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Abstract We study static and transport properties of
Skyrmions living within a finite spatial volume in a flat
(3+1)-dimensional spacetime. In particular, we derive an
explicit analytic expression for the compression modulus cor-
responding to these Skyrmions living within a finite box and
we show that such expression can produce a reasonable value.
The gauged version of these solitons can be also considered.
It is possible to analyze the order of magnitude of the contri-
butions to the electrons conductivity associated to the inter-
actions with this Baryonic environment. The typical order
of magnitude for these contributions to conductivity can be
compared with the experimental values of the conductivity
of layers of Baryons.

1 Introduction

The appearance of Skyrme theory [1–3] disclosed very neatly
the fundamental role of topology in high energy physics
(see for instance [4–9]). First of all, the low energy QCD is
very well described by the Skyrme theory [10,11]. Secondly,
the solitons of this Bosonic theory (Skyrmions) describe
Baryons. Thirdly, the Baryon charge is the winding number
of the configuration (see [10–19] and references therein).

These arguments are more than enough to justify a pro-
found analysis of the Skyrme model. Indeed, extensive stud-
ies of the latter can be found in literature (as the previ-
ous references clearly show). Not surprisingly,1 the Skyrme

1 At least taking into account that it is reasonable to expect that the
theory describing the low energy limit of QCD should be a quite com-
plicated one.
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field equations are a very hard nut to crack and, until very
recently no analytic solution was available. Nevertheless,
many numerical studies have shown that the Skyrme model
provides results in good agreement with experiments.

Despite the success of the model and the existence of sev-
eral solutions among different contexts, the analysis of their
phenomenological aspects seldom can be carried out in an
analytic manner. For an analytic solution and a relevant study
in compact manifolds see [20].

The gauged Skyrme model (which describes the coupling
of a U (1) gauge field with the Skyrme theory) has also
very important applications in the analysis of electromag-
netic properties of Baryons, in the decay of nuclei in presence
of defects (see [10,11,21–25] and references therein). Obvi-
ously, from the point of view of constructing analytic solu-
tions, the U (1) gauged Skyrme model is even worse than the
original Skyrme theory. Until very recently, no explicit topo-
logically non-trivial solution was available. Thus, topologi-
cal configurations of this theory have been deeply analyzed
numerically (see [26,27] and references therein).

Here we list three relevant problems in the applications
of (gauged) Skyrme theory to high energy phenomenology
which will be the focus of the present paper.

(1) Finite density effects and the compression modulus:
Finite density effects (and, in general, the phase diagrams) in
the Skyrme model have been historically a very difficult topic
to analyze with analytic methods. The lack of explicit solu-
tions with topological charge living within a finite flat box
with the spherical Skyrme ansatz is the origin of the problem.
Some numerical results with the use of the spherical Skyrme
ansatz are presented in [28–32] and references therein. Due
to the fact that both finite volume effects and isospin chemical
potential break spherical symmetry it is extremely difficult to
improve the pioneering results in [28–32] without changing
the original Skyrme ansatz. The main problem in this group
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is certainly the compression modulus [37–39] (to be defined
precisely in the next section) which, roughly speaking, has
to do with the derivative of the total energy of the Skyrmions
with respect to the volume. The experimental value is dif-
ferent from the value derived using the original spherical
hedgehog ansatz. The usual way to compute the compres-
sion modulus is to assume the Derrick rescaling for the reac-
tion of nuclear matter to the action of external pressure (see
the detailed discussion in [40]). The resulting value is higher
than the experimental value.2 A closely related technical dif-
ficulty is that, if one uses the original hedgehog ansatz for
the Skyrmion, it is very unclear even how to define the com-
pression modulus since the original Skyrme ansatz describes
a spherical Skyrmion living within an infinite volume so that
to compute the derivatives of the energy with respect to the
volume becomes a subtle question. The best way out of this
difficulty would be, of course, to have a consistent ansatz for
a Skyrmion living within a finite volume. Relevant numeri-
cal results in the literature on that problem are presented in
[33–36] where non-spherical ansätze have been considered.

(2) Existence of Skyrmion–antiSkyrmion bound states/
resonances: Multi-Skyrmionic bound states of Baryon charge
higher than 1 are known to exist and they have been suc-
cessfully constructed numerically (see, for instance, [13] and
references therein). However, until very recently, the prob-
lem of the existence of Skyrmion–antiSkyrmion bound states
and resonances did not possess the place it deserved in the
literature on the Skyrme model and despite its importance.
We can refer to an early work on the subject in [41]. Here
we shall study analytic results over the properties of such
configurations. Experimentally, Baryon–antiBaryon bound
states and resonances do exist [42–46]: these should corre-
spond to Skyrmion–antiSkyrmion bound states. Such bound
states are very difficult to find since the corresponding clas-
sical solutions are not static. Indeed, at a semi-classical level,
Skyrmion–antiSkyrmion bound states should look like time-
periodic solutions in which a Skyrmion and an antiSkyrmion
moves periodically around the center of mass of the system.
These kinds of time-dependent configurations are difficult to
analyze even numerically.

(3) Conductivities: The analysis of electrons transport
through gauged Skyrmions is a very interesting open issue.
At semi-classical level, one should solve the Dirac equation
for the electron in the background of the gauged Skyrmion
and, from the solution of the Dirac equation, one could com-
pute the conductivity. It would be especially interesting to be
able to describe complex structures assembled from neutrons

2 The following analysis suggests that this “uniform rescaling” assump-
tion could be too strong. Indeed, the results at the end of Sect. 3 shows
that Skyrme theory, when analyzed at finite density, provides with val-
ues of the compression modulus which are close to the experimental
one.

and protons interacting with electromagnetic fields (such as
slabs of Baryons interacting with the corresponding Maxwell
field). In nuclear physics and astrophysics these structures
are called nuclear pasta and they are very relevant in a huge
variety of phenomena (see, for instance, [47–50] and refer-
ences therein). On the other hand, there are very few “first
principles” computations of the transport properties of these
complex structures (see [51] and references therein). At a first
glance, one could think that this kind of complex structure is
beyond the reach of the gauged Skyrme model.

In order to achieve a deeper understanding of the above
open issues, it is mandatory to be able to construct analytic
examples of gauged multi-Skyrmionic configurations.

In [52–60] a strategy has been developed to generalize
the usual spherical hedgehog ansatz to situations without
spherical symmetry both in Skyrme and Yang-Mills theo-
ries (see [61–63] and references therein). Such a framework
also allows to analyze configurations living within a finite
region of space.

As far as the three open issues described above are con-
cerned, this tool (which will be called here “generalized
hedgehog ansatz”) gave rise to the first derivation not only
of the critical isospin chemical potential beyond which the
Skyrmion living in the box ceases to exist, but also of the
first explicit Skyrmion–antiSkyrmion bound states. Thus,
this approach appears to be suitable to deal with the problems
mentioned previously.

Interestingly enough, the generalized hedgehog ansatz can
be adapted to the U (1) gauged Skyrme model [64,65]: it
allowed the construction of two types of gauged solitons.
Firstly, gauged Skyrmions living within a finite volume. Sec-
ondly, smooth solutions of the U (1) gauged Skyrme model
whose periodic time-dependence is protected by a topolog-
ical conservation law (as they cannot be deformed to static
solutions).

Here we demonstrate that by using this strategy it is possi-
ble to derive an explicit expression of the compression mod-
ulus. The transport properties of these gauged Skyrmions
can also be analyzed. In this work we also present a simple
estimate of the order of magnitude of the correction to the
electron conductivities due to the interactions of the electrons
with the baryonic environment. As far as transport proper-
ties are concerned, we will work at the level of approximation
in which the electrons perceive the gauged Skyrmions as a
classical background. Large N arguments strongly suggest
that this is a very good approximation3 (see for a detailed

3 In the leading ’t Hooft approximation, in meson-Baryon scattering,
the heavy Baryon (the Skyrmion in our case) is unaffected and, basically,
only the meson can react. This is even more so in the electron-Baryon
semiclassical interactions due to the huge mass difference between the
Skyrmion and the electron. In this approximation, electrons perceive
the Skyrmions as an effective medium.
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review chapter 4 and, in particular, section 4.2 of the classic
reference [66]).

This paper is organized as follows: in Sect. 2 the action
for the gauged Skyrme model and our notations will be intro-
duced. In Sect. 3, the method to deal with Skyrmions at finite
density will be described: as an application, a closed formula
for the compression modulus of Skyrmions living within a
cube will be derived. In Sect. 4, the gauged Skyrmions at finite
density will be considered. In Sect. 5, the transport proper-
ties associated to electrons propagating in the Baryonic envi-
ronment corresponding to the finite-density Skyrmions are
analyzed. In Sect. 6, we draw some concluding ideas.

2 The U(1) gauged Skyrme model

We consider the U (1) gauged Skyrme model in four dimen-
sions with global SU (2) isospin internal symmetry and we
will follow closely the conventions of [64,65]. The action of
the system is

S =
∫

d4x
√−g

[
K

2

(
1

2
Tr
(
RμRμ

)

+ λ

16
Tr
(
GμνG

μν
))− 1

4
FμνF

μν

]
, (1)

Rμ = U−1DμU, Gμν = [Rμ, Rν

]
,

Dμ = ∇μ + κAμ [t3, . ] , (2)

U ∈ SU (2), Rμ = R j
μt j , t j = iσ j , (3)

where
√−g is the (square root of minus) the determinant of

the metric, Fμν = ∂μAν − ∂ν Aμ is the electromagnetic field
strength, ∇μ is the partial derivative, the positive parameters
K and λ are fixed experimentally, κ the coupling for the
U (1) field and σ j are the Pauli matrices. In our conventions
c = h̄ = μ0 = 1, the space-time signature is (−,+,+,+)

and Greek indices run over space-time. The stress-energy
tensor is

Tμν = −K

2
Tr

[
RμRν − 1

2
gμνR

αRα

+ λ

4

(
gαβGμαGνβ − gμν

4
GσρG

σρ
)]

+ T̄μν,

with

T̄μν = FμαF
α

ν − 1

4
FαβF

αβgμν. (4)

The field equations are

Dμ

(
Rμ + λ

4

[
Rν,Gμν

]) = 0, (5)

∇μF
μν = J ν, (6)

where J ν is the variation of the Skyrme action (the first two
terms in Eq. (1)) with respect to Aν

Jμ = κK

2
Tr

[
Ô Rμ + λ

4
Ô
[
Rν,G

μν
]]

, (7)

where

Ô = U−1t3U − t3.

In the following sections, gauged Skyrmions and gauged
time-crystals will be terms describing to the two different
kinds of gauged topological solitons appearing as solutions
of the coupled system expressed by Eqs. (5) and (6).

The aim of the present work is to show that the Skyrme
model and its gauged version are able to give good predictions
for important quantities such as the compression modulus and
the conductivity.

2.1 Topological charge

The proper way to define the topological charge in the pres-
ence of a minimal coupling with a U (1) gauge potential has
been constructed in [21] (see also the pedagogical analysis
in [26]):

W = 1

24π2

∫
�

εi jkT r
{(

U−1∂iU
) (

U−1∂ jU
) (

U−1∂kU
)

− ∂i

[
3κA j t3

(
U−1∂kU + ∂kUU−1

)]}
.

(8)

In the literature one usually only considers situations
where � is a space-like three-dimensional hypersurface. In
these situations W is the Baryon charge. In fact it has been
recently shown [64,65] that it is very interesting to also con-
sider cases in which � is time-like or light-like. Indeed,
(whether � is light-like, time-like or space-like) configu-
rations with W �= 0 cannot decay into the trivial vacuum
U = I. Hence, if one is able to construct configurations
such that W �= 0 along a time-like �, then the correspond-
ing gauged soliton possesses a topologically protected time-
dependence as it cannot be continuously deformed into static
solutions (since all the static solutions have W = 0 along a
time-like �). The natural name for these solitons is “(gauged)
time-crystals” [64,65].

We can adopt the standard parametrization of the SU (2)-
valued scalar U (xμ)

U±1(xμ) = Y 0(xμ)I± Y i (xμ)ti ,
(
Y 0
)2 + Y iYi = 1, (9)

where I is the 2 × 2 identity and

Y 0 = cosC, Y i = ni · sinC, (10)
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n1 = sin F sin G, n2 = sin F cosG, n3 = cos F, (11)

with the help of which the standard baryon density (in the
absence of a U (1) field) reads ρB = 12 sin2 C sin F dC ∧
dF ∧ dG. If we want a non-vanishing topological charge in
this setting we have to demand dC ∧ dF ∧ dG �= 0.

3 Skyrmions at finite volume

In the present section, the Skyrmions living within a finite flat
box constructed in [64] will be slightly generalized. These
explicit Skyrmionic configurations allow the explicit com-
putations of the total energy of the system and, in particular,
of its dependence on the Baryon charge and on the volume.
Hence, among other things, one can arrive at a well-defined
closed formula for the compression modulus.

The following ansatz for the representation of the SU (2)

group is the starting point of the analysis

G = qφ − pγ

2
, tan F = tan H

sin A
,

tanC = tan A
√

1 + tan2 F, (12)

where

A = pγ + qφ

2
, H = H (r, z) , p, q ∈ N. (13)

Moreover, it can be verified directly that, the topological
density ρB is non-vanishing. From the standard parametriza-
tion of SU (2) [71] it follows that

0 ≤ γ ≤ 4π, 0 ≤ φ ≤ 2π, (14)

while the boundary condition for H will be discussed below;
in any case, its range is in the segment H ∈ [0, π

2 ], while for r
we assume 0 ≤ r ≤ 2π . With the parametrization introduced
by (12) and (13) the SU (2) field assumes the form

U = ±
(

cos(H)e
1
2 i(pγ+qφ) sin(H)e

1
2 i(pγ−qφ)

− sin(H)e− 1
2 i(pγ−qφ) cos(H)e− 1

2 i(pγ+qφ)

)
. (15)

Hereafter, we just consider the plus expression forU through-
out all the range of the variables γ and φ, which makes it a
continuous function of the latter.

3.1 Skyrmions in a rectangular cuboid

We can extend the results presented in [64] by considering a
cuboid with three different sizes along the three axis instead
of a cube. Thus, we will use three – different in principle –
fundamental lengths characterizing each direction, l1, l2 and
l3, inside the metric.

The corresponding line element is

ds2 = −dz2 + l21dr
2 + l22dγ 2 + l23dφ2. (16)

The profile function that we consider depends only on one
variable,4 H = H(r). We note that in this section we do
not take into account the effects of an electromagnetic field,
hence we have Aμ = 0 in the relations of the previous sec-
tions.

Under the aforementioned conditions the profile equation
reduces to

H ′′ = λl21 p
2q2

4
(
l22
(
4l23 + λq2

)+ λl23 p
2
) sin(4H). (17)

It is impressive that such a system, in flat space, can lead
to an integrable equation for the profile. This is owed to the
existence of a first integral of (17) that is given by

(H ′)2(l22(4l23 + λq2) + λl23 p
2) + λl21 p

2q2

8
cos(4H) = I0.

(18)

The above relation can be written as

(H̃ ′)2 − k sin(H̃)2 = Ĩ0, (19)

where

H̃ = 2H, k = λl21 p
2q2

l22
(
4l23 + λq2

)+ λl23 p
2
,

Ĩ0 = 8I0 − λl21 p
2q2

8l22 l
2
3 + 2λl22q

2 + 2λl23 p
2
. (20)

Subsequently, we can bring (46) into the form

d H̃

dr
= ±

√
Ĩ0(1 − k̃(sin H̃)2)

1
2 (21)

where we have set k̃ = −k/ Ĩ0. The last expression leads to

√
Ĩ0

∫ r

0
dr̄ = ±

∫ H̃

0
(1 − k̃(sin H̄)2)−

1
2 d H̄ , (22)

where we have introduced the bars in order to distinguish the
variables that are integrated from the r and H̃(r) which are
the boundaries of the two integrals. Of course we consider
Ĩ0 > 0. As a starting point for the integration we take r = 0,
H̃(0) = 0 = H(0), although we could also set r = 0, H̃ =
π (H(0) = π

2 ). The difference between the two boundary

4 On the other hand, when the coupling with Maxwell field is neglected,
the profile can depend on time as well. In this case, one gets an effective
sine-Gordon theory for the profile H(t, r) [64].
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choices is just in the sign of the topological charge. These
boundary values, for H and those that we have seen in (14)
for γ and φ lead to a topological charge W = pq in (8) (for
Aμ = 0).

In the right hand side of (22) we recognize the incomplete
elliptic integral defined as

F(H̃ |k̃) =
∫ H̃

0
(1 − k̃(sin H̄)2)−

1
2 d H̄ . (23)

The solution to the differential equation (47) is just the inverse
of this function, which is called the Jacobi amplitude am =
F−1(H̃ |k̃). So, in terms of our original Eq. (17) the solution
reads

H(r) = ±1

2
am( Ĩ 1/2

0 r |k̃). (24)

Finally, by considering the positive branch, the value of the
constant of integration Ĩ0 is governed by the boundary con-
dition H(2π) = π

2 .
In the special case when l1 = l2 = l3 = l we obtain

the particular case which was studied in [64]. Here, we give
emphasis to this general case and, especially, we want to
study the most energetically convenient configurations and
the way in which they are affected by the anisotropy in the
three spatial directions. In Fig. 1 we see a schematic represen-
tation of the finite box we are considering for this Skyrmionic
configuration with a baryon number B = pq.

The physical configuration that we try to reproduce with
this model is the structure of matter in nuclear pasta. The
latter is a dense form of matter that is encountered inside the
crusts of neutron stars. Thus, we make this “crude” (but ana-
lytic in its results) model trying to imitate with these p and
q Skyrmionic layers a particular form of this matter that is
encountered in nature. The dimensions of the configuration
are governed by the three numbers l1, l2 and l3. Of course we
do not expect the binding energies of such a configuration to
be at the same level with those produced by the usual spher-
ically symmetric ansatz. This is something that we examine
thoroughly in the next section.

3.1.1 The energy function

We proceed to study the energy function for the solution
that we previously introduced. The constant of motion I0
in (18) can be expressed in terms of the other constants of
the model if we consider the boundary values H(0) = 0
and H(2π) = π/2. By solving (18) with respect to H ′ and
integrating the resulting relation with respect to r we obtain

Fig. 1 The finite box of the Skyrmionic system

2
√

2
∫ b

a

(
l22
(
4l23 + q2

)+ l23 p
2

8I0 − l21 p
2q2 cos(4H)

)1/2

dH =
∫ 2π

0
dr (25)

which leads to

l1 =
xK(−x2)

√
l22(4l23 + q2) + l23 p

2

πpq
, (26)

where K is the complete elliptic integral of the first kind and
x is related to I0 through

I0 = l21 p
2q2(x2 + 2)

8x2 . (27)

The pure time component of the energy momentum tensor
in our case is

T00 = K

8V 2

[
(l22(4l23 + λq2) + λl23 p

2)H ′2

+ λl21 p
2q2

4
sin2(2H) + V 2

(
p2

l22
+ q2

l23

)]
. (28)

As a result we can calculate the energy from the expression

E =
∫

�

√
−(3)gT00d

3x = 8π2V
∫ π

2

0

T00

H ′ dH. (29)

We can write the integrand as a pure function of H with
the help of (18) and obtain – in principle – the energy as a
function of the li ’ s, p and q. However, due to the fact that
relation (26) cannot be straightforwardly inverted so as to
substitute I0 as a function of l1 (through (26) and (27)) we
choose to express the energy function in terms of x instead of
l1. In what follows, we assume the values K = 2 and λ = 1
for the coupling constants [14], so that lengths are measured
in fm and the energy in MeV. In this manner we get
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Fig. 2 The plots of E(x) (in MeV) for three sets of values: (a) p =
q = 3, l2 = l3 = 1 fm (dashed line), (b) p = q = 3, l2 = l3 = 2 fm
(dotted line) and (c) p = q = 3, l2 = l3 = 3 fm (continuous line). The
minimum of the energy corresponds to l1 = 0.227 fm, l1 = 0.323 fm
and l1 = 0.42 fm respectively

E(x, l2, l3, p, q)

=
π2 pq

√
l22
(
4l23 + q2

)+ l23 p
2

l2l3

×
K (−x2)

(
4l22 x

2K (−x2)

p2 − K(−x2)
(
q2−4l23 x

2)
q2 + 2E(−x2)

)

x |K (−x2)| ,

(30)

where E is the complete elliptic integral of the second kind.
The x , as we discussed, is linked – with the help of the bound-
ary conditions of the problem – through (26) to l1. If we fix
all variables apart from x and plot the energy as a function
of the latter we get what we see in Fig. 2. In this graph,
we observe that the minimum of the energy is “moving” to
smaller values of x as the box is being enlarged in the two
directions of l2 and l3. However, we have to keep in mind that
the other of the lengths, namely l1, depends also on the val-
ues of l2 and l3 through (26). For the particular set of values
used in the figure we can see that as l2 and l3 rise, l1 is also
relocated to larger values. In the next section we study more
thoroughly the function E(x, l2, l3, p, q) and its derivatives
near the values that correspond to the most energetically con-
venient configurations.

3.1.2 The energy as a function of the three li ’s

Let us see how the energy behaves in terms of the three fun-
damental lengths l1, l2 and l3 under the condition that we fix
p and q to specific values. In the Table 1 we can observe the
location of the minimum of the energy for specific values of
p and q.

First, we have to note that the interchange of p andq makes
no significant difference, so weather you take p = 100 and
q = 50 or p = 50 and q = 100, the only thing that hap-

Table 1 Minimum of the energy for values of p and q

Emin (MeV) p q l1 (fm) l2 (fm) l3 (fm)

167 1 1 0.251 0.413 0.413

334 1 2 0.251 0.413 0.826

669 2 2 0.251 0.826 0.826

835638 100 50 0.251 41.306 20.653

835638 50 100 0.251 20.653 41.306

pens is that the values of the corresponding lengths l2 and
l3 are also interchanged. However, the arithmetic value that
the energy assumes remains the same. Another thing that
we have to notice is that, if we calculate the percentage dif-
ference of the minimum of the energy from the topologi-
cal bound E0 = 12π2|B| = 12π2 pq; in all cases we get
�(%) = E−E0

E0
(%) = 41.11%. Thus, we see that the mini-

mum of the energy E(l1, l2, l3) has a fixed deviation from the
Bogomol’nyi bound irrespectively of the p, q configuration.
We also observe that this most energetically convenient situa-
tion arises when the box has convenient lengths. In particular
we see that the relation l2

l3
= p

q is satisfied in all cases, while
l1 remains fixed in a single “optimal” value. By comparing
with the usual spherically symmetry Skyrmionic configu-
ration in an infinite volume, this higher deviation from the
Bogomol’nyi bound may be anticipated due to the “compres-
sion” of the system into a finite volume.

It is also interesting to study the first derivatives of the
energy with respect to the three lengths of the box. To this
end, and since we have E in terms of x which also involves
l1, l2 and l3 we need to write

dE(x, l2, l3) = ∂E

∂x
dx + ∂E

∂l2
dl2 + ∂E

∂l3
dl3

= ∂E

∂x

∂x

∂l1
dl1 +

(
∂E

∂x

∂x

∂l2
+ ∂E

∂l2

)
dl2

+
(

∂E

∂x

∂x

∂l3
+ ∂E

∂l3

)

= d Ẽ(l1, l2, l3).

(31)

In Fig. 3 we can see the general behavior of three ∂ Ẽ
∂li

for fixed
l1 = 0.251 in terms of l2 and l3 near the values where the
energy assumes its minimum. On the other hand, in Fig. 4 we
plot the derivatives of the energy with respect to x after fixing
l2 and l3 to their minimum value for various p, q configura-
tions. We can see that ∂E

∂l2
and ∂E

∂l3
are indistinguishable when

p = q. On the other hand if q > p the ∂E
∂l3

line runs closer to

the vertical axis than ∂E
∂l2

and vice versa when p > q. Finally,
before proceeding to study the energy as a function of p and
q, we give in Fig. 5 its graph in terms of l2 and l3 when l1
assumes the value that corresponds to the minimum of the
energy.
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Fig. 3 Derivative of the energy, in terms of the basic dimensions of the
Skyrmionic box, near its minimum value. The behaviour of the three
∂E
∂li

is the same irrespectively of p and q. The only thing that changes

is the scaling of the figures since l2 and l3 and ∂E
∂li

assume larger values
as p and q increase

3.2 The energy of the symmetric configuration

Due to using (26) in the previous section so as to write the
energy as a function of x , l2 and l3, it is not straightforward
from that expression to derive what happens in the case where
one considers a symmetric box l1 = l2 = l3 = l. In this
section we treat this situation from the very beginning by
setting all fundamental lengths as equal in Eq. (18). We have
to note that throughout this section we also make use of the
system of units K = 2, λ = 1. The expression relative to
(25), from the resulting integral of motion, leads to

l =
√

π2 p2q2 − x2K
(−x2

)2 (
p2 + q2

)
2xK

(−x2
) , (32)

where x is defined as in the previous section by relation (27),
with l1 = l. By following the exact same steps as before we
are led to the following expression for the energy

Ec(x, p, q) = 2π3(2p2q2K(−x2)E(−x2) − K(−x2)2(p4x2 + p2q2(2x2 + 1) + q4x2) + π2 p2q2(p2 + q2))

x2K(−x2)

√
π2 p2q2

x2 − K(−x2)2(p2 + q2)

. (33)

It

is easy to note that the energy is symmetric under the mir-
ror change p ↔ q. We verify that the for a bigger baryon
number, the most optimal configuration corresponds also to
a larger box. In Fig. 6 we can see the plot of the energy with
respect to various configurations demonstrating the afore-
mentioned fact. The second thing that we can note is that
the deviation � = E−E0

E0
from saturating the bound also

increases for larger baryonic configurations. In Table 2 we
provide some basic examples. Surprisingly we can see that
the configuration p = q = 2 is slightly more convenient than
the one corresponding to p = 2, q = 1. As long as we know,
this is the only case where this is happening. In general it can
be seen that the p = q construction requires more energy
than the p, q − 1, with an exception in the p = q = 2 case.

3.3 The compression modulus for the rectangular box

From the technical point of view, it is worth to emphasize here
that the very notion of compression modulus would require to
put the Skyrmions within a finite flat box of volume V : then
the compression modulus is related to the second derivative of
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Fig. 4 Derivative of the energy with respect to the li ’s given as function of x . In every case the dashed line corresponds to ∂E
∂l1

, the dotted to ∂E
∂l2

and the continuous line to ∂E
∂l3

. Lengths are measured in fm and the energy in MeV

Fig. 5 Plot of the energy E in the l2 − l3 plane when l1 takes the value
that corresponds to the minimum of E

the total energy of the system with respect to V . As it has been
already mentioned, this requires to generalize the hedgehog
ansatz to situations without spherical symmetry. On the other
hand, if one insists in defining the compression modulus for
the spherical hedgehog, it becomes a rather subtle issue (see
the nice analysis in [40]) how to define the derivative of the
energy with respect to the volume. Here we are using the
generalized hedgehog ansatz [64,65] which is well suited

Fig. 6 Plot of the energy of the cubic configuration Ec with respect to
x . The dashed line corresponds to p = q = 1, the dotted to p = 2,
q = 1 and the continuous line to p = 3, q = 1. The minimum of the
energy in terms of the size of the cube l is: l = 0.322, l = 0.369 and
l = 0.385 respectively

to deal with situations without spherical symmetry. In this
way we can analyze Skyrmions living within a region of
flat space-time of finite spatial volume avoiding all the sub-
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Table 2 Deviation from the
topological bound for several
values of p and q

p q l (fm) �(%)

1 1 0.322 53

2 1 0.369 105

3 1 0.385 177

2 2 0.463 104

3 2 0.505 138

3 3 0.571 148

tleties mentioned above. In particular, in the present case the
“derivative with respect to the volume” means, literally, the
derivative (of the total energy of the system) with respect to
the spatial volume of the region in which the Skyrmions are
living.

As we obtained the general behavior of the three ∂E
∂li

func-
tions in the previous sub-sections, we are also able to derive
an analytic expression of the compression modulus [72,73]

K = 9V

Bβ
≈ 210 ± 30 MeV

where β = − 1
V

∂V
∂P is the compressibility. By using P = dE

dV
we acquire

K = −9V 2

B

d2E

dV 2 , (34)

where B is the baryon charge and V the finite volume in
which we confine the system; in our case this volume is
V = 16π3l1l2l3. The difference in the sign of (34) in com-
parison to other expressions in the literature [74] is owed to
the metric signature that we follow here and which affects the
derivation of E from T00. In order to express the energy that
we obtain from (30) as a function of the volume, we intro-
duce the following reparametrization of the li ’s into three
new variables

l1 = c1

(
V

16π3

)1/3

, l2 = c2

(
V

16π3

)1/3

, and

l3 = 1

c1c2

(
V

16π3

)1/3

, (35)

so that l1l2l3 = V
16π3 . We can substitute the above expres-

sions into both (26) and (30). By solving the first with respect
to V and substituting to the second we obtain the energy as a
pure function of x which is associated through (26) with the
volume V . We can thus calculate the first and second deriva-
tives of the energy with respect to the volume by just taking
dE
dV = ( dVdx

)−1 dE
dx and d2E

dV 2 = ( dVdx
)−1 d

dx

[( dV
dx

)−1 dE
dx

]
.

The first derivative of E(V ) with respect to the volume
defines the pressure of the system, i.e. P = dE

dV . In Fig. 7 we
see the graphs of the pressure the compression modulus and
the energy with respect to the volume for specific regions of

the variable V . Due to the complicated nature of the relation
between x and V it is not easy to put in this parametric plot
the behavior of P and E near the region where V → 0.
However, one can calculate through the relations that as one
shrinks the volume to zero, the pressure suddenly falls and
changes sign becoming negative. The same happens to the
compression modulusK as well, for even smaller values ofV ,
while the energy remains positive for all V . Unfortunately the
expressions are too cumbersome to present them analytically
in this work, but the graphs in Fig. 7 demonstrate the general
behavior. In the case of a finite cube with l1 = l2 = l3
the situation is a lot simpler as we can see in the following
section.

3.3.1 Compression modulus in the symmetric case

The most natural case corresponds to choose l1 = l2 = l3 =
l. In this way, we can derive a closed analytic formula for the
compression modulus of the Skyrmions living within such
a cuboid. To the best of our knowledge, this is the first case
in which one can derive an analytic formula (Eqs. (36) and
(37) below) for the compression modulus in a highly inter-
acting theory such as the low energy limit of QCD. Indeed,

by expressing the fundamental length as l =
(

V
16π3

)1/3
we

can easily use (32) to relate the volume V with the variable
x on which the energy depends (33). In this manner we can
get an analytical expression for the compression modulus of
the cube in terms of the variable x , which is

K(x) = − 36

pq
[(x2 + 1)K(−x2)3

× (π2 p2q2 − x2K(−x2)2(p2 + q2))2

+ x2K(−x2)3(p2 + q2)E(−x2)2

× (5π2 p2q2 − x2K(−x2)2(p2 + q2))

+π4 p2q2E(−x2)(K(−x2)2

× (x2(p2 + q2)2 − 2p2q2)

−π2 p2q2(p2 + q2))]. (36)

It can be shown that the parametric plots with respect to the
volume which is

V = 2π3 (π2 p2q2 − x2K(−x2)2(p2 + q2))3/2

x3K(−x2)3 (37)

lead to the same behavior for the pressure, the energy and the
compression modulus that has being derived in the previous
section. For various values of p and q the behavior of the
before mentioned quantities is described by the same graphs
as given in Fig. 7.

A baryon density (n = B
V ) of 0.04 fm−3 � n � 0.07 fm−3

is assumed [75] to be appropriate for characterizing nuclear
pasta and in particular lasagna. Within this range densities we
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Fig. 7 Parametric plots of the
pressure P , the compression
modulus K and the energy E
with respect to the volume. The
plots correspond to the same
parameters but for different
ranges of the volume

Table 3 Examples of configurations corresponding to a compression
modulus K ∼ 230 MeV

B 144 196 225 324

n (fm−3) 0.044 0.048 0.051 0.057

can see that with expressions (36) and (37) we can achieve
a compression modulus around K ∼ 230 MeV (which is
quite reasonable [40,76]). For instance in Table 3 one can
observe various examples of configurations involving baryon
densities n and the corresponding baryon numbers B, whose
compression modulus – as calculated with the help of (36) –
is K ∼ 230 MeV. In all cases presented in the table we have
considered p = q, thus B = p2.

4 Gauged solitons

Here we will shortly describe (a slight generalization of) the
gauged solitons constructed in [65].

4.1 Gauged Skyrmions

As in [65], we introduce an electromagnetic potential of the
form

Aμ = (b1(r), 0, b2(r), b3(r)), (38)

to be coupled to the multi-Skyrmionic system under consid-
eration. The Maxwell equations (6) reduce to

b′′
i = κ2Mi jb j + κNi (39)

with the nonzero components of M and N being

M11 = −K sin2(H)

×
[
l21

(
4 + λ

(
p2

l22
+ q2

l23

)
cos2(H)

)
+ 4λH ′2

]

M23 = Kλl21 pq

4l23
sin2(2H)

M32 = l23
l22
M23

M22 = M11 + p

q
M32

M22 = M11 + q

p
M23

N2 = p

4
M11 + 1

4

(
l23 p

2

l22q
− q

)
M23

N3 = −q

4
M11 − 1

4

(
l22q

2

l23 p
− p

)
M32.

A direct computation shows that, using the line element
in Eq. (16), the three coupled gauged Skyrme equations
(namely, E j = 0, j = 1, 2, 3) in Eq. (5)
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Dμ

(
Rμ + λ

4

[
Rν,Gμν

]) = E j t j = 0

reduce to only one Skyrme field equation (since the third
Skyrme equation is identically satisfied while the first and
the second are proportional):

E3 = 0,

E1 = I1P [H ] , E2 = I2P [H ] , I1 �= 0, I2 �= 0,

where I j are real and non-vanishing. Thus, the Skyrme field
equations reduce to P [H ] = 0 namely

4
[
X sin2(H) − λ

(
l22q

2 + l23 p
2
)

− 4l22 l
2
3

]
H ′′

+ 2X sin(2H)H ′2 + 4 sin2(H)X ′H ′

+
[
λκ
(
l23 pb2 + l22qb3

)(
−4l21 p

l22
κb2 − 4l21q

l23
κb3

+2l21

(
q2

l23
− p2

l22

))
− 1

4
l21 X

(
p2

l22
+ q2

l23

)

+ λl21 p
2q2
]

sin(4H) − 2l21
λ

X sin(2H) = P [H ] = 0,

(40)

where

X (r) = 8λκ
(

2l22 l
2
3κb2

1 − l23b2(2κb2 + p)

+ l22b3(q − 2κb3)
)

. (41)

Quite remarkably, if we demand that

X (r) = λ
(
l22q

2 + l23 p
2
)

,

b2(r) = − l22q

l23 p
b3 + 1

κ

(
l22q

2

4l23 p
− p

4

)
, (42)

then the equation for the profile H(r) can be solved explic-
itly. More importantly, the above algebraic conditions in
Eq. (42) are consistent with the Maxwell equations written
above. Indeed, if one plugs the two algebraic conditions in
Eq. (42) into the three Maxwell equations one obtains a single
Maxwell equation for b3(r):

b′′
3 = κK

8l22 l
2
3

(q − 4κb3)
[
8λl22l

2
3 H

′2

+ l21

(
λ cos(2H)

(
l22q

2 + l23 p
2
)

+ l22

(
8l23 + λq2

)
+ λl23 p

2
)]

sin2(H), (43)

while for the profile H(r) we have a decoupled (from b3)
equation that reads[

λ cos(2H)
(
l22q

2 + l23 p
2
)

+ l22

(
8l23 + λq2

)
+ λl23 p

2
]
H ′′

+
(
l22q

2 + l23 p
2
) (

l21 − λH ′2) sin(2H) = 0. (44)

Thus, the big technical achievement of the present
approach is that the three coupled gauged Skyrme equations
in Eq. (5) and the corresponding four Maxwell equations
in Eq. (6) with exactly the Skyrme ansatz in Eqs. (12) and
(13) and the gauge potential in Eq. (38) reduce to Eqs. (43)
and (44) when the two algebraic conditions in Eq. (42) are
satisfied. We want to stress that the aforementioned rela-
tions provide an exact solution and they are not a product
of an approximation. As for the boundary conditions that are
needed to be set, we have to keep in mind that the system is
confined to a finite box. Thus, the easiest way to realize this
is by imposing periodic boundary conditions in γ and φ and
Dirichlet in r

Interestingly enough, Eq. (44) can be solved explicitly by
observing that it has the following first integral

Y (H)
H ′2

2
+ V (H) = E0, (45)

with

Y (H) = 2λ
(
l22q

2 + l23 p
2
)

cos2(H) + 8l22l
2
3 , (46)

V (H) = −1

2
l21

(
l22q

2 + l23 p
2
)

cos(2H) (47)

and where E0 is an integration constant to be determined
by requiring that the boundary conditions to have non-
vanishing topological charge are satisfied. Thus, Eq. (44) can
be reduced to a quadrature (which defines a generalized ellip-
tic integral). Equation (43) for b3 is linear (since H(r) can be
found explicitly), however its integration is not a trivial task.
In any case, integration of (43) that results in an expression
for b3 makes trivial the determination of the other two com-
ponents of Aμ since both b1 and b2 are given algebraically in
terms of b3 through conditions (42). Nevertheless, even with-
out the explicit expressions, it is still possible to analyze the
generic features of the transport properties electrons passing
through the above gauged Skyrmions.

4.2 Gauged time-crystals

In order to have a time periodic solution with a non vanishing
topological charge, that can be characterized as a time-crystal
(for the introduction to the notion of time crystals see [67–
70]) we start by considering the line element

ds2 = −dγ 2 + l1dr
2 + l2dz

2 + l3dφ2, (48)

where γ in the new ansatz

G = qφ − ωγ

2
, A = −qφ + ωγ

2
(49)
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is the time variable, making the ensuing solution a time
periodic configuration. The constant ω is the frequency of
the time-crystal characterizing the periodicity of the system.
Again we consider a finite box, where this time we take

0 ≤ r ≤ 2π, 0 ≤ z ≤ 4π, 0 ≤ φ ≤ 2π. (50)

We adopt a similar form for the electromagnetic potential as
the one given in (38). However, we have to note now that the
index of the coordinates is changed into xμ = (γ, r, z, φ).
Thus, the vector potential is

Aμ = (b2(r), 0, b1(r), b3(r)), (51)

making b2(r) the electrostatic potential instead of b1(r) that
we had in the Skyrmion case. The Maxwell equations (6)
retain same form as (39) with

M11 = − K

2l23
sin2(H)

[
8λl23 H

′2

+ l21

(
2λ cos2(H)

(
q2 − l23ω2

)
+ 8l23

)]

M23 = Kλl21qω

4l23
sin2(2H)

M32 = −l23M23

M22 = M11 + ω

q
M3,2

M33 = M11 + q

ω
M2,3

N2 = ω

4
M11 − 1

4

(
l23ω2

q
+ q

)

N3 = −q

4
M11 + 1

4

(
q2

l23ω
+ ω

)
,

while the rest of the components of M and N are zero.
As also happened in the Skyrme case, again here, the field

equations reduce to a single ordinary differential equation for
the profile function H(r). In this case the relative equation
reads

4
(
X sin2(H) + l22

(
l23
(
λω2 − 4

)− λq2)) H ′′

+ 2X sin(2H)(H ′)2 + 4 sin2(H)X ′H ′

+ l21
4l23

[
4λl22

(
2κqb3 − l23ω(2κb2 + ω)

)

× (
2κl23ωb2 + q(q − 2κb3)

)− X
(
q2 − l23ω2)] sin(4H)

−
(
2l21
)

λ
X sin(2H) = 0, (52)

where

X (r) = −8κλ
[
2κl23b

2
1

− l22

(
l23b2(2κb2 + ω) + b3(q − 2κb3)

)]
. (53)

Once more, profile equation (52) can be reduced to an inte-
grable one that is decoupled from the Maxwell field. Let us
assume the following conditions for the components b1 and
b3 of the electromagnetic potential Aμ:

X (r) = λl22

(
q2 − l23ω2

)
, b3(r) = l23ω

q
b2(r)+ l23ω2

4κq
+ q

4κ
.

(54)

Then, the remaining Maxwell equation that needs to be sat-
isfied for b2 is

b′′
2 = −κK

8l23
(4κb2 + ω)

[
8l23
(
λ(H ′)2 + l21

)

+ 2λl21 cos2(H)
(
q2 − l23ω2

)]
sin2(H) (55)

and the profile equation is reduced to

(2λ cos2(H)(q2 − l23ω2) + 8l23)H ′′

+ sin(2H)(q2 − l23ω2)(l21 − λH ′2) = 0. (56)

Obviously it exhibits a first integral of the form (45) where
now

Y (H) = 2λ cos2(H)(q2 − l23ω2) + 8l23

V (H) = l21
2

(l23ω2 − q2) cos(2H).

We can notice the similarities with the expressions derived
for the Skyrmion in the previous case. In [65] there has been
presented an extensive discussion on the “extended duality”
that exists between two such systems.

4.3 Topological current for the gauged Skyrmion

The topological current [21] of the gauged Skyrme model
can be divided into two terms

J B
μ = J Sk

μ + J B−em
μ (57)

with the first term J Sk
μ being the usual Baryonic current,

while second term is the correction to the latter, owed to the
coupling with the electromagnetic field. For the first term we
have

J Sk
μ = 1

24π2 EμαβνTr
(
RαRβ Rν

)
, (58)

which in our case has a single nonzero component

J Sk
0 = − pq

8π2l1l2l3
H ′ sin(2H) = −2π n̂B H

′ sin(2H),

V = 16π3l1l2l3, (59)
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where V = 16π3l1l2l3 is the volume of the box and n̂B is the
Baryon density (̂nB = pq/V ) of the system. Note that in (58)
we make use of the Levi-Civita tensor Eμαβν = √−g εμαβν

instead of the Levi-Civita symbol εμαβν so that J Sk
μ trans-

forms covariantly and the topological charge results in a pure
number. If for instance we apply the boundary conditions
H(0) = 0, H(2π) = π

2 we obtain

B =
∫

�

√−gJ 0
Skdrdγ dφ = pq. (60)

The correction J B−em
μ to the baryonic current, due to the

electromagnetic field, is

J emμ = − κ

8π2 Eμαβν∇α

×
[
AβTr

(
t3(U

−1∇νU − ∇νUU−1)
)]

(61)

and the total gauged Baryonic current reads

J B
μ =

{
− pqπ

V
∂r (cos(2H))

+ 4πκ

V
∂r (cos2(H)(qb2 − pb3)), 0,

− 4πqκ

V
∂r (b1 cos2(H)),

4πpκ

V
∂r (cos2(H))

}
. (62)

From what we see, the total baryon number when the
Skyrmion is coupled to the electromagnetic field depends
also on the boundary conditions that one may impose on the
latter (b2 and b3 in particular).

4.4 Baryonic current for the time-crystal

The topological current of the time-crystal can be calculated
with the use of the same relations (58) and (61). Here we just
give the result for the full current of the Gauged Time Crystal
(GTC) which is

JGTC
μ =

{
−4πqκ

V
∂r (b1 cos2(H)), 0,

− l22qπω

V
∂r (cos(2H))

+ 4πκ

V
∂r [cos2(H)(qb2 − ωb3)],

4πκω

V
∂r (b1 cos2(H))

}
. (63)

In the absence of the coupling with the electromagnetic field,
κ = 0, we can see that the expression for the non-zero topo-
logical current of the time-crystal is simplified to

J TCμ =
{

0, 0,−πl22qω

V
∂r (cos(2H)), 0

}
. (64)

5 On the conductivity of gauged solitons

At semi-classical level, the transport properties of electrons
travelling through the above gauged Skyrmions can be deter-
mined by analyzing the corresponding Dirac equation. Obvi-
ously, the electrons interact directly both with the gauge field
and with the Baryons. The fermion couples to Aμ, as QED
dictates. However, there are further effects due to the cou-
pling with the baryonic current. Here, we follow a very sim-
ple toy model interaction just to make a qualitative descrip-
tion of such effects. At this level of approximation in which
the electrons perceive the gauged Skyrmions as a classical
background, both interactions can be described as “current-
current” interactions in the Dirac Hamiltonian. The interac-
tion of the electronic Dirac field � with the gauge potential
Aμ corresponds to the following interaction Hamiltonian

HU (1)
int = κ J eμA

μ,

J eμ = �γμ�,

� = �†γ 0, (65)

where κ is the Maxwell coupling

κ ≈
(

1

137

) 1
2

, (66)

γμ are the Dirac gamma-matrices (the conventions are col-
lected in the Appendix A), �† is the conjugate transpose of
� and � the adjoint spinor. On the other hand, a simple way
to describe the interactions of the electronic Dirac field with
the baryonic current Jμ

B is with the following Hamiltonian

HB
int = gef f J

e
μ J

μ
B , (67)

where gef f is the effective coupling constant of the electron-
Baryon interaction. At the present level of approximation (in
which the energy scale is not high enough to disclose the
parton structure of the Baryon) a reasonable assumption is:

gef f ≈ GF ,

where GF is the Fermi constant.
In order to evaluate the relative strength of the two con-

tributions to the conductivity (a brief analysis is given in
Appendix B), one arising from the term owed to the cou-
pling with the U (1) field (the κAμ in Eq. (69), see Sect. B.1
of Appendix B) and the other arising from the term pro-
duced from the baryon current (the GF J B

μ in Eq. (69)) one
needs to evaluate the relative strength of the U (1) coupling
with respect to the interactions with the Skyrmionic current.
There are two competing factors in the interactions with the
Skyrmionic current. The first factor is the electro-weak cou-
pling constant (which is obviously weaker than the U (1)

coupling). The second factor is related with the Skyrmions

123



139 Page 14 of 17 Eur. Phys. J. C (2019) 79 :139

profile H and can be evaluated explicitly thanks to the present
analytic solutions. Assuming that both sin(2H) and H ′ are of
order 1 (since both quantities are adimensional and the soli-
tonic solutions we are considering are smooth and regular)
one can see that the effective adimensional coupling ĝ mea-
suring the strength of the contributions to the conductivity
due to the interactions of the electrons with the Skyrmionic
current is:

ĝ = l1GFn̂B . (68)

Given that GF ∼ 1.166 GeV−2 or GF ∼ 4.564 fm2 in
natural units we can see that the contribution of the interaction
with J B

μ remains small in comparison to the coupling with Aμ

- at least for baryon densities n̂B and lengths l1 of the box that
can be characterized as natural. The “Baryonic” correction
δ� to the wave function in Eq. (75) depends on the effective
coupling ĝ defined in Eq. (68) and on the Fourier transform
of quantities related with the background Skyrmion.

For completeness, in Sects. B.2 and B.3 of Appendix B
we have included the Dirac equations for the electrons prop-
agating in the gauged solitons background described above.
Although these Dirac equations cannot be solved analytically
(due to the fact that Eqs. (43) and (55) are not integrable in
general), they can be useful starting points for numerical anal-
ysis of transport properties of the present gauged solitons.

6 Conclusions and perspectives

In the present paper we have studied (gauged) Skyrmionic
configurations in a finite box. We provided the reduced field
equations under the adopted ansatz and distinguished the
conditions over the potential functions Aμ for which the
aforementioned equations can be characterized as integrable.
Additionally, we have presented analytic expressions for the
energy and studied its general behaviour in relation to the
baryon number and the possible sizes of the box under con-
sideration. We also managed to demonstrate and analyze the
cases where the more energetically convenient configurations
emerge in relations to these variables.

What is more, we have derived an explicit analytic
expression for the compression modulus corresponding to
Skyrmions living within a finite volume in flat space-times.
This is the first case in which one can derive an analytic for-
mula (Eqs. (36) and (37) in the previous section) for such an
important quantity in a highly interacting theory such as the
low energy limit of QCD. This expression produces a rea-
sonable value with a correct order of magnitude. The gauged
version of these solitons living within a finite volume can
be also considered. Using these gauged solitons, it is possi-
ble to analyze the contributions to the electrons conductivity
associated to the interactions with this Baryonic environment

(which represents a slab of baryons which can be very large
in two of the three spatial directions). To the best of authors
knowledge, the present is the first concrete setting in which
it is possible to perform analytic computations of these rel-
evant quantities in the original version of the Skyrme model
(and its gauged version).
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Appendix A: Conventions

Throughout the paper we use the metric signature (−,+,

+,+). The ordering of the space-time coordinates is xμ =
(z, r, γ, φ) for the Skyrmion and xμ = (γ, r, z, φ) for the
time-crystal.

The four Dirac matrices are

γ 0 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ , γ 1 =

⎛
⎜⎜⎝

0 0 0 1
0 0 1 0
0 −1 0 0

−1 0 0 0

⎞
⎟⎟⎠

γ 2 =

⎛
⎜⎜⎝

0 0 0 −i

0 0 i 0
0 i 0 0

−i 0 0 0

⎞
⎟⎟⎠ , γ 3 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 −1

−1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ .

Appendix B: Dirac equation

Here we include, for completeness, the Dirac equation for an
electron propagating in the two gauged solitons described in
the main text. Although, in these cases, the Dirac equation
cannot be solved analytically, it shows clearly that the present
framework provides with a concrete setting to attack com-
putations which, at a first glance, could appear very difficult
(like the conductivities associated to gauged solitons at finite
densities).
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B.1 Qualitative analysis

The Dirac equation which describes the propagation of the
electron through the above gauged Skyrmion is

[γ μ(i∇μ − κAμ − GF J
B
μ ) + m]�(z, r, γ, φ) = 0, (69)

where m is the electron mass and J B
μ is given by (62). It is

convenient to write the above Dirac equation as follows5:

(H0 + Hint ) � = 0, (70)

H0 = [iγ μ∇μ + m], (71)

Hint = [γ μ(−κAμ − GF J
B
μ )]. (72)

We will work to first order in perturbation theory and we will
consider Hint as a small perturbation. The main goal of our
analysis is to take the first order corrections to the conductiv-
ity and make a comparison between the part that is owed to
the interactions with the solitons and the usual contributions
arising from electromagnetic sources other than the soliton
itself.

The last ingredient we need is the Kubo formula for the
conductivity associated to electrons moving in a medium (for
a detailed review see chapter 4 of [77]). Following the usual
steps one arrives at the following expression for the conduc-
tivity σμν

(−→q ,�
)

(where −→q and � the wave vector and fre-
quency respectively of the incident electromagnetic wave):

σμν

(−→q ,�
) =

∑
s

1

h̄�

∫
dt 〈s| J e0μ

(−→q , 0
)

× J ∗e
0ν

(−→q ,�
) |s〉 exp [−i�t]

where |s〉 and J e0μ are the eigenstate of the free Dirac Hamil-
tonian and the corresponding current in the box where the
gauged solitons live.

Due to the interaction Hamiltonian Hint defined6 in
Eqs. (70)–(72), the electron currents J eμ = �γμ� changes

J e0μ → J e0μ + (δ�) γμ� + �γμ (δ�) = J e0μ + δ J eμ,

where δ� can be computed using first order perturbation
theory. In particular, if �0 is a solution of the un-perturbed
equation

H0�0 = E�0,

5 On the other hand, the gauge potential Aμ and the Baryonic current
J B
μ are the ones corresponding to the gauged Skyrmion and gauged

time-crystal described in the previous section.
6 The gauge potential Aμ and the Baryon current J B

μ in the interaction
Hamiltonian are the ones corresponding to the gauged Skyrmion and to
the gauged time-crystal defined in the previous section.

then the eigenstate � of the interacting case can be written
as

� = �0 − H−1
0 (Hint�0) ,

where H−1
0 is the inverse Dirac operator defined as the Green

function H−1
0 = G(x − x ′) satisfying

H0G0(x − x ′) = δ(x − x ′). (73)

We now from the free particle case that the Green function
in space-time variables is expressed as

H−1
0 = G0(x − x ′) =

∫
d4k

(2π)4 e
−ikμ(xμ−x ′μ) m − γ μkμ

kμkμ + m2

(74)

(of course in our case, for the finite box, the integral is to be
substituted by series). Consequently, we have a perturbation
of the form

δ� =
∫

d4k

(2π)4

∫
d4x ′−ikμ(xμ−x ′μ) m − γ μkμ

kμkμ + m2

×
(
κAμ + GF J

B
μ

)
�0(x

′) (75)

owed to two contributions; the Maxwell field Aμ and the
baryon current J B

μ .
As for the free particle solution �0, it is easy to see that

�0(x) =

⎛
⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎠ e−ikμxμ

(76)

with

ψ1 = k3ψ3 + (k1 − ik2)ψ4

k0 + m
,

ψ2 = (k1 + ik2)ψ3 − k3ψ4

k0 + m
, k2

0 = �k2 + m (77)

satisfies H0�0 = 0.
Consequently,

σμν → σμν + δσμν,

δσμν =
∑
s

1

h̄�

∫
dt 〈s|

[
δ J e0μ

(−→q , 0
)
J ∗e

0ν

(−→q ,�
)

+ J e0μ

(−→q , 0
)
δ J ∗e

0ν

(−→q ,�
)] |s〉 exp [−i�t] .

B.2 Dirac equation for the gauged Skyrmion

The symmetries of the problem allow to search for a separated
solution of the form
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�(z, r, γ, φ)

= e−i(ω1z−k2γ−k3φ){ψ1(r), ψ2(r), ψ3(r), ψ4(r)}. (78)

By introducing (78) into the Dirac equation (69) we obtain
the following set of equations for the components of �:

ψ ′
1 =

(
k2 + κb2 − κg

q

4π2V
φ′

1

)
ψ1

+ i
(
k3 + κb3 + κg

p

4π2V
φ′

1

)
ψ2

+ i
(
ω1 − m − κb1 − g

16π2V

(
4κφ′

2 + φ′
3

))
ψ4

(79a)

ψ ′
2 = − i

(
κb3 + k3 + κg

p

4π2V
φ′

1

)
ψ1

−
(
κb2 + k2 − κg

q

4π2V
φ′

1

)
ψ2

+ i
(
ω1 − m − κb1 − g

16π2V

(
4κφ′

2 + φ′
3

))
ψ3

(79b)

ψ ′
3 =i

(
ω1 + m − κb1 − g

16π2V

(
4κφ′

2 + φ′
3

))
ψ2

+
(
k2 + κb2 − κg

q

4π2V
φ′

1

)
ψ3

+ i
(
k3 + σb3 + κg

p

4π2V
φ′

1

)
ψ4 (79c)

ψ ′
4 =i

(
ω1 + m − κb1 − g

16π2V

(
4κφ′

2 + φ′
3

))
ψ1

− i
(
κb3 + k3 + κg

p

4π2V
φ′

1

)
ψ3

−
(
κb2 + k2 − κg

q

4π2V
φ′

1

)
ψ4, (79d)

where

φ1(r) = b1(r) cos2(H(r)), (80)

φ2(r) = cos2(H(r))(qb2(r) − pb3(r)), (81)

φ3(r) = pq cos(2H(r)). (82)

B.3 Dirac equation for the gauged time-crystal

By using the expression for JGTC
μ as given by (63) inside

(69), instead of J B
μ that we had for the Skyrmion, and by

considering a separable solution of the form

�(z, r, γ, φ)

= e−i(ω1γ−k2z−k3φ){ψ1(r), ψ2(r), ψ3(r), ψ4(r)}, (83)

we obtain a system of equations given by

ψ ′
1 =

(
κb2 − ω1 − gqκ

4π2V
φ′

1

)
ψ1

+ i
(
κb3 + k3 + gκω

4π2V
φ′

1

)
ψ2

− i
(
κb1 + k2 + m + g

16π2V

(
4κφ′

2 − l22φ′
3

))
ψ4

(84a)

ψ ′
2 = − i

(
κb2 + k3 + gκω

4π2V
φ′

1

)
ψ1

+
(
ω1 − κb2 + gqκ

4π2V
φ′

1

)
ψ2

− i
(
κb1 + k2 + m + g

16π2V

(
4κφ′

2 − l22φ′
3

))
ψ3

(84b)

ψ ′
3 =i

(
m − κb1 − k2 − g

16π2V

(
4κφ′

2 − l22ψ ′
3

))
ψ2(

κb2 − gqκ

4π2V
φ′

1 − ω1

)
ψ3

+ i
(
κb3 + k3 + gκω

4π2V
φ′

1

)
ψ4 (84c)

ψ ′
4 =i

(
m − κb1 − k2 − g

16π2V

(
4κφ′

2 − l22φ′
3

))
ψ1

− i
(
κb3 + k3 + gκω

4π2V
φ′

1

)
ψ3

+
(
ω1 − κb2 + gqκ

4π2V
φ′

1

)
ψ4. (84d)

The functions φ1(r), φ2(r) and φ3(r) are the same as before,
only now we have ω appearing in them in place of p, i.e.

φ1(r) = b1(r) cos2(H(r)) (85)

φ2(r) = cos2(H(r))(qb2(r) − ωb3(r)) (86)

φ3(r) = qω cos(2H(r)). (87)
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