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Abstract Itis known that cosmic magnetic field, if present,
can generate anisotropic stress in the plasma and hence, can
act as a source of gravitational waves. These cosmic magnetic
fields can be generated at very high temperature, much above
electroweak scale, due to the gravitational anomaly in pres-
ence of the chiral asymmetry. The chiral asymmetry leads to
instability in the plasma which ultimately leads to the gener-
ation of magnetic fields. In this article, we discuss the gener-
ation of gravitational waves, during the period of instability,
in the chiral plasma sourced by the magnetic field created
due to the gravitational anomaly. We have shown that such
gravitational wave will have a unique spectrum. Moreover,
depending on the temperature of the universe at the time of its
generation, such gravitational waves can have wide range of
frequencies. We also estimate the amplitude and frequency
of the gravitational waves and delineate the possibility of its
detection by the future experiments like eLISA.

1 Introduction

Gravitational wave (GW) once generated, propagates almost
unhindered through the space-time. This property makes GW
a very powerful probe of the source which produces it as
well as the medium through which it propagates (see [1—
3] and references therein). From the cosmological point of
view, the most interesting gravitational radiation is that of
the stochastic gravitational wave (SGW) background. Such
gravitational radiations are produced by events in the early
stages of the Universe and hence, may decipher the physics of
those epochs. Several attempts have already been made in this
regard and various sources of SGW have been considered.
List of SGW source includes quantum fluctuations during
inflation [4-7], bubble wall collision during phase transition
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[8—13], cosmological magnetic fields [14—17] and turbulence
in the plasma [16,18,19].

In the early universe, before the electroweak phase tran-
sition, many interesting phenomena have taken place. For
instance, it has been shown by several authors [20-25] that
in presence of asymmetry in the left-handed and the right-
handed particles in the early Universe, there will be an insta-
bility which leads to the generation of turbulence in the
plasma as well as (hyper-charge) magnetic fields. In refer-
ence [26], it has been shown that these magnetic fields can
be generated even in absence of net chiral charge but due
to the gravitational anomaly. The magnetic field generated
via this mechanism are helical in nature. However, helicity
(3 = % f d3x A-B) of these magnetic fields are not com-
pletely conserved due to the fact that large but finite conduc-
tivity gives a slight time variation of the helicity density. In
presence of chiral imbalance, the chiral charge conservation
equation, which is valid at temperature T > T ~ 80 TeV
[20],is givenas: 9, (A/A—i—%%) =O0where At = urp—pur,
o’ and n are the asymmetry in the chiral chemical poten-
tials and U (1)y fine structure constant and conformal time
respectively. At the onset of the instability, ##3 ~ 0 and at
subsequent time, helicity will grow at the expense of chiral
chemical potential. In this regime, Ap can be regarded as
constant. On the other hand, at temperature 7 < 80 TeV the
above conservation equation is not valid as chiral flipping I'f
rate is non-vanishing and the hence, the conservation equa-
tion is given by [22]

d /!
— (A,u + a—%”g) =—IrAu. (1)
dn b4

1/2
8713&“) My, where gefr

and My =1/ /G are relativistic degree of freedom and the
Planck mass respectively [20]. In this regime, non-linearity
sets in and the magnetic fields are generated. The generated
magnetic fields show inverse cascade behaviour, where mag-
netic energy is transfered from small scale to large-scale.

Here I'y = AT/I—iT and M, = (i
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In reference [27], it is shown that the currently observed
baryon asymmetry (ng ~ 10710) can be generated if the
magnetic fields produced above electroweak scale undergoes
the inverse cascade and the strength of the magnetic field is
of the order (10~'4 — 10~ !2) G at the galactic scale. The gen-
erated magnetic fields induce a anisotropic stress so that their
energy density B /87 must be a small perturbation, in order
to preserve the isotropy of the Friedmann-Robertson-Walker
background. This condition allows us to use the linear pertur-
bation theory. In this perturbation scheme, peculiar velocity
and magnetic fields are considered to be first order in per-
turbations. At sufficiently large length scale, the effect of the
fluid on the evolution of magnetic fields can be neglected.
However, at small length scales the interaction between the
fluid and the magnetic field become very crucial. At the inter-
mediate length scale, plasma undergoes Alfven oscillations
and on a very small scale (viscous scale), these fields undergo
exponential damping due to the shear viscosity [28]. Thus,
the large-scale magnetic fields are important for the physics
at the cosmic scale.

We have already mentioned that the seed magnetic field
can be generated even in absence of net chiral charge but
due to gravitational anomaly [26] and the magnetic field
thus generated can produce instability in the plasma. These
magnetic fields contribute a anisotropic stress to the energy-
momentum tensor and hence can act as a source for the gener-
ation of the GWs. The underlying physics of GW generation
is completely different from previously considered scenar-
ios. Therefore, it is important to investigate the generation
and evolution of GW in this context. In this article, we com-
pute the metric tensor perturbation due to the chiral magnetic
field. Since chiral magnetic field, which sources the tensor
perturbations, has a unique spectrum, the GWs generated is
expected to have a unique signature in its spectrum as well.
Moreover, we compute the amplitude and frequency of the
GW and show its dependences on the model parameters. Con-
sequently, any detection of SGW in future measurements like
eLISA will constrain or rule out such theoretical constructs.

This paper is organized as follows: in Sect. 2 we outline
the generation and evolution of magnetic field due to gravita-
tional anomaly and chiral imbalance. We discuss the genera-
tion of SGW in Sect. 3. We present our results in Sect. 4 and
finally conclude in (5). Throughout this work, we have used
h = ¢ = kg = 1 unit. We have also considered Friedman-
Robertson-Walker metric for expanding background space-
time

ds> = a*(n) (—dn2 + 8;j dx’ dxj) , (2)

where scale factor a(n) have dimension of length, whereas
conformal time 7 and conformal coordinate x’ are dimen-
sionless quantities. In the radiation dominated epoch a =
1/T, we can define conformal time n = M,/T. Unless
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stated otherwise, we will work in terms of comoving vari-
ables defined as,

B.=a*()B®), pe=almu, ke =ak, )

where, B, u and k represents the physical magnetic fields,
chemical potential, and the wave number respectively. It is
clear from the convention used here that all the comoving
quantities are dimensionless. In terms of these comoving
variables, the evolution equations of fluid and electromag-
netic fields are form invariant [29-31]. Therefore, we will
work with the above defined comoving quantities and omit
the subscript “c” in our further discussion.

2 Gravitational anomaly and magnetic fields in the
early universe

Although the origin of large-scale magnetic field is still an
unsolved issue in cosmology, several attempts have been
made to address the issue. It has been discussed in the lit-
erature that there are processes in the early universe, much
above electroweak scale, which can lead to more number of
right-handed particle than the left-handed ones and remains
in thermal equilibrium via its coupling with the hypercharge
gauge bosons [32,33]. Furthermore, if the plasma has rota-
tional flow or external gauge field present, there could be a
current in the direction parallel to the vorticity due to rota-
tional flow or parallel to the external field. The current par-
allel to the vorticity is known as chiral vortical current and
the phenomenon is called as chiral vortical effects (CVE)
[34-38]. Similarly, the current parallel to the external mag-
netic field is known as chiral magnetic current and the phe-
nomenon is called as chiral magnetic effect (CME) [39-43].
CVE and CME are characterized by the transport coefficients
£ and £ B respectively. The form of these coefficients can be
obtained by demanding the consistency with the second law
of thermodynamics (9, s* > 0, with s* being the entropy
density). Thus, in presence of chiral imbalance and gravita-
tional anomaly, which arises due to the coupling of spin with
gravity [44], the coefficients for each right and left particle
have the following form [37,38,41]

éi=Cu,~2[1— nim] DT2|:1_2nilLi:|,
3(p+p) 2 (p+p)
)
2
® _ ¢ i[l_M]_B[“ } 5
5 SN b yre i s ©)

In above equations ‘i’ stands for each species of the chiral
plasma. The constants C and D are related to those of the
chiral anomaly and mixed gauge-gravitational anomaly and
are given as C = +1/47? and D = +1/12 for right and
left-handed chiral particles respectively. The variables n, p
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and p are respectively the number density, energy density
and pressure density.

Using the effective Lagrangian for the standard model,
one can derive the generalized Maxwell’s Eq. [45],

VxB=j, (6)

where j is defined as j = j, + js with j, being the vector
current and js is the axial current. Vector and axial currents
respectively takes the following form:

Jh=nyut + o E* + & 0" + B BH, 7
j& =nsut + &' + éS(B)B“ . ®)

In the above equations, any quantity xy, (s)y denotes the sum
(difference) of the quantities pertaining to right and left
handed particles. Also E# = u, F*Y, B = 1/2e"V9%y, Fys,
andot =1/ 26MV98y 9. us are the electric, magnetic and the
vorticity four vectors respectively. We have ignored the dis-
placement current in Eq. (6). Taking u* = (1, v) and using
Egs. (7)- (8), one can show that

" =n=ny+ns )

j=nv+oE+vxB) +Eiw+ BB, (10)

with & = & + & and £ = £ 4 £ Assuming the
velocity field to be divergence free field, i.e. V - v = 0 and
taking curl of Eq. (6) along with the expression for current
from Eq. (10) we obtain,

B n 1 _,
— =—w+ —V°B+V x (vxB)
an o o
; §®
+=V xw+ —V xB. (11
o o

In our previous work [26], we discussed that the seed mag-
netic field (for which B in the right hand side of Eq. (11) is
zero) can be generated even if n = 0. The T2 term in & [see
Eq. (4)], which arises due to the gravitational anomaly, acts
as a source for the generation of seed field. On the other hand,
presence of finite chiral imbalance such that u/7T < 1, T2
term in & still acts as source of seed magnetic field but non-
zero £B) triggers instability in the system. This result is in
agreement with the previous studies where it was shown that
in the presence of a chiral imbalance in the plasma, much
above the Electroweak scale (T > 100 GeV), there can be
instability known as chiral plasma instability [46].

The production and evolution of the magnetic field can
be seen through the evolution equation given in Eq. (11).
In order to do so, we decompose the divergence-free vector
fields, e.g. magnetic field, in the orthonormal helicity basis,
eii, defined as

(k) = _—; [e1(k) £ i ex(l)]exp(ik - x), (12)

7

where (eq,ep,e3 = R) form a right-handed orthonormal
basis with ¢ = Kk x e;. We choose e; to remain invari-
ant under the transformation k — —k while e, flip its sign.

In this basis, the magnetic field can be decomposed as
Bi(n, k) = BY (1, k) & (k) + B~ (n. k) & (k). (13)

|2 can be

In this basis, the evolution equation for the |B*
obtained from Eq. (11)

a|g§:|2 - ; (—k2 + g<B>k) \BEP + 032 (ink + €k2>2

x |VE[2Z (14)

where F; = n — ng for n — no < 2n/(kv) and zero for
n —no > 2w /(kv). Also magnitude of the wave vector K is
represented as k, i.e. |k| = k. From Eq. (14), it is clear that,
when first term is dominant over the second term, magnetic
modes will grow exponentially with time as

27 27
|BE)? = | Bol* exp (;kz) exp (—;(k F km)z) ,

where kins = o’ A /7 is the value of the k at which magnetic
modes have maximum growth rate. The exponential growth
of the magnetic modes is true only in the linear regime. In
this regime, chiral chemical potential remain constant and
magnetic fields are generated at the cost of chiral imbalance.
However, when generated magnetic field is sufficiently large,
the non-linear effects become prominent. In this case, we
need to consider the evolution of the chemical potential [20,
23], which is given by Eq. (1).

At temperature T > 80 TeV, perturbative processes that
lead to the flipping of the chirality are small compared to the
expansion rate of the Universe and hence we can consider
the chiral symmetry to be an exact symmetry of the theory.
Therefore, a chemical potential p g 1, for each species can be
defined. However, at T < 80 TeV, the chiral symmetry is not
exact due to the chiral flipping of the right-handed particles
to the left-handed particles and vice versa. As a consequence,
the number densities of these particle are not conserved and
therefore, we can not define the chemical potentials for right
and left handed particles [22,47]. In order to obtain the veloc-
ity profile, we used the scaling symmetry [48,49] rather than
solving the Navier-Stokes equation. In our earlier work [26],

we have obtained [vt| = |v~| = 7k—3/2v. Here v is given
by
k(T2 =276
vk, n) = v; <—) (—) . (15)
ki(no) 1o

In above equation, m is a positive integer and v;, k; are arbi-
trary function encoding the boundary conditions. We also
showed that the scaling law allows more power in the mag-
netic field. Forn = 0, Eg o k at larger length scale whereas

@ Springer
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forn #0, Ep « k3 instead of k7 [23]. However, in the both
scenarios Ep is more than that of the case without consider-
ing the scaling symmetry [23]. This aspect is important for
this analysis as more power in the helical magnetic field can
generate larger anisotropic stress.

The two point correlation function for the helical magnetic
fields is given as:

.y (271)3
(Bi(k)B} (k) = 2

+i €ijuki o/ (6)] (16)

Sk — k' [P,-jS(k)

where S(k) is the symmetric and &7 (k) is the helical part
of the magnetic field power spectrum. P;; = §;; — ki k jis
the transverse plane projector which satisfies: P; jlg i =0,
P;jPji = Py with lgi = k;/k and €;j; is the totally anti-
symmetric tensor. Using Eq. (16) and the reality condition
B**(k) = —B(k)*, one can show that

(B* (k)BT (k') + B~ (k) B~ (K))

=—Q2n)’Sk)sk — k) (17)
(B (k)B** (k') — B~ (k)B~*(K))
=Qn) dk)sk — k). (18)

Note that, o7 (k) represents the difference in the power of left-
handed and right-handed magnetic fields, however a maxi-
mally helical magnetic fields configuration can be achieved
when &7 (k) = S(k).

2.1 Anisotropic stress

Tensor component of metric perturbation, which results in the
gravitational waves, are sourced by the transverse-traceless
part of the stress-energy tensor. In this work, we assume that
the anisotropic stress is generated by the magnetic stress-
energy tensor which is given by

1 1
Tl-j:a—2<Bi Bj—ES,‘jBZ) s (19)

Note that the spatial indices are raised, lowered and con-
tracted by the Kronecker delta such that B> = §'/ B; B ;. The
magnetic field component B; then coincide with the comov-
ing magnetic field which in our notation is B. = a? B. In
Fourier space, the stress-energy tensor for the magnetic field
take the following form

)
7ij (k) = 2(“2”)4 / dq [qu)B;f(q — k)
1
—3Bi@)B} (q - k)ai,,} . (20)

We are interested in the generation of GW and hence, we
need to extract the transverse traceless component of the

@ Springer

stress energy tensor given in Eq. (20). This can be done by
using the projection operator: &, (k) = [Pi; (k) P}y, (k) —
1 Pij (k) Pyy (k)] which leads to [50]

i (k) = Pitjm (k) Ty (k). 2

At this stage, we will evaluate the two-point correlation func-
tion of the energy-momentum tensor which will be used in
the later part of the calculation. The two point correlation of
the stress-energy tensor takes the form

T ) = [, [P
(Tj (k) Ty, (k7)) = 36 @) /d p/d q
x [(Bi(P) Bi(p— k) B{'(¢)Bnu(q — k')

+ ()dij + () S + (--)51',/51;11}
(22)

It was shown in Ref. [51] that only first term in the angular
bracket will have a non-vanishing contribution in the two-
point correlation function of the anisotropic stress (I1;; [T} ).
Therefore, we will not evaluate other terms. Moreover,
around the chiral instability, the magnetic field profile is
Gaussian and the major contribution to the anisotropic stress
come from this regime only. Therefore, we can safely assume
that the magnetic fields are Gaussian and hence four-point
correlator in the integrand can be expressed, using Wick’s
theorem, in terms of two-point correlators as

(Bi(ki)Bj(k;)Bi (ki) By (km))
= (Bi(ki)Bj(k;)) (Bi (ki) By (k))
+ (B; (ki) By (ky)) (B (k ;) By (k)
+ (Bi (ki) By (k)) (Bj (k) B (kp)) .

(23)

After a bit of lengthy but straightforward calculation, we
obtain the two point correlations of the energy momentum
tensor and the transverse-traceless part of the energy momen-
tum tensor is

(Tij (k) Ty, (K1)

= W‘W‘ —K) / d3p[S(p>S<k -p)

{Pu(B) P =) + Pun () Piste = )]
— A (p) Ak — p)€ita €jmb pa k — Py
+ €ime €j1a e (k — p)g}+i A (P)Sk — p)
{€ita ij(k/—\P) Py + €ime le(k/—\P) pel
+i Ak = p)S(PI | ejmb Pu(p) (k — pi

+ €51 Pim(P) (k — p)a }}

(24)
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and

(M (k) I (K)) = Paivj (k) Peiam (k) (Tij (k) Tiyy (k).
(25)

Above equation can also be written in terms of a most general
isotropic transverse traceless fourth rank tensor which obeys
Pabed = Pracd = Pabdc = Pedab as [28,52]

1
(M (k) 134 (K)) = m[///abcdf(k)+i%bcdg(k)]5(k—k’),
(26)

with a definition of .#Z,pcq and peq as

%abcd = PucPpa + Paa Ppe — Pap Pea

1A
Habed = zke(Pbdeace + Pac€pde + Pad€pce + Poc€ade)
(27)

which follows following properties:

Mabed = Mcdab = Mabde = Mpacd
Dabed = Dedab = —
Mabab = 4

Maacd = Mapec =0
PeogMabcd = Mebed
Pea Dabed = ebed
Mabed Mabed = Mabed Mabed = 8

Dabed Mabed =0

Dabab = Yaacd = Dabec = 0. (28)

bde = —bacd

The functions f (k) and g (k) are defined as follows:

30— K) F00) = 5 Mabed (T8 TSy (K)

Sk — k') g(k) = _%%bcd<Tab(k) Toy(K)). (29)
We point out that the functions f (k) and g (k) also depends

on time because of the time dependence of the magnetic
fields. The integral form of these two functions are

f(k)—l ! /d3 [(1+yHU+BH S(p)SKk — p)
4@n2 ) “7F P P
+dy BAH(p)H (k- p)] (30)
_ 1 3 2
¢ =5 s [ [+ v 850 G- ).
31)

where p = Ipl, (k = p) = [k —ply = k-pand § =

k-(k—p) = (k- py)/VK* + p* —2ypk.

3 Gravitational waves from chiral magnetic fields

We have seen that the chiral magnetic field generated at very
high temperature can produce anisotropic stress which leads
to tensor perturbation in the metric. To linear order, the small
tensor perturbation in the FLRW background can be written
as:

ds? = a>())[—dn® + (8i; + 2hij)dx" dx’], (32)

where the tensor perturbation satisfies the following condi-
tions h; =0and ' hl] = 0. In this gauge, these tensor per-
turbations describe the GW whose evolution equation can be
obtained by solving Einstein’s equation which, to the linear
order in A;}, is given as:

h; +2Hhj; + k> hij =87 G IT;j, (33)
where prime denotes the derivative with respect to the con-
formal time n and H = Tl) 8%(”"). The time dependence in

the right hand side of the Eq. (33) comes from the fact that the
magnetic field is frozen in the plasma. Therefore, I1;; (k, n) is
a coherent source, in the sense that each mode undergoes the
same time evolution. Assuming that the tensor perturbations
has a Gaussian distribution function, the statistical properties
can be described by the two-point correlation function given
as,

, 1
(5 . ) by (K ) = 8 G = K[ Mijom Saw (k. 1)

+ i Fjim Aew (k)]
(34)

where Sgw and /g w characterizes the amplitude and polar-
ization of the GWs. With the above definition, we can write,

sk — k') Sgw = Mijim (i (R) B (K)) - (35)

1
(2m)3

Sk — k') Ay = ijim (] () iy, (). (36)

1
(2m)3
We now choose a coordinate system, for which unit vectors
are €1, €, €3, in which GW propagates in the €3 direction.
Further, we introduce

3
+ [3, & +
e ==y3 (g7 x &7) (37)

which forms basis for a tensor perturbations and satisfy
the following properties: &;; e?j:. = 0, ki efi = 0 and
e$ el.? = 3/2 [53,54]. The right-handed and left handed
circularly polarized state of the GWs are represented by +
and — sign respectively. In this basis, polarization tensor and

modes of the GWs can be written as follows:

@ Springer
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0 (k) = e;m(k) +e 11 (k), (38)

hij (k. n) = W (k. e + h™ (k. ey, (39)

On using equations in (38), Eq. (29) can be expressed as:

Sk — k) f(k) = %(H*(k)ﬂ k)

+IT~ (k)IT~*(k')) (40)
Sk — k') g(k) = —%(H*(k)l‘ﬁ*(k’)

—IT~(k)IT*(K)) . A1)

Adding and subtracting Eqgs. (40) and (41) we obtain,

fk)+ g = 3(IT~ ()T (k) ~ 3(T ) (42)
flk) = g(k) = 3(ITT () IT™(k)) ~ 3T ) (43)

Similarly, we can write Eq. (36) as:

30— K)Sgw (k) = 3 (0 (ke ph ™ (&' )
+h~ (k, mh™*(k', n))

30— K) A (k. m) = =3 O+ e, ™ ' )
—h~(k, )h~* k', n))

Therefore, components of the GWs evolve as

/
nE (k, n) +2 % hE (k, n) + K2hE (k, n) = 87 GITE (k) ,
(44)

here IT;; is the mean square root value of the transverse trace-
less part of the energy momentum tensor. In terms of dimen-
sionless variable x = kn, the above equation reduces to

+
VEID bl oy
X k2

where s*(k, 1) = (8;’—20) +/ M and the parameters

a = 1 and o = 2 indicates the radiation dominated and the
matter dominated epoch respectively. In the radiation dom-
inated epoch, the homogeneous solution of the Eq. (45) are
the spherical Bessel function jj and yg. In our case, magnetic
field is generated at 7;,, in the radiation dominated epoch due
to chiral instability leading to anisotropic stress which in turn
generates the gravitational waves. Thus, the general solution
of Eq. (45) can be given as,

(45)

hE(x) = ¢ (%) jo(x) + 5 (x) yo(x) (46)

@ Springer

where ¢1(x) and ¢ (x) are undetermined coefficients which
is given as

X L./
o) = - / | dx’ﬁ Yolx') (47)
x +/../
0 = [ e T o) @)

where w(x) = jo(x) yj(x) — yo(x) jj(x) = xiz We have
calculated cli (x) and céc (x) using equations Egs. (47) and
(48) under the limits of x > 1. In this limit, the second term
with yg diverges, therefore, first term dominates over second
one. In this case, in the radiation dominated epoch, the two
polarizations of the tensor perturbations can be written as:

Rt (x) = ¢f (1) jo(x)

9 [f—g
72 gt 3
h™(x) = c; (D jo(x)

90 +
> =V % Jo(x) log(xin) , (50)

here x = 1 in ¢ (1) signifies the value at the time of horizon
crossing. After horizon crossing, these gravitational waves
propagate without any hindrance. However, their energy and
polarization stretched by the scale factor, similar to the mag-
netic radiation energy. The time derivative of the of the
Egs. (49) and (50) is

Jo(x) log(xin) (49)

90 f—g

ht(x) = — i) log(xin), (51)
72 geft 3 /0 g

N 90 +g

@) = ——o— JLEE ) loguin) (52)
T~ geff 3

In real space, the energy density of the gravitational waves
is defined as

1

= ————— (h}:h}). 53
167rGa2< ) (53)

PGW ijij
Note that a factor of a? in the denominator comes from the
fact that i’ is the derivative with respect to conformal time.
In Fourier space, the energy density of the gravitational wave
is given as

dk d Sgw
Sewk) = | — 54
cw (k) k dlogk (54)
with
d Sgw (k) K3 o iy
= ht h . 55
d logk 2 M4 a? (27‘[)6G(| B (53)
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With this definition, we can define power spectrum evaluated
at the time of generation as

dQGW,s _ 1 dSGW,s
dlogk  (pcs/M}) dlogk
1677:](3 90 ? f(k) / 2
= . 1 ) )
3(27‘[)6as2 (7T2geff) qu [JO(x) Og(xln)]
(56)

where p. s is the critical density of the universe at the time of
generation of GW. Once gravitational waves are produced,
they are decoupled from the rest of the Universe. This implies
that the energy density of the gravitational waves will fall as
a~* and frequency redshifts as a~!. Hence, the power spec-
trum at today’s epoch can be given as

d2¢w,o _ d2w.s (as (e
dlogk ~  dlogk \ag pe0)
Assuming that the Universe has expanded adiabatically

which implies that the entropy per comoving volume is con-
served leads to

ag (geff,0>l/3 (E)

ag 8eff.s Ty )’
where we have used gefr for the effective degrees of free-
dom that contribute to the entropy density also. This is due
to the fact that effective degrees of freedom that contribute

to the energy and entropy densities are same at very high
temperature. Therefore, Eq. (57), using Eq. (58) reads as

d2Gw.0 _ ( 8eff,0 VN (H\? dRcw.s
dlogk 8eff s Ts Hy dlogk
167k3 < 90 )2 (geff,0)4/3
= 6.2 <\ 2
3Q2m)°a; T geff eff,s

To\* f) .,
(70) %[m(x)log(xm)]2

(57

(58)

(59)

In Figs. 1 and 2, we have shown the variation of GW spec-
trum with respect to k for different temperature at fix number
density and for different number density at fix temperature.

4 Results and Discussion

Before discussing the results obtained, we would like to
explain various important length scales useful for the mag-
netohydrodynamic discussion of the generation of GWs due
to the chiral instability in presence of the external mag-
netic fields. Firstly, magnetic modes grow exponentially for
k = king = €8 /2 ~ g>(%)T [25,26]. Secondly, dissipa-
tion due to the finite resistivity of the plasma works at wave

\/%g T [55]. Therefore, near insta-

bility, the wavenumber corresponding to the length scales of
interest k < kgiss. In the present analysis, we have not con-
sidered any dissipation in the plasma and restricted ourself
to the scales where there is maximally growing modes of the
magnetic fields are available. Therefore, for k values larger
than the instability scale, this analysis may not be reliable. In
Figs. 1 and 2, we have found that GWs peak occurs at kjps. It
is evident that at higher values of & i.e. at small length scales,
power increases after instability. This is related to the rise
in the magnetic energy at large k. The rise in the magnetic
energy is unphysical as we know that in turbulent system,
energy accumulates at smallest scales. This effect in princi-
ple can be restricted by going to hyper diffusion scale (instead
of V2 operator, one needs to introduce v4 operator) [56].

numbers k < kgiss ~

10—10 -
10—20 -
x 107 4
D
o
% 10-40 4
o}
T 1077 - A
1075 1 '/ 4
P
— T = 10%GeV
Ve
107704 ./ - T =10%GeV
Rd // —_ T =10'GeV
10-80 Loi ; : : :
10-8 1077 1076 107° 1074 1073

Fig. 1 Gravitational wave spectrum as a function of x = k7. We have
fixed n = 1076 and varied temperature

1010 o

10720 4

10730

1040 o

dQew/dlogk

T = 10%GeV

— = 1076
—— =107

10-704

10-8 107 10-6 10 10~ 105
X=kn—

Fig. 2 Gravitational wave spectrum as a function of x = k» at differ-
ent number densities at temperature T~ 108 GeV. For a large number
density, the effects at large length scale is more than at the small length
scale
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We would like to emphasize, in Figs. 1 and 2 that variable
x = kn is a dimensionless quantity. In order to interpret
the results, we convert x in frequency of the GW. Since,

x=akn= %n = Z”T”n. From this we can get v in terms of
xasv = %x. Moreover, peak of the power spectrum of the

GW occurs when growth of the instability is maximum which

is given by vpax & % ((f/—zT) T [25,55]. Here § is defined as
6 = a(ug — mr)/T. The red-shifted value of the frequency
can be obtained using the relation: vy = % Vmax, Where T is
the temperature at which instability occurs. Hence, we can
obtain the frequency at which maximum power is transferred
from the magnetic field to GWs. The obtained formula of
the frequency in simplified form is v ~ 10° 82 Hz, where
we have used 7y = 2.73 K ~ 10'! Hz in our units and
o/ T = 100.For temperature T ~ 10° GeV, (ug—pur)/T ~
1073 [23] and thus, 8> = 107'9 (with & ~ 107%). Hence
frequency where maximum power of GW occurs, is around
10~! Hz. Thus they may be detected in eLISA experiment
[57]. Further, the strength of magnetic field changes when
chiral charge density n change. Figure 2 shows the effect of
n on GW spectrum. It is apparent that the ki, is not affected
by the number density and hence, the peak does not shift.
However, the power in a particular £ mode enhances with an
increase in n. This happens due to the fact that for a larger
value of n, magnetic field strength is higher at larger k [26].

5 Conclusion

In the present work, we have extended our earlier works
on the generation of primordial magnetic fields in a chiral
plasma [25,26] to the generation of GWs. This kind of source
may exist much above electroweak scale. We have shown that
the gravitational anomaly generates the seed magnetic field
which evolves and create instability in the system. This insta-
bility acts as a source of anisotropic stress which leads to the
production of gravitational waves. The production and evo-
lution of the magnetic field has been studied using Eq. (11).
In order to obtain the velocity profile, we have used scal-
ing properties [48,49] rather than solving the Navier-Stokes
equation. This scaling property results in more power in the
magnetic field at smaller k as compared to that of the case
without scaling symmetries (see [26]). We have calculated
power spectrum of the produced GWs and shown that the
spectrum has a distinct peak at kjns and hence correspond to
the dominant frequency of GW. The GW generated at high
temperature 7 > 10° GeV via aforementioned method is
potentially detectable in eLISA.

In this work, we have considered massless electrons much
above electroweak scale and discussed the production of
gravitational waves due to chiral instabilities in presence of
Abelian fields belonging to U (1)y group. However, a similar

@ Springer

situation can arise in the case of Quark-Gluon Plasma (QGP)
at T 2 100 MeV where quarks are not confined and interact
with gluons which may result in instabilities. Thus, GW can
be produced in QGP as well.

To conclude, the study of relic GWs can open the door to
explore energy scales beyond our current accessibility and
give insight into exotic physics.
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