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Abstract The multi-messenger observations of GW170817
indicated a new independent measurement of the Hubble
constant (H0). We obtain the low-redshift cosmological con-
straints on H0 by combining this gravitational wave mea-
surement with the observations of distance scales in baryon
acoustic oscillations. Using Fisher information matrix, we
estimate the projected constraints on H0 from Einstein Tele-
scope. Simulating 103 gravitational-wave standard sirens
from binary neutron star coalescences, we find that Einstein
Telescope alone can constrain H0 almost as tightly as Planck
final data release in the cosmological constant plus cold dark
matter model. This constraint can be further improved by
combining Einstein Telescope with Dark Energy Spectro-
scopic Instrument. The Hubble constant tension can thus be
checked by observing the standard sirens with Einstein Tele-
scope in the future.

1 Introduction

The recent observations of GW170817 [1] in both gravi-
tational waves (GWs) and electromagnetic waves provide
us a gravitational-wave “standard siren” measurement of
the Hubble constant [2]. Advanced Laser Interferometer
Gravitational-Wave Observatory (aLIGO) and Virgo can esti-
mate the luminosity distance of GW170817 directly, and does
not require any form of cosmic “distance ladder”. In other
words, the GW standard sirens are self-calibrated. There-
fore, this is an independent measurement totally different
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from observations of the luminosity distance of Cepheids [3]
and the cosmic microwave background (CMB) [4]. On the
other hand, the electromagnetic wave analysis can infer the
Hubble constant by measuring the recession velocity [2]. The
Hubble’s law says that the recession velocity is a product of
H0 and the proper distance. Therefore, the Hubble constant
derived in this way is H0 = 70.0+12.0

−8.0 km s−1 Mpc−1 at 68%
confidence level (CL) [2]. A recent work in Ref. [5] found a
precise distance to the host galaxy of GW170817 and then
shown H0 = 71.9 ± 7.1 km s−1 Mpc−1. Ref. [6] obtained
H0 = 69.9+4.7

−4.8 km s−1 Mpc−1 by combining the GW170817
and its electromagnetic (EM) counterpart GRB170817A with
its radio counterpart.

The GW170817 constraints on H0 are significantly less
stringent than the pre-existing typical constraints, even
though they are compatible with the latters. A local mea-
surement of H0, derived from the luminosity distances of
Cepheids, shows H0 = 73.24 ± 1.74 km s−1 Mpc−1 at
68% CL [3]. The CMB constraint on H0, obtained from
a global fitting of the CMB data released by Planck 2015,
gives H0 = 67.8 ± 0.9 km s−1 Mpc−1 at 68% CL [4]. Both
constraints are much tighter than the GW constraint on H0.
However, the local measurement of H0 is obviously in ten-
sion with the CMB constraint by more than 3σ . The former
may be affected by residual systematics [7]. The latter relies
on the assumption of cosmological models, for example,
the spatially-flat base Λ Cold Dark Matter model (ΛCDM)
model. Unfortunately, it is beyond the scope of the recent
GW standard siren measurement to distinguish them from
each other.

The GW170817 constraint on H0 in Ref. [2] may bring
underlying influences on the cosmological parameter infer-
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ences. It can be viewed as a prior of H0 in cosmological global
fittings. A recent work in Ref. [8] combined it with the Planck
2015 observations of the CMB to explore a twelve-parameter
extended ΛCDM scenario, and found that an inclusion of the
recent GW prior of H0 can significantly reduce the allowed
parameter space.

As standard rulers, the distance scales measured in the
baryon acoustic oscillation (BAO) can also be able to con-
strain H0. In the ΛCDM model, for example, Ref. [9] deter-
mined H0 with a 1.3% uncertainty using several BAO dis-
tance scales. Ref. [10] determined H0 with a 3.38% uncer-
tainty using several BAO distance scales including the recent
anisotropic BAO measurements at nine effective redshift
bins. Ref. [11] obtained H0 = 67.87+1.21

−1.86 km s−1 Mpc−1

by combining several BAO distance scales with the Alcock–
Paczynski test.

In this work, we will study the constraints on the Hub-
ble constant as well as other cosmological parameters by
combining the GW170817 measurement of H0 [2] with the
measurements of distance scales in the BAO [12–15]. Both
observations have relatively lower redshifts than the CMB.
Beside the Hubble constant, we focus on the spatial curvature
and the equation of state of the dark energy. Extending the
parameter space can more or less reduce the dependence on
cosmological models. We wonder if an inclusion of the recent
GW standard siren measurement can significantly improve
the constraints on these cosmological parameters. In addi-
tion, we will estimate the projected constraints on the cos-
mological parameters by combining the Einstein Telescope
(ET) [16] with the Dark Energy Spectroscopic Instrument
(DESI) project [17]. The technique of Fisher information
matrix will be utilized for our estimation in this work. We
expect that the two low-redshift cosmological observations
can provide tighter constraints on the Hubble constant as well
as other cosmological parameters in the future.

The rest of this paper is arranged as follows. Section 2
introduces the cosmological models and the data compila-
tions. Section 3 presents the results of our parameter infer-
ences. Section 4 demonstrates to what extent the luminosity
distance can be measured by the ET. Section 5 shows the
projected constraints on cosmological parameters from the
ET and the DESI project. The conclusions and discussions
are given in Sect. 6.

2 Cosmological models and data compilations

The Hubble constant is correlated with the spatial curvature
and the equation of state of the dark energy. For a given value
of the angular diameter distance to the last scattering surface,
one can always adjust the values of the two parameters to
compensate the variation of H0 in principle. Using both BAO
and GW data sets, we explore several extended cosmological

models taking into account of the spatial curvature, or the
equation of state of the dark energy, or both of them.

In the Friedmann–Lemaitre–Robertson–Walker Universe,
the angular diameter distance DA(z) to an astrophysical
object at redshift z is defined as

DA(z) = 1

1 + z
Sk

(∫ z

0

dz′

H(z′)

)
, (1)

where the function Sk(x) is defined as

Sk(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sinh(H0
√

Ωk x)
H0

√
Ωk

(Ωk > 0),

x (Ωk = 0),

sin(H0
√−Ωk x)

H0
√−Ωk

(Ωk < 0),

(2)

and the Hubble parameter H(z) is given by

H2(z)/H2
0 = Ωr (1 + z)4 + Ωm(1 + z)3 + Ωk(1 + z)2

+(1 − Ωr − Ωm − Ωk) f (z) , (3)

f (z) = exp

(∫ z

0
3(1 + w(z′)) dz′

1 + z′

)
, (4)

where w(z) denotes the equation of state of the dark energy.
The parameters Ωr , Ωm , and Ωk denote nowadays energy-
density fractions of radiations, non-relativistic matter, and
spatial curvature, respectively. To calculate the radiation den-
sity today, we refer to the formula Ωr = Ωγ (1+0.2271Neff ).
We use the Planck best-fitting results, namely, the nowa-
days energy-density fraction of photons Ωγ = 2.469 ×
10−5h−2

0 , and the relativistic degrees of freedom Neff =
3.046 [18,19]. Here we parameterize the Hubble constant
as H0 = 100h0 km s−1 Mpc−1.

The sound horizon at the redshift zd (the moment when the
baryons decoupled from the Compton drag of the photons)
can be calculated by using the Eisenstein and Hu formula
[20]. It is given by

rs(zd) = 1√
3H0

∫ 1
1+zd

0

da

a2E(a)
√

1 + 3Ωb
4Ωγ

a
, (5)

where zd is given by a fitting formula, i.e. ,

zd = 1291(Ωmh2
0)

0.251

1 + 0.659(Ωmh2
0)

0.828

(
1 + b1(Ωbh

2
0)

b2
)

, (6)

b1 = 0.313(Ωmh
2
0)

−0.419
(

1 + 0.607(Ωmh
2
0)

0.674
)

, (7)

b2 = 0.238(Ωmh
2
0)

0.223 . (8)

Here a = 1/(1 + z) denotes the scale factor of the Universe
at redshift z. In this paper, we fix Ωbh2

0 to its best-fit value
obtained from Planck 2015 data release [4], namely, Ωbh2

0 =
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0.02222 ± 0.00023. The variations of Ωbh2
0 within its error

bar do not significantly shift our results.
The independent parameters which will be explored in

this paper are composed of H0, Ωm , Ωk , and the param-
eters in w(z) parameterizations. To study the constraints
on H0, we introduce a single parameter to parameterize
w(z), and investigate the following models. First, we explore
the parameter space {H0, Ωm} of the ΛCDM model. Sec-
ond, we discuss the ΩkΛCDM model with parameter space
{H0, Ωm, Ωk}. Third, we study the generic dark energy
model, i.e., w(z) = w, which is a constant. This is called
the wCDM model, and the parameter space is spanned by
{H0, Ωm, w}. Lastly, we consider the ΩkwCDM model, and
the parameter space is {H0, Ωm, Ωk, w}. We set priors as
follows: h0 ∈ [0.4, 1], Ωm ∈ [0.1, 0.9], Ωk ∈ [− 0.9, 0.9],
and w ∈ [− 3.5,− 0.5]. All priors are uniform. To estimate
the projected constraints on H0 from future observations,
we further consider the Chevallier–Polarski–Linder (CPL)
parameterization [21,22]. In the CPL model, one assumes
w(z) = w0+wa(1−a). Herew0 andwa are constants. There-
fore, the parameter space is spanned by {H0, Ωm, w0, wa}.
If the parameter space is enlarged as {H0, Ωm, Ωk, w0, wa},
the model is denoted as ΩkCPL instead.

To explore the parameter space, we adopt the Cosmolog-
ical Mente Carlo (CosmoMC) package [23], which is a pub-
licly available Markov-Chain Monte-Carlo (MCMC) sam-
pler for cosmological parameter inferences. We combine the
GW170817 measurement of the Hubble constant [2] with
the measurements of distance scales in the BAO [12–15].
Therefore, the adopted datasets include: the “BAO” which
only includes the BAO measurements, and the “BAO+GW”
which combines the BAO measurements and the GW170817
constraint on H0.

For the measurements of distance scales in the BAO, we
adopt the 6-degree Field Galaxy Survey [12], the Sloan Dig-
ital Sky Survey (SDSS) DR7 Main Galaxy Sample [13], the
tomographic BAO analysis of the SDSS III Baryon Oscilla-
tion Spectroscopic Survey (BOSS) DR12 combined sample
[14], and the SDSS IV extended Baryon Oscillation Spec-
troscopic Survey (eBOSS) DR14 quasar sample [15]. For
the BOSS DR12 data, we use the tomographic nine effec-
tive redshift bins. For each bin, the anisotropic BAO estima-
tors are given by DA(z)

rs (zd )
and H(z)rs(zd). For the other three

data points, we refer to the isotropic BAO estimator which is
defined as the volume-averaged effective distance, namely,
DV (z) = (1 + z)2/3D2/3

A (z)z1/3H(z)−1/3.
For the GW170817 constraint on H0 [2], we introduce a

new likelihood of this data point into the CosmoMC pack-
age. Due to a highly non-Gaussian probability distribution
function (PDF) of H0 in GW170817, we explicitly utilize
the PDF of H0 shown in Fig. 1 of Ref. [2] as a H0 prior in
the CosmoMC.

3 The H0 constraints from the GW170817 standard
siren and the BAO standard rulers

For the four cosmological models, we list the 68% CL con-
straints on the independent parameters and the best-fit χ2 in
the Tables 1, 2, 3 and 4. We depict the one dimensional (1D)
PDFs of the independent parameters and the two dimensional
(2D) 68% and 95% CL contours of any two independent
parameters in Figs. 1, 2, 3 and 4.

For the ΛCDM model, the 68% CL constraints on H0

and Ωm are shown in Table 1, and the 1D PDFs and the 2D
contours are depicted in Fig. 1. As expected, the BAO only
dataset reproduces the H0 constraint in Ref. [10]. After the
GW data is added, we do not find significant improvements to
this constraint. Therefore, the BAO measurements dominate
the constraints on cosmological parameters in the ΛCDM
model.

For the ΩkΛCDM model, the 68% CL constraints on
H0, Ωm and Ωk are shown in Table 2, and the 1D PDFs
and the 2D contours are depicted in Fig. 2. Compared with
the ΛCDM model, our cosmological constraints become not
as tight as before due to an additional independent param-
eter Ωk . The BAO data constrains the Hubble constant as
71+9

−20 km s−1 Mpc−1, while the BAO+GW data constrains

the Hubble constant as 73.1+5.2
−10.0 km s−1 Mpc−1. The uncer-

tainties on H0 are reduced by around a half by adding the
GW170817 data. We obtain similar results for the other two
parameters. Therefore, the GW measurement, combining
with the BAO distance measures, can significantly improve
the constraints on cosmological parameters in the ΩkΛCDM

Table 1 The 68% CL constraints on the independent parameters of the
ΛCDM model

ΛCDM BAO BAO+GW

H0 69.6+2.1
−2.4 69.6+2.0

−2.3

Ωm 0.324+0.034
−0.039 0.324+0.032

−0.037

χ2
min 20.2 26.3

χ2
min

DOF 1.06 1.32

Table 2 The 68% CL constraints on the independent parameters of the
ΩkΛCDM model

ΩkΛCDM BAO BAO+GW

H0 71+9
−20 73.1+5.2

−10.0

Ωm 0.318+0.14
−0.091 0.343+0.049

−0.068

Ωk 0.01+0.16
−0.32 −0.04+0.14

−0.10

χ2
min 19.8 26.3

χ2
min

DOF 1.10 1.38
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Table 3 The 68% CL constraints on the independent parameters of the
wCDM model

wCDM BAO BAO+GW

H0 82+20
−7 77.4+6.5

−11.0

Ωm 0.358+0.053
−0.034 0.348 ± 0.042

w −1.46+0.44
−0.40 −1.27+0.38

−0.17

χ2
min 19.8 26.2

χ2
min

DOF 1.10 1.38

Table 4 The 68% CL constraints on the independent parameters of the
ΩkwCDM model

ΩkwCDM BAO BAO+GW

H0 71+10
−20 73.1+5.2

−10.0

Ωm 0.272+0.088
−0.13 0.294+0.064

−0.073

Ωk 0.18+0.22
−0.19 0.13+0.18

−0.11

w −1.78+0.88
−0.39 −1.82+0.91

−0.40

χ2
min 19.3 25.6

χ2
min

DOF 1.14 1.42

Fig. 1 The 1D PDFs and the 2D contours for the independent param-
eters in the ΛCDM model

model. In addition, the value of Ωk is consistent with 0 within
68% CL.

For the wCDM model, the constraints on H0, Ωm and w

are shown in Table 3, and the 1D PDFs and the 2D contours
are depicted in Fig. 3. Compared with the ΛCDM model, the
uncertainties become larger by around 30% for Ωm , and by
several times for H0. The Hubble constant is constrained to
be 82+20

−7 km s−1 Mpc−1 using the BAO data. After adding

the GW data, it is improved to be 77.4+6.5
−11.0 km s−1 Mpc−1.

The constraint on H0 is thus dominated by the GW data. The

Fig. 2 The 1D PDFs and the 2D contours for the independent param-
eters in the ΩkΛCDM model

Fig. 3 The 1D PDFs and the 2D contours for the independent param-
eters in the wCDM model

constraints on two other parameters are also improved by
adding the GW data. Therefore, the GW measurement, com-
bining with the BAO distance measures, can significantly
improve the cosmological constraints on the wCDM model.
In addition, w is well consistent with the cosmological con-
stant which takes w = −1.

For the ΩkwCDM model, the 68% CL constraints on
H0, Ωm and w are shown in Table 4, and the 1D PDFs
and the 2D contours are depicted in Fig. 4. The cosmologi-
cal constraints become significantly looser than those in the
former three models. The Hubble constant is constrained
to be 71+10

−20 km s−1 Mpc−1 using the BAO data, while to

be 73.1+5.2
−10.0 km s−1 Mpc−1 using the BAO+GW data. The

uncertainty is reduced by a half by adding the GW170817
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Fig. 4 The 1D PDFs and the 2D contours for the independent param-
eters in the ΩkwCDM model

data. For three other parameters, the constraints also become
tighter after adding the GW170817 data. Therefore, the GW
measurement, combining with the BAO distance measures,
can significantly improve the constraints on cosmological
parameters in the ΩkwCDM model. In addition, the value of
Ωk is well consistent with 0, and w is well consistent with
−1.

In summary, the GW170817 measurement introduces lit-
tle influence on the ΛCDM model. However, it dominates
the cosmological constraints on H0 and improves the con-
straints on other parameters for the three extended cosmo-
logical models which introduce the spatial curvature, or the
generic dark energy, or both. In principle, we can also extend
our studies to the CPL parameterization of dark energy. How-
ever, we find that the present data combinations can not pro-
vide tight constraints on wa . In the following sections, we
will show the projected constraints on wa from future low-
redshift observations. Our predictions will answer why we
can not constrain wa using the present data combinations.

4 Luminosity distance measured by Einstein Telescope

There is only a single GW standard siren which has been
detected by the aLIGO and Virgo detectors. The H0 con-
straint in Ref. [2] is expected to be improved if more and
more GW standard sirens were captured in the future. A
work shown that ΔH0/H0 ∼ 0.042 will be achieved after
the third observational run of aLIGO and Virgo [24]. The
ET [16], a third-generation ground-based GW detector, is
designed with higher sensitivity than the second-generation
aLIGO and Virgo. More GW standard sirens from binary
neutron star coalescences are expected to be detected by the

ET. In this section, we will demonstrate to what extent the
luminosity distance of the GW sources can be measured by
the ET in the future.

For a coalescence of a neutron binary, the waveform
of GW in an inspiral stage can be written as a 3.5 post-
Newtonian (PN) (i.e., at order (v/c)7 beyond Newtonian
gravity) formalism [25–33]. This formula includes the effect
of gravitational radiation reaction. Over a single period, the
change of orbital frequency is negligible. Therefore, the sta-
tionary phase approximation (SPA) can be employed to com-
pute the waveform of GWs [34]. In the frequency domain,
the waveform of GWs in the source frame is given by

H( f ) = A f −7/6 exp[i(2π f tc + π/4 + ψ( f ) − ϕ(2,0))] ,

(9)

where one takes the following expressions

A =
√

5

96

M5/6
c

π2/3dL

√
[F+(1 + cos2(ι))]2 + [F×2 cos(ι)]2 ,

(10)

ψ( f ) = ψc + 3

128η

7∑
k=0

ψk(πM f )(k−5)/3 , (11)

ϕ(2,0) = tan−1
(

− 2 cos(ι)F×
(1 + cos2(ι))F+

)
. (12)

Here f is the GW frequency, dL is a luminosity distance to the
binary, tc is a coalescence time, ψc is an orbital coalescence
phase, and ι is an inclination angle between the line of sight
and the orbital angular momentum of the binary. dL can be
written as

dL = (1 + z)2DA . (13)

A description of parameters ψk can be found in Ref. [35].
Conventionally, one represents the component masses m1

and m2 as a symmetric mass ratio η = m1m2/(m1 + m2)
2

and a chirp massMc = (m1+m2)η
3/5. The total mass is thus

given by M = Mcη
−3/5. One should notice that the above

formulae in Eqs. (9)–(12) are established in the source frame.
However, the GWs would be detected in the observer frame.
To transform to the observer frame, one should substitute mi

(i = 1, 2) in the above formulae with mi (1 + z), where z is
a cosmological redshift of the GW source.

The antenna pattern functions F+,× in Eq. (10) describe
the responses of an interferometer to a GW signal propagat-
ing from a polar angle θ and an azimuthal angle φ with a
polarization angle ψ . As a possible design, the ET has three
interferometers with opening angles of π/3 and 10 km length
arms. Its antenna pattern functions are given by
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F (1)
+ (θ, φ, ψ) =

√
3

2

[
1

2
(1 + cos2(θ)) cos(2φ) cos(2ψ)

− cos(θ) sin(2φ) sin(2ψ)

]
, (14)

F (1)
× (θ, φ, ψ) =

√
3

2

[
1

2
(1 + cos2(θ)) cos(2φ) sin(2ψ)

+ cos(θ) sin(2φ) cos(2ψ)

]
, (15)

F (2)
+,×(θ, φ, ψ) = F (1)

+,×(θ, φ + 2π/3, ψ), (16)

F (3)
+,×(θ, φ, ψ) = F (1)

+,×(θ, φ + 4π/3, ψ), (17)

where the superscript (a) indicates the ath interferometer. The
coefficient

√
3/2 arises from the π/3 opening angle of the

ET [36,37].
In the frequency domain, the parameter space of the wave-

form is spanned by a set of nine independent parameters,
namely, {Mc, η, tc, ψc, ι, ψ, dL , θ, φ}. However,
the incident direction (θ , φ) of a GW standard siren can
be exactly gotten by observing its electromagnetic coun-
terpart. Therefore, a set of only seven independent param-
eters are left here. For the sake of simplicity, we denote
them with pi = {lnMc, ln η, tc, ψc, ι, ψ, ln dL}, where
i = 1, 2, 3, . . . , 7.

The capability of a GW detector to measure a GW signal
is determined by its noise power spectral density (PSD). For
all the three interferometers of the ET, we use the same PSD
which is called ETB [38]. This PSD is expressed as

Sn( f ) = 10−50 × (2.39 × 10−27x−15.64 + 0.349x−2.145

+1.76x−0.12 + 0.409x1.10)2Hz−1 . (18)

where we define a dimensionless quantity x = f/(100Hz).
The Fisher information matrix [34,39,40] is performed to

estimate the projected constraints on cosmological parame-
ters from future GW observations. For the a-th interferome-
ter, the Fisher matrix is defined as

F (a)
i j =

〈
∂H(a)( f )

∂pi
,
∂H(a)( f )

∂p j

〉
. (19)

In the above definition, the angle bracket 〈〉 denotes a scalar
product, i.e.

〈h1, h2〉 ≡ 4
∫ fupper

flower

h1( f )h∗
2( f ) + h∗

1( f )h2( f )

2Sn( f )
d f ,

(20)

where a superscript ∗ denotes a conjugation. For the ET,
we choose flower = 1Hz, and Sn is essentially large for
f < 1Hz. Following Ref. [36], we assume that the end
of an inspiral regime occurs when its radiation frequency
reaches fupper = 2 fLSO, where fLSO = 1/(63/22πMobs).

Here Mobs = M(1+z) is the total mass in the observer frame.
For multiple interferometers, the Fisher matrix is defined as
follows

F =
∑
a

F (a) = F (1) + F (2) + F (3) , (21)

which is a summation of all the Fisher matrices for single
interferometers. For the ET, the sum runs from 1 to 3 due to
there being three interferometers in total. Therefore, we get
the second equality in last equation.

We focus on the GW events which are generated by the
mergers of the neutron star binaries. The short gamma-ray
bursts will also be generated as the electromagnetic coun-
terparts. They are believed to be highly beamed, since the
gamma rays are emitted into a narrow cone which is almost
perpendicular to the orbital plane of the inspiral. The incli-
nation angle ι is thus narrow [41]. We assume it to satisfy
a bimodal normal distribution within the range [0◦, 180◦],
namely,

P(ι) = 1√
2πσ

×
⎧⎨
⎩

exp
(
− (ι−ι0)2

2σ 2

)

exp
(
− (ι−ιπ )2

2σ 2

) , (22)

where we take ι0 = 0◦, ιπ = 180◦ and σ = 20◦. This prior
distribution of ι can be taken into account by adding an extra
term to the Fisher matrix.1 Therefore, we obtain the following
transformation:

Fi j −→ Fi j + δikδ jk

σ 2 , (23)

where we take k = 5 due to ι = p5. Without such a prior, the
uncertainties on dL and ι will be badly constrained because
of a high degeneracy between them.

The root-mean-square (rms) uncertainty on the a-th
parameter pa is given by the a-th diagonal component of the
covariance matrix C , i.e. Δpa = √

Caa . The Cramer–Rao
bound indicates an inequality of the form C ≥ F−1, where
F is called Fisher matrix and F−1 means an inverse of F .
Similar to a previous work [42], we employ the Cholesky
decomposition to get the inverse matrix here. Therefore, a
lower bound on the rms uncertainty of the i-th parameter is
given by

σpi =
√

(F−1)i i . (24)

Therefore, the projected constraints on any pi can be inferred
by calculating the Fisher matrix. In addition, a non-diagonal

1 A method to add a Gaussian prior to Fisher matrix can be found via this
link: http://www.stat.tamu.edu/~jlong/astrostat/fall2015/Fishermatrix.
pdf.
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element of (F−1)i j describes a correlation between pi and
p j . Besides, we need to consider the effect of weak lensing
on the luminosity distance. Similar to Ref. [43], we assume
that the uncertainty due to weak lensing satisfies

σl = 0.05z . (25)

Therefore, the total uncertainty on the luminosity distance is
given by

Δ ln dL =
√

σ 2
o + σ 2

l , (26)

where σo is given by σ7 in Eq. (24) due to ln dL = p7. The
above discussion is available for a single GW event from the
merger of neutron star binaries. In the next section, we will
simulate multiple standard sirens to infer the constraints on
the cosmological parameters.

5 Projected constraints on H0 from ET and DESI

In this section, we will estimate the projected constraints on
H0 from future GW and BAO observations. As mentioned
in last section, the ET has higher sensitivity than aLIGO
and Virgo, and is expected to observe more standard sirens.
On the other hand, the BAO distance measures are expected
to be improved by the next-generation instruments of dark
energy measurement, e.g. the DESI project [17]. Combin-
ing ET with DESI, we wonder if the constraint on H0 can
be improved significantly in the future. In this section, we
explore six cosmological models, i.e. ΛCDM, ΩkΛCDM,
wCDM, ΩkwCDM, CPL, and ΩkCPL. Note that the param-
eter w in (Ωk)wCDM is also written as w0 here.

5.1 Constraints on H0 from the ET

As mentioned in Sect. 1, the GW standard sirens are self-
calibrated, implying that the luminosity distance can be
measured without the necessity of any distance ladders.
Meanwhile, their redshifts can be measured by observing
the electromagnetic counterparts. Therefore, one can uti-
lize the dL − z relation to infer the cosmological parame-
ters. As mentioned in Sect. 2, we focus on the parameters
h0, Ωm, Ωk, w0, wa . Based on Planck 2015 data release
[4], we set h0 = 0.673, Ωm = 0.313, Ωk = 0, w0 =
−1, wa = 0 as the fiducial model.

We utilize the Fisher information matrix to predict the
uncertainties on H0 and other cosmological parameters. For
a set of multiple standard sirens, the Fisher matrix is defined
as follows

Fi j =
∑
k

∂i (ln dL(k))∂ j (ln dL(k))

(Δ ln dL(k))2 , (27)

where both i and j run from 1 to 5, denoting the five inde-
pendent parameters {w0, wa, Ωm, Ωk, h0} in order, and
k denotes the k-th GW event located at {zk, γ̂k}. Here zk
denotes the redshift of k-th event, and γ̂k stands for a set
of four angle parameters {θ, φ, ψ, ι}k . Not all of the
binary neutron star coalescences are associated with elec-
tromagnetic counterparts. For the sources with ι < 20◦
and ι > 160◦, in this paper, we assume there being 103

GW standard sirens up to the redshift z = 2, at which the
angle-averaged signal-to-noise ratio approximately reaches
the value 8 [43].

Due to dL being independent of γ̂ and the event number
being large, one can replace the sum over GW events in the
above equation with an integral. Therefore, the following
equation can be obtained [36]

FGW
i j =

∫ 2

0
∂i (ln dL)∂ j (ln dL) f (z)A(z)dz , (28)

where f (z) denotes the number distribution function of the
GW standard sirens with respect to the redshift z, and A(z)
denotes an average of (Δ ln dL)−2 over a set of angle param-
eters {θ, φ, ψ, ι}.

One can express the number distribution function of GW
standard sirens as follows

f (z) = 4πN r(z)d2
C (z)

H(z)(1 + z)
, (29)

where dC = (1 + z)DA denotes a comoving distance, r(z)
is a source distribution function, and N is a constant ensur-
ing the total number of the binary neutron star coalescences.
Following Ref. [36], we consider a uniform distribution of
r(z), i.e. r(z) = 1, and a nonuniform distribution of it,
i.e. r(z) = 1 + 2z for z ≤ 1, r(z) = (15 − 3z)/4 for
1 < z < 5, and r(z) = 0 for otherwise. The nonuniform one
is an approximation to the evolution of source rate suggested
by Ref. [44]. In this work, the constant N is determined by
requiring a relation of

∫ 2
0 f (z)dz = 103.

The Monte Carlo sampling method is utilized to obtain
an expression for A(z). We divide the redshift from 0 to 2
into 20 bins with a step 0.1. For each a bin, we generate
104 samples of {θ, φ,ψ, ι}. Note that ι distributes following
Eq. (22), while the three others are uniform. The mass of a
neutrino star is set as mNS = 1.4M�. Averaging (Δ ln dL)−2

over 104 samples of {θ, φ,ψ, ι} for each redshift bin, we
show our results with red dots in Fig. 5. We also fit our results
with the following formula:

A−1/2(z) = 0.009295z3 −0.04530z2 +0.1398z+0.01941,

(30)

which is shown with blue solid curve in Fig. 5. In addition,
we have checked our method by reproducing the results of
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Fig. 5 The fitting formula A−1/2(z) as a function of redshift z. The red
dots arise from the Monte Carlo simulation, while the blue solid curve
denotes a fitting formula in Eq. (30)

Ref. [45] with the code developed by us. Finally, we substi-
tute Eq. (30) into Eq. (28) to calculate the Fisher matrix of
cosmological parameters. Our detailed results will be shown
in the following.

For the five parameters explored here, their GW Fisher
matrices are shown as 5 × 5 matrices in Tables 5 and 6 for
the cases with uniform and nonuniform distributions, respec-
tively. There is a specific set of cosmological parameters for
a given cosmological model. To obtain the 1σ uncertainties
on these parameters, one can construct a Fisher matrix asso-
ciated with these parameters by marginalizing the original
Fisher matrix over other remaining parameters. For exam-
ple, if the ΛCDM model is considered, one should construct
a Fisher matrix associated with Ωm and h0 by marginaliz-
ing the 5 × 5 Fisher matrix over w0, wa and Ωk . In other
words, one removes the 1st, 2nd, and 4th columns and rows
from the two matrices in Tables 5 and 6, respectively, and
the remaining items thus form the required Fisher matrices

for the ΛCDM model. A similar approach works for other
cosmological models.

Once the Fisher matrix is gotten for a given cosmologi-
cal model, as mentioned in last section, one can infer the 1σ

uncertainties on the corresponding cosmological parameters
by finding its inverse matrix. For the cases of uniform and
nonuniform distributions, our results are shown in Tables 7
and 8, respectively. The constraints on H0 and other parame-
ters are a little tighter for the uniform distribution than those
for the nonuniform distribution. The reason is that the GW
sources are more concentrated at z = 1 in the nonuniform
distribution, and thus there are less sources at both higher
and lower redshifts. Comparing with the uniform distribu-
tion, therefore, it is difficult for the nonuniform distribution
to trace the evolution of the dark energy.

For the ΛCDM model, the 1σ uncertainties on the inde-
pendent parameters Ωm and h0 are listed in the first rows
of Tables 7 and 8. For the cases of uniform and nonuni-
form distributions, we find that the ET alone can achieve
sensitivities of ΔH0 = 0.5953 km s−1 Mpc−1 and ΔH0 =
0.7245 km s−1 Mpc−1, respectively. Both constraints are
tighter than the one from Planck 2015 data release. Our
results show that the ET GW observations may provide new
insights to checking the tension between the local measure-
ment of H0 and the global fitting of Planck CMB.

For the ΩkΛCDM model, the 1σ uncertainties on Ωm ,
Ωk and h0 are listed in the second rows of Tables 7 and
8. For the cases of uniform and nonuniform distributions,
we find that the ET can achieve sensitivities of ΔH0 =
0.7654 km s−1 Mpc−1 and ΔH0 = 0.9609 km s−1 Mpc−1,
respectively. Comparing with Planck 2015 results, we find
that the ET can still get tighter constraints on H0 even in the
ΩkΛCDM model when the GW sources distribute uniformly.

Table 5 The ET GW Fisher
matrix for the uniform
distribution of GW sources

w0 wa Ωm Ωk h0

w0 2.095 × 103 3.526 × 102 6.401 × 103 4.365 × 103 1.824 × 104

wa 3.526 × 102 6.319 × 101 1.139 × 103 7.801 × 102 2.926 × 103

Ωm 6.401 × 103 1.139 × 103 2.062 × 104 1.412 × 104 5.381 × 104

Ωk 4.365 × 103 7.801 × 102 1.412 × 104 9.678 × 103 3.664 × 104

h0 1.824 × 104 2.926 × 103 5.381 × 104 3.664 × 104 1.687 × 105

Table 6 The ET GW Fisher
matrix for the nonuniform
distribution of GW sources

w0 wa Ωm Ωk h0

w0 2.053 × 103 3.558 × 102 6.402 × 103 4.368 × 103 1.733 × 104

wa 3.558 × 102 6.474 × 101 1.161 × 103 7.948 × 102 2.905 × 103

Ωm 6.402 × 103 1.161 × 103 2.088 × 104 1.430 × 104 5.270 × 104

Ωk 4.368 × 103 7.948 × 102 1.430 × 104 9.798 × 103 3.591 × 104

h0 1.733 × 104 2.905 × 103 5.270 × 104 3.591 × 104 1.521 × 105
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Table 7 Projected constraints
on cosmological parameters
from the ET GWs for the
uniform distribution of GW
sources

GW uniform Δw0 Δwa ΔΩm ΔΩk Δh0

ΛCDM – – 1.703 × 10−2 – 5.953 × 10−3

ΩkΛCDM – – 4.343 × 10−1 6.153 × 10−1 7.654 × 10−3

wCDM 1.992 × 10−1 – 3.771 × 10−2 – 1.233 × 10−2

ΩkwCDM 4.451 × 10−1 – 1.038 1.375 1.642 × 10−2

CPL 2.969 × 10−1 3.637 1.836 × 10−1 – 2.185 × 10−2

ΩkCPL 6.585 × 10−1 1.128 × 10−1 3.747 4.263 2.917 × 10−2

Table 8 Projected constraints
on cosmological parameters
from the ET GWs for the
nonuniform distribution of GW
sources

GW nonuniform Δw0 Δwa ΔΩm ΔΩk Δh0

ΛCDM – – 1.955 × 10−2 – 7.245 × 10−3

ΩkΛCDM – – 4.666 × 10−1 6.574 × 10−1 9.609 × 10−3

wCDM 2.324 × 10−1 – 4.041 × 10−2 – 1.596 × 10−2

ΩkwCDM 5.326 × 10−1 – 1.142 1.507 2.180 × 10−2

CPL 3.889 × 10−1 4.258 2.074 × 10−1 – 2.939 × 10−2

ΩkCPL 6.978 × 10−1 1.345 × 10−1 4.220 4.759 3.993 × 10−2

For the wCDM model, the 1σ uncertainties on Ωm , w and
h0 are listed in the third rows of Tables 7 and 8. For the cases
of uniform and nonuniform distributions, we find that the ET
can achieve sensitivities of ΔH0 = 1.233 km s−1 Mpc−1 and
ΔH0 = 1.596 km s−1 Mpc−1, respectively. Both constraints
are not as tight as Planck 2015 results. However, they are still
tighter than the local measurement of H0 derived from the
luminosity distances of Cepheids.

In the ΩkwCDM model, the 1σ uncertainties on Ωm ,
Ωk , w and h0 are listed in the forth rows of Tables 7 and
8. For the cases of uniform and nonuniform distributions,
we find that the ET can achieve sensitivities of ΔH0 =
1.642 km s−1 Mpc−1 and ΔH0 = 2.180 km s−1 Mpc−1,
respectively. The former is almost comparable to the local
measurement of H0, while the latter is less stringent.

For other cosmological models, i.e. CPL and ΩkCPL, we
show our predicted constraints on H0 in the last three rows of
Tables 7 and 8, respectively. The 1σ uncertainties on H0 are
obviously larger than that of the local measurement of H0.
The reason is that there is an extra dependent parameter in
the equation of state of the dark energy. In addition, for the
CPL model, we find Δwa = 3.637 and Δwa = 4.258 for the
cases of uniform and nonuniform distributions, respectively.
For the ΩkCPL model, we find both uncertainties being about
three times larger. These are reasons why we do not use the
existing datasets to constrain wa in Sect. 3.

Furthermore, we can obtain the correlations among the
five cosmological parameters by using the non-diagonal ele-
ments of the inverse of Fisher matrix. For example, the
68% CL correlations between H0 and other parameters are
depicted as the two-dimensional contours in Fig. 6. Here the
black curves denote the uniform distribution of GW sources,

while the blue curves denote the nonuniform source distribu-
tion of GW sources. We find that H0 is anti-correlated with
four other parameters.

5.2 Combine ET with the DESI project

As mentioned in Sect. 2, the BAO standard rulers depend
on the angular diameter distance DA(z) and the Hubble
parameter H(z), both of which rely on the five parameters
{h0, Ωm,Ωk, w0, wa}. The property of the dark energy
can be determined by measuring these two quantities at dif-
ferent redshift bins. To explore the detection ability of the
BAO method, we employ the Fisher matrix to analyze the
sensitivity of a typical experiment, e.g. the DESI project.

For the BAO method, the Fisher information matrix is
constructed as follows [46]

FBAO
i j =

∑
z

∂i (ln DA(z))∂ j (ln DA(z))

(Δ ln DA(z))2

+
∑
z

∂i (ln H(z))∂ j (ln H(z))

(Δ ln H(z))2 (31)

where the sum runs over all of the redshift bins z. Here
Δ ln DA(z) and Δ ln H(z) denote the 1σ uncertainties on
ln DA(z) and ln H(z), respectively. For DESI, which cov-
ers a redshift range from 0.6 to 1.9 with an area of 14,000
deg2, they can be found in Table 2.3 of Ref. [17].2

Calculating the above formula numerically, we obtain all
the elements of the DESI BAO Fisher matrix, which are listed

2 In Ref. [17], the fiducial model is given by Planck 2013 results. In
this work, our fiducial model is given by Planck 2015 results. However,
the effects due to the difference between both models are negligible for
our forecasts.
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Fig. 6 The 2D contours between h0 and w0, wa , Ωm , Ωk at 68% CL. The upper/lower panels denote the uniform/nonuniform distribution of GW
sources. The black and blue curves refer to the ET, while the green and red ones refer to the combinations of ET and DESI

Table 9 The DESI BAO Fisher
matrix

w0 wa Ωm Ωk h0

w0 6.537 × 103 1.356 × 103 2.395 × 104 9.054 × 103 4.939 × 104

wa 1.356 × 103 3.001 × 102 5.366 × 103 2.050 × 103 1.010 × 104

Ωm 2.395 × 104 5.366 × 103 9.677 × 104 3.680 × 104 1.793 × 105

Ωk 9.054 × 103 2.050 × 103 3.680 × 104 1.442 × 104 6.704 × 104

h0 4.939 × 104 1.010 × 104 1.793 × 105 6.704 × 104 3.773 × 105

Table 10 Projected constraints
on cosmological parameters
from the DESI BAOs

BAO Δw0 Δwa ΔΩm ΔΩk Δh0

ΛCDM – – 9.289 × 10−3 – 4.704 × 10−3

ΩkΛCDM – – 2.318 × 10−2 4.978 × 10−2 4.867 × 10−3

wCDM 1.378 × 10−1 – 1.093 × 10−2 – 1.601 × 10−2

ΩkwCDM 1.595 × 10−1 – 2.388 × 10−2 5.760 × 10−2 1.907 × 10−2

CPL 7.186 × 10−1 3.733 1.535 × 10−1 – 6.707 × 10−2

ΩkCPL 7.303 × 10−1 3.742 1.568 × 10−1 5.774 × 10−2 6.872 × 10−2

in Table 9. Similar to what we did in the last subsection, we
can obtain the projected constraints on all the six cosmolog-
ical models from the DESI BAOs only. We list our results in
Table 10. For any cosmological model considered here, the
1σ uncertainty on H0 is smaller than the one in Planck 2015
results.

To obtain a joint constraint on H0 from DESI and ET, we
can obtain a joint Fisher matrix by adding together the DESI
BAO Fisher matrix and the ET GW Fisher matrix. For the
cases of uniform and nonuniform distributions, respectively,
we can obtain the joint Fisher matrices by using Tables 5, 9
and Tables 6, 9. Then we obtain Tables 11 and 12 for the pro-

jected constraints on all the six cosmological models. Similar
to what we did in last subsection, we can infer the projected
constraints on the six cosmological models using the two
Fisher matrices. We will demonstrate our detailed results in
the following.

For the ΛCDM model, the 1σ uncertainties on the inde-
pendent parameters Ωm and h0 are listed in the first rows
of Tables 11 and 12. For the cases of uniform and nonuni-
form distributions, we find that the ET alone can achieve
sensitivities of ΔH0 = 0.3468 km s−1 Mpc−1 and ΔH0 =
0.3727 km s−1 Mpc−1, respectively. Both constraints are
tighter than the one from Planck 2015 data release. Our
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Table 11 Projected constraints
on cosmological parameters
from the combination of DESI
BAOs and ET GWs for the
uniform distribution of GW
sources

BAO + GW uniform Δw0 Δwa ΔΩm ΔΩk Δh0

ΛCDM – – 7.479 × 10−3 – 3.468 × 10−3

ΩkΛCDM – – 1.130 × 10−2 2.273 × 10−2 3.538 × 10−3

wCDM 8.630 × 10−2 – 1.034 × 10−2 – 8.388 × 10−3

ΩkwCDM 8.642 × 10−2 – 1.314 × 10−2 2.277 × 10−2 8.394 × 10−3

CPL 1.902 × 10−1 1.362 5.880 × 10−2 – 1.564 × 10−2

ΩkCPL 1.903 × 10−1 1.364 5.905 × 10−2 2.279 × 10−2 1.567 × 10−2

Table 12 Projected constraints
on cosmological parameters
from the combination of DESI
BAOs and ET GWs for the
nonuniform distribution of GW
sources

GW nonuniform + BAO Δw0 Δwa ΔΩm ΔΩk Δh0

ΛCDM – – 7.906 × 10−3 − 3.727 × 10−3

ΩkΛCDM − − 1.157 × 10−2 2.257 × 10−2 3.790 × 10−3

wCDM 9.761 × 10−2 − 1.044 × 10−2 – 1.003 × 10−2

ΩkwCDM 9.782 × 10−2 – 1.316 × 10−2 2.262 × 10−2 1.003 × 10−2

CPL 2.413 × 10−1 1.581 6.720 × 10−2 – 2.065 × 10−2

ΩkCPL 2.414 × 10−1 1.584 6.733 × 10−2 2.266 × 10−2 2.068 × 10−2

results show that the ET GW observations combining with
BAO observations can provide new insights to checking the
Hubble constant tension.

For the ΩkΛCDM model, the 1σ uncertainties on Ωm ,
Ωk and h0 are listed in the second rows of Tables 11 and
12, For the cases of uniform and nonuniform distributions,
we find that the ET can achieve sensitivities of ΔH0 =
0.3538 km s−1 Mpc−1 and ΔH0 = 0.3790 km s−1 Mpc−1,
respectively. Comparing with Planck 2015 results, we find
that the ET and BAO can get tighter constraints on H0.

For the wCDM model, the 1σ uncertainties on Ωm ,
w and h0 are listed in the third rows of Tables 11 and
12. For the cases of uniform and nonuniform distributions,
we find that the ET can achieve sensitivities of ΔH0 =
0.8388 km s−1 Mpc−1 and ΔH0 = 1.003 km s−1 Mpc−1,
respectively. Both constraints are almost as tight as Planck
2015 results.

In the ΩkwCDM model, the 1σ uncertainties on Ωm ,
Ωk , w and h0 are listed in the forth rows of Tables 11 and
12. For the cases of uniform and nonuniform distributions,
we find that the ET can achieve sensitivities of ΔH0 =
0.8394 km s−1 Mpc−1 and ΔH0 = 1.003 km s−1 Mpc−1,
respectively. The former is almost comparable to the local
measurement of H0, while the latter is less stringent.

For other cosmological models, i.e. CPL and ΩkCPL, we
show our predicted constraints on H0 in the last three rows of
Tables 11 and 12, respectively. For the uniform distribution of
GW sources, the 1σ uncertainty on H0 is obviously smaller
than that of the local measurement of H0, while for the
nonuniform one it is obviously lager. In addition, for the CPL

model, we find Δwa = 1.362 and Δwa = 1.581 for the uni-
form and nonuniform distributions of GW sources, respec-
tively. For the ΩkCPL model, they become Δwa = 1.364
and Δwa = 1.584, respectively. Therefore, we may be able
to tightly constrain H0 in dark energy models by combining
ET with DESI in the future.

For the joint analysis of ET and DESI, the 68% CL cor-
relations between H0 and other parameters are also depicted
as the two-dimensional contours in Fig. 6. Here the green
curves denote the uniform distribution of GW sources, while
the red curves denote the nonuniform source distribution of
GW sources. We find that H0 is still anti-correlated with four
other parameters.

6 Conclusion and discussion

In this work, we obtained low-redshift cosmological con-
straints on the Hubble constant by combining the GW170817
standard siren with several BAO standard rulers. We found
that the GW170817 brings little influence on the H0 con-
straint in the ΛCDM model, while it is significant when
additional cosmological parameters, i.e. Ωk and w, are con-
sidered. The present data combinations can not be used to
test the Hubble constant tension, due to significantly large
uncertainties on H0. The uncertainty on H0 is expected to be
reduced by observing more GW standard sirens.

Using Fisher information matrix, we estimated the pro-
jected constraints on H0 from the ET by simulating 103 GW
standard sirens from the binary neutron star coalescences.
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In the ΛCDM model, we found that the ET alone can con-
strain H0 tighter than the Planck 2015 results. The Hubble
constant tension can thus be checked by the ET in the future.
However, this constraint was significantly weakened if other
cosmological parameters, i.e. Ωk , w0 and wa , were included.
Combining DESI BAOs with ET GWs together can signif-
icantly reduce the uncertainties on H0, even in dark energy
models.

After the writing of this paper, we notice that Planck
Collaboration makes public its final data release [47]. The
updated constraint on the Hubble constant is shown as H0 =
67.4 ± 0.5 km s−1 Mpc−1 at 68% CL. Assuming 103 GW
standard sirens from the binary neutron star coalescences,
therefore, we can use the ET to obtain slightly less strin-
gent constraints on H0 than that of Planck final data release.
Therefore, more than � 103 GW standard sirens are of neces-
sity for the ET to obtain a H0 constraint as tight as Planck
final data release. However, we can still obtain more strin-
gent constraints on H0 by combining the DESI BAO distance
measures with the ET’s 103 GW standard sirens.
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