∂ga
(g).
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On the other hand it remains possible to define a universal
overall scale (or a cutoff) t with respect to which the proper-
ties of a physical system change unless it is scale invariant.
Varying t the couplings ga satisfy standard (although scheme
dependent) RG equations ∂ga

∂t = βa(g). We will assume that
the scales τi are proportional to t such that

dτi

dt
≡ ∂τi

∂ga

∂ga
∂t

≡ ∂τi

∂ga
βa(g) = Ci (1.2)

where the constants Ci may differ from 1 for different scales
τi . But since these drop out (cancel) in the interesting quan-
tities below we will consider Ci = 1.

It is the aim of the present paper to show that the concept
of different scales τi leads naturally to the definition of a
gradient flow

ηab(g)βb(g) = ∂�(g)

∂ga
. (1.3)

In addition we find that the potential �(g) is related to a
prepotential P via

�(g) = dP(g(t))

dt
= βa

∂P(g)

∂ga
. (1.4)

In principle such a prepotential can always be constructed
if one solves the system of coupled RG equations for ga(t),
inserts the solutions into the potential �(g(t)), integrates
with respect to t and re-expresses t in terms of ga(t). In
practice these steps are hardly feasable, whereas within the
present approach the prepotential is related to the metric ηab

(see the next section) which allows for its construction.
The possibility to express β functions in terms of a metric

ηab(g) and a potential �(g) was observed first by Wallace
and Zia [3,4] for a multi-component ϕ4 theory. The consid-
eration of Weyl consistency conditions for local couplings in
a gravitational background in dimensional regularization led
Osborn and Jack to explicit expressions for a metric ηab(g)
and a potential �(g) [5–9]; the symmetry of the metric matrix
is possibly spoiled, however, in higher order in perturbation
theory.

A candidate ηabZ for a metric is the correlation function of
two composite operators l2d〈Oa(x)Ob(0)〉||x |=l (l denotes
an UV cutoff) where the composite operators Oa , Ob are
dual to the couplings ga , gb respectively. Such a metric was
introduced by Zamolodchikov [10] in order to show the irre-
versibility of the RG flux in d = 2 dimensional field theory
where the positivity of ηabZ can be shown.

It turned out to be difficult to demonstrate the irreversibil-
ity of the RG flow in d = 4 [5,6,11–21]. In particular there
remains the possibility of limit cycles [22,23], i.e. recurrent
trajectories related to non-vanishing β functions. Such field
theories are nevertheless conformal but the irreversible flow
concerns functions which differ from β functions [20].

Couplings ga can be considered as sources for composite
operators Oa , at least if promoted to local quantities ga(x).
Then a functional G(ga) can be defined such that derivatives
of G(ga) with respect to ga generate correlation functions of
operators Oa [24]. This allows to relate the Zamolodchikov
metric ηabZ ∼ 〈OaOb〉 to the second derivative of G, ηabZ ∼

∂2G
∂ga∂gb

. We are not very precise here since, within the present
framework of multiple scales, we find a somewhat different
expression for the metric ηab in (1.3).

The starting point of our approach is purely algebraic and
could find applications for RG flows beyond quantum field
theory. We will compare, however, our results for gradient
flows in some simple field theory models to those obtained
elsewhere.

2 Gradient flow from multiple scales

As stated in the Introduction we consider ng marginal cou-
plings ga depending on ng scales τi . We assume that the
matrix of partial derivatives ∂ga

∂τi
(g) can be inverted such that

∂τi
∂ga

(g) exists, and that Eq. (1.2) holds. (In case all τi are
replaced by a single scale t as it might be suggested by (1.2)
with Ci = 1, dga

dt (g) could not be inverted.)
We consider a prepotential P(τ (g)) (omitting indices of

ga and τi if these appear as arguments of functions); its total
derivative with respect to an overall scale t will be identified
with the potential �(τ(g)):

�(τ(g)) = dP(τ (g))

dt

= ∂P(τ (g))

∂ga
βa = ∂P(τ (g))

∂τi

∂τi

∂ga
βa (2.1)

with

βa = dga
dt

(2.2)

assumed to be known. Next we consider the derivative of
(2.1) with respect to ga :

∂

∂ga
�(τ(g)) =

(
∂

∂ga

∂P(τ (g))

∂τi

)
∂τi

∂gb
βb

+∂P(τ (g))

∂τi

∂

∂ga

(
∂τi

∂gb
βb

)
. (2.3)

Due to (1.2) the second term on the right hand side of (2.3)
vanishes. The first term on the right hand side of (2.3) can
be rewritten as

∂2P(τ (g))

∂τ j∂τi

∂τ j

∂ga

∂τi

∂gb
βb ≡ ηabβb , (2.4)

hence (2.3) assumes the form of a gradient flow,

∂

∂ga
�(τ(g)) = ηabβb (2.5)
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with

ηab = ∂2P(τ (g))

∂τ j∂τi

∂τ j

∂ga

∂τi

∂gb
. (2.6)

The metric (2.6) is manifestly symmetric and covariant under
redefinitions g → g′(g). Note that ηab differs from ∂2P

∂ga∂gb
;

the difference are terms of the form ∂P
∂τi

∂2τi
∂ga∂gb

. From (2.6)
positivity of the metric depends now on the positivity of
∂2P

∂τ j ∂τi
and properties of ∂τi

∂ga
on which we cannot make general

statements.
Independently from the positivity of ηab the above argu-

ments allow to formulate a potential flow for a general system
of β functions. We obtain no constraints on terms in the β

functions in the form of Weyl consistency conditions as in
dimensional regularization [5–9,20]. The explicit construc-
tion of the above gradient flow from a given set β functions
with respect to an overall scale t requires, however, to con-
sider some subtleties.

Given a set of ng β functions βa the first task is to find ng
independent solutions of (1.2) for τi (g),

∂τi (g)

∂ga
βa(g) = Ci , (2.7)

for nonzero constants Ci which may all be taken as 1 since
a constant rescaling of τi cancels in ηab. If the system is
not degenerate there exist ng independent solutions for τi (g)
which involve arbitrary functions ofng−1 expressionsϕk(g);
ϕk(g) are independent solutions of the set of corresponding
homogeneous (Ci = 0) equations (2.7).

In cases where the lowest order terms of βa are of the
form βa = ba g n

a + . . . (with n an integer �= 1, no sum over
a) it is natural to take τi (g) = −δai

1
ba(n−1)

g1−n
a + . . . such

that τi (g) = t to lowest order, and to construct the higher
order terms subsequently. (If the β functions are known to
a given order in perturbation theory it can be useful to sup-
plement them with formally higher order terms in g to find
analytic expressions for ∂τi

∂ga
satisfying (2.7). Explicit expres-

sions for τi (g) which require to integrate ∂τi (g)
∂ga

are actually
never required.) In other cases of βa one has some freedom
in the construction of ∂τi

∂ga
, but such redefinitions in the space

of τi drop out in the final quantities which depend on ga only.
With ∂τi

∂ga
(g) and its inverse ∂ga

∂τi
(g) at hand one can proceed

with the construction of a metric ηab. ηab has to satisfy inte-
grability conditions which can be derived as follows. Con-
sider the following derivatives of the prepotential P(τ (g)):

∂

∂ga

∂P(τ (g))

∂τi
= ∂2P(τ (g))

∂τi∂τ j

∂τ j

∂ga
= ηab

∂gb
∂τi

(2.8)

which imply the integrability conditions

∂

∂gc

(
ηab

∂gb
∂τi

)
= ∂

∂ga

(
ηcb

∂gb
∂τi

)
. (2.9)

In order to solve (2.9) it can be helpful to expand the deriva-
tives such that (2.9) becomes

∂ηab

∂gc

∂gb
∂τi

+ ηab
∂

∂gc

∂gb
∂τi

= ∂ηcb

∂ga

∂gb
∂τi

+ ηcb
∂

∂ga

∂gb
∂τi

.

(2.10)

Contracting (2.10) with ∂τi
∂gd

leads to

∂ηad

∂gc
− ∂ηcd

∂ga
= ηcbLad

b − ηabLcd
b (2.11)

with

Lad
b = ∂τi

∂gd

∂

∂ga

∂gb
∂τi

= −∂gb
∂τi

∂2τi

∂ga∂gd
. (2.12)

In the last step we have used

0 = ∂

∂ga
δdb = ∂

∂ga

(
∂gb
∂τi

∂τi

∂gd

)
= Lad

b + ∂gb
∂τi

∂2τi

∂ga∂gd
.

(2.13)

Given ∂τi
∂ga

(g) and its inverse ∂ga
∂τi

(g) it is straightforward

to compute Lad
b from the last term in (2.12).

Note that there are more integrability conditions (2.11)
than those which follow from (2.5) alone and read

∂

∂gc

(
ηabβb

)
= ∂

∂ga

(
ηcbβb

)
. (2.14)

However not all (symmetric) solutions ηab of (2.14) guaran-
tee that ηab is covariant under redefinitions g → g′(g). On
the other hand this is guaranteed by solutions ηab of (2.11);
it suffices to contract the last two terms in (2.8) with ∂τi

∂gd
.

Once a metric satisfying (2.11) has been obtained a potential
�(g) can be found by integration of (2.5), and a prepotential
can be found by integration of (2.8).

Again the solutions of the system of partial differential
differential equations (2.11) are not unique. In the consid-
ered cases we found no obstruction for diagonal metrics
ηab ∼ δab fa(g), but such ansätze do not always lead to
the simplest expressions for the diagonal elements fa(g) of
ηab. These ambiguities are not related to redefinitions in the
space of couplings since redefinitions would also affect the
β functions; these have been taken as fixed inputs, however.
In the next Section we consider some examples.

3 Examples

First we consider a system of 3 two-loop β functions for
gauge couplings where fermion loops generate mixings at
the two-loop level as in the Standard Model. We maintain
the notation g1, g2, g3 of the previous sections where ga are
related to the usual gauge couplings α by ga = αa

4π
. The β
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functions are written as

β1 = b10g
2
1 + b11g

3
1 + b12g

2
1g2 + b13g

2
1g3 ,

β2 = b20g
2
2 + b21g

2
2g1 + b22g

3
2 + b23g

2
2g3 ,

β3 = b30g
2
3 + b31g

2
3g1 + b32g

2
3g2 + b33g

3
3 . (3.1)

In the Standard Model we have [25]

b10 = 41

6
, b11 = 199

18
, b12 = 9

2
, b13 = 44

3
,

b20 = −19

6
, b21 = 3

4
, b22 = 35

4
, b23 = 12,

b30 = −7, b31 = 11

6
, b32 = 9

2
, b33 = −26 . (3.2)

It is fairly easy to find τi (g) which satisfy (2.7) to the
considered order with Ci = 1 and τi = t to lowest order:

τ1 = − 1

b10g1

− 1

b10

(
b11

b10
log g1 + b12

b20
log g2 + b13

b30
log g3

)
,

τ2 = − 1

b20g2

− 1

b20

(
b21

b10
log g1 + b22

b20
log g2 + b23

b30
log g3

)
,

τ3 = − 1

b30g3

− 1

b30

(
b31

b10
log g1 + b32

b20
log g2 + b33

b30
log g3

)
. (3.3)

The quantities ∂τi
∂ga

(g) and ∂ga
∂τi

(g) can now be obtained
straightforwardly. The integrability conditions (2.11) admit
solutions corresponding to an expansion of the metric ηab

around the unit matrix:

η11 = 1 + b21g3
2 + b31g3

3

3b10g2
1

,

η22 = 1 + b12g3
1 + b32g3

3

3b20g2
2

,

η33 = 1 + b13g3
1 + b23g3

2

3b30g2
3

. (3.4)

With this metric one finds a potential �(g) of the form

�(g) = 1

3

(
g3

1

(
b10 + 3

4
b11g1 + b12g2 + b13g3

)

+g3
2

(
b20 + 3

4
b22g2 + b21g1 + b23g3

)

+g3
3

(
b30 + 3

4
b33g3 + b31g1 + b32g2

) )
. (3.5)

By construction �(g) can be derived from a prepotential
P(g) as in (2.1), �(g) = ∂P(g)

∂ga
βa , with

P(g) = 1

6
(g2

1 + g2
2 + g2

3)

− 1

36

(
b11g3

1

b10
+ b22g3

2

b20
+ b33g3

3

b30

)
. (3.6)

It is remarkable that the prepotential P(g) does not depend
on the mixing terms in the β functions.

The metric (3.4) and the potential (3.5) differ from the ones
for the same system of β functions in [22] where the poten-
tial consists in quartic terms in ga only (to two-loop order).
They differ also from the metric ηJ O obtained by Jack and
Osborn from Weyl consistency conditions [6]. In the space
of gauge couplings their metric ηJ O is also diagonal, but of
the form ηaaJ O ∼ Na

g2
a

with constants Na to two-loop order. As

a consequence consistency conditions among the two-loop
terms of the β functions (in dimensional regularisation and
minimal subtraction) can be derived, see also [26]. We found,
however, that an expansion of ηab around ηaaJ O cannot satisfy
the integrability conditions (2.11). (We recall that the metric
ηabJ O is not guaranteed to be symmetric to higher loop order.)
Here, on the other hand, we obtain the potential from a simple
prepotential.

The other example is more involved already to one-loop
order. It concerns a scalar with quartic self interaction and
a Yukawa coupling to a Fermion, like the Higgs-top sector
of the Standard Model with a quartic Higgs coupling λ|H |4
and a top quark Yuhawa coupling ht . Our notation is

g1 = h2
t

16π2 , g2 = λ

16π2 . (3.7)

The general one-loop β functions are

β1 = a1g
2
1 , β2 = b1g

2
2 + b2g1g2 + b3g

2
1 (3.8)

where in the Standard Model

a1 = 9

4
, b1 = 12 , b2 = 6 , b3 = −3 . (3.9)

The general solution of Eq. (2.7) (again with Ci = 1) for
τi (g) is of the form

τi = − 1

a1g1
+ Fi (X) (3.10)

where Fi (X) is an arbitrary function of

X = a1

w
log

(
w − α

w + α

)
− log g1 where

w =
√

(b2 − a1)2 − 4b1b3 , α = 2b1
g2

g1
+ b2 − a1 .

(3.11)

(The argument of the root w is positive for b3 < 0, b1 > 0
as in the Standard Model.)
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We have studied various ansätze for Fi (X)without observ-
ing substantial differences in the final results (since related
by redefinitions of τi ); subsequently we consider the simplest
possibility

τ1 = − 1

a1g1
, τ2 = − 1

a1g1
+ X . (3.12)

Among the solutions of the integrability conditions (2.11)
for the metric ηab we discuss the one which allow for expan-
sions of the potential �(g) and the prepotential P(g) in pow-
ers of couplings (without logarithms or dilogarithms). This
metric is off-diagonal and, using β2 from (3.8), can be written
as

η11 = 1

3a1g5
1

β3
2 − g2

2g4
1

β2
2

+
(

3

10
b2

1g
4
2 − 1

6
(b2

2 + 2b1b3)g
2
1g

2
2 + 3

2
b2

3g
4
1

)

g2

g4
1

+ b2a1g2
2

3g2
1

− b3
3g1

3a1
,

η22 = 1

g2
1

(β2 − a1g1g2)(2b1g2 + (b2 − a1)g1) ,

η12 = 1

g3
1

(β2 − a1g1g2)(b3g
2
1 − b1g

2
2) . (3.13)

The corresponding potential �(g) is

�(g) = β3
2

3g2
1

− b3
3g

4
1

12

−a1g2
2

g1

(
4

5
b2

1g
3
2 + 3

2
b1b2g1g

2
2

+2

3
g2g

2
1(b2

2 + 2b1b3) + b2b3g
3
1

)

+a2
1g

3
2

(
1

2
b1g2 + 1

3
b2g1

)
. (3.14)

It can be derived as in (2.1) from the prepotential

P(g) = 1

9
(2b1b3 + b2

2 − 2b2a1 + a2
1)g3

2

+1

3
b3(b2 − a1)g1g

2
2 + 1

3
b2

3g
2
1g2

−b3
3g

3
1

36a1
+ b1(b2 − a1)g4

2

6g1
+ b2

1g
5
2

15g2
1

. (3.15)

Note that the matching of the various coefficients in �(g) =
β1

∂P(g)
∂g1

+ β2
∂P(g)
∂g2

is highly nontrivial, and that the expres-
sion for P(g) is actually somewhat simpler than the one for
�(g). But both expressions for the metric and the potential
differ considerably from the ones in [6] and [22].

4 Conclusions

Using the formalism of multi-scale RG equations we have
shown how a potential flow for a set of ng couplings and
corresponding β functions can always be constructed. Irre-
versibility of the RG flow depends on the positivity of the
metric. Even within the present framework, constructions of
a metric and a correponding potential are not unique since the
integrability conditions (2.12) have different solutions. The
existence of one solution leading to a positive metric would
imply the irreversibility of the RG flow of the corresponding
system. This cannot be expected in general since the present
formalism holds equally for systems with limit cycles. On the
other hand we see, at present, no systematic way to search
for (or to exclude) solutions of the integrability conditions
(2.12) leading to a positive metric. It would be desirable to
derive conditions on the functions βa considered here for the
existence of a positive metric.

A particular feature of the present construction is that the
potential �(g) derives always from a prepotential P(g) as in
(1.4), related to the metric as in (2.6). Contracting (1.3) with
βa and using (1.4) one obtains

βaη
abβb = d2P(g(t))

dt2 (4.1)

which may be helpful for the study of global features of the
RG flow.

A holographic formulation of the RG flow via Hamilton-
Jacobi equations for generic quantum field theories leads
always to a gradient flow for β functions [27]. Conversely
a gradient flow for β functions is a pre-requisit for a holo-
graphic formulation of the RG flow. The present approach
may thus find applications in this direction, but also in con-
texts beyond quantum field theory.

In order to extend the range of possible applications of the
present formalism it will be useful to generalise it towards
non-marginal couplings such as mass terms. Then, within
mass dependent subtraction schemes, the β functions may
depend explicitely on the scale(s) which cases require further
studies.

Finally the present approach requires as many scales τi as
couplings ga . If this assumption is relaxed the reversibility
of the matrices of partial derivatives and/or the construction
of a metric ηab imply constraints on the β functions which
merit further investigations.
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