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Abstract While computing the Fermi degeneracy pressure
of electrons in a white dwarf star within the framework of
hydrostatic equilibrium, we depart from the extant practice of
treating the electrons as a free fermion gas, by including the
effect of the background gravitational potential experienced
by the electrons in the star, resulting from the mass of its con-
stituent atoms (being the mass of all nucleons). Modifying
the free particle Hamiltonian with this effective potential, we
employ first order quantum mechanical perturbation theory
to compute the degeneracy pressure, in order to study the
effect of inclusion of this self-gravity of the star on the limit-
ing mass. The final effect is found to be non-trivial, but per-
haps a shade too small to alter any major observational result.

1 Introduction

White Dwarfs have been a phenomenon of great importance
to astrophysicists, as also theoretical physicists since their
discovery in 1910. A White Dwarf is a stellar remnant, the
fate of certain stars after they have exhausted all of their
nuclear fuel. They are extremely dense with masses compa-
rable to that of the Sun but a volume comparable to that of the
earth. The issue of a limiting mass for white dwarf stars has
been an active area of research since the 1930s till date. Gen-
eral Relativity has been applied recently [1,2] to realize and
augment the hydrostatic equilibrium scenario of the incipi-
ent works [3] on the subject, leading to fractional changes
on the maximum mass of white dwarfs. The incorporation of
large magnetic fields has also been examined [4—6], leading
to an apparent enhancement in the limiting mass-yielding the
so-called super-Chandrasekhar white dwarfs. The inclusion
of rotation and finite temperatures [7] have also been made
recently in order to estimate their effect on the limiting mass.

#e-mail: ronanarya9988 @ gmail.com

b e-mail: pronobesh.maity @icts.res.in

¢ e-mail: bhpartha@gmail.com

In the early derivations of the limiting mass of a white
dwarf star using hydrostatic equilibrium by Anderson [8],
Stoner [9] and Landau [10], and Chandrasekhar [11,12], due
to relativistic effects necessitated by the density of matter of
these white dwarfs, the assumption has been made that the
electrons inside the star can be modelled as free quantum
mechanical particles inside a spherical well with the radius
of the star. The electrons are of course assumed to be trapped
in an infinite well, since, to escape outside from the bound-
ary, the electrons would need to overcome a huge Coulom-
bic potential. Such a potential is clearly absent inside, as the
star as a whole is electrically neutral. But inside the well,
unlike the electrostatic interaction, gravity does not cancel
out. The electrons inside the well are not free but are actu-
ally residing in a background gravitational potential. Since
this background potential is admittedly weak, the electrons
can be more realistically modelled approximately as particles
inside an infinite spherical well, but with an additional per-
turbation by this background gravitational potential. The aim
of this article is to explore the effects of such a background
potential on the mass limit. We argue that a correction to the
limiting mass, albeit a small one, does indeed emerge within
our proposed modification of electron dynamics inside the
star. We also note that this is a new physical effect that has
not been considered heretofore, despite the large literature
on the subject.

In some of the very early work on white dwarf limiting
mass (see Refs. [§—10]), the hydrostatic equilibrium has been
realized, not as a balance of gravitational pressure and Fermi
degeneracy pressure of relativistic electrons, but by a mini-
mization of the total energy of the star. The equivalence, of
the energy minimization approach of Anderson, Stoner and
Landau to the pressure balance viewpoint endorsed by Chan-
drasekhar, goes to the extent of yielding the correct Equation
of State (EoS) for the electrons, as can be shown by com-
puting the derivative of the kinetic energy of the star with
respect to its volume: for the non-relativistic case, this yields
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the EoS P p5/ 3. for the relativistic case of Chandrasekhar
and his precursors one obtains P o p*/3.

A perturbative correction to the relativistic equation of
state, due to the background gravitational potential proposed
by us, is therefore a new result of this paper, which has never
appeared in the white dwarf literature. Of course, in this paper
very important effects such as those due to magnetic fields
and rotation as well as those due to general relativistic cor-
rections, are ignored. These have been discussed in detail in
Refs. [1-7]. Our aim here, instead, is to capture the essence
of the new physics associated with the electron degeneracy
in presence of the gravitational potential of the atoms of the
star, in as simple a context as possible, leaving other com-
plexities aside. In doing so, we have gone back to the incip-
ient treatments based on Newtonian gravity, because this is
adequate to ascertain how big the correction is, in order of
magnitude, to the limiting mass. In this same spirit, we also
adopt the rather drastically approximate model of a uniform
spherical star, rather than follow Chandrasekhar’s inclusion
of non-uniformity of density as a more realistic feature of
polytropic stars. Incorporation of these additional subtleties
makes sense only when the correction we are after is large
enough to justify a rigorous treatment.

The overview of the rest of the paper is as follows: we
begin the next section with introducing the proposed modifi-
cation due to the background gravity arising from the nuclei
constituting the star, to the free electron Hamiltonian, within
a sort of mean field picture. This modification is seen to be a
weak effective gravitatonal potential. Resorting to first order
time-independent perturbation theory, the effect of this effe-
cive potential on the limiting mass of the star is estimated. We
conclude with a few remarks on the viability of the various
approximations made in the body of the paper.

2 Proposed correction

While calculating the electrons’ average kinetic energy,
Chandrasekhar assumed that the electrons are trapped in an
infinite well inside which they are free. But in reality, they are
not. The average Coulombic interaction may cancel out due
to the fact that the star as a whole is electrically neutral. But
an effective gravitational potential exists inside the spheri-
cal well which, despite being weak, can alter the quantum
mechanical properties of the electrons and hence their zero
point energy. We show that the order of magnitude correction
to the limiting mass is in fact computable.

An electron inside a star at a distance r from the radius
experiences a gravitational field (F) only due to the mat-
ter contained in a Gaussian sphere of radius r. Assuming
uniform density for simplicity, the gravitational flux across
the surface of the star is proportional to the stellar mass
M = (4/3)mrp,
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so that, the gravitational force at every point inside the star
can be written as

- 47 Gor

F(r):—%forrfa, )

while, for locations outside the star,
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This leads to an effective self-gravitational potential affecting
the elecron gas,

V) = —/F(;’) dr )

The potential energy U () is just V () times the mass m, of
the electron: U (r) = 2wm.Gpr?/3)—2m Gpmea®. Thus, in
this scenario, the electrons are trapped in an infinite spherical
well potential, with a weak harmonic potential inside the star.
One can treat this weak background gravity potential as a
perturbation on the unperturbed free electron dynamics for
the infinite spherical well inside the star.

2.1 Unperturbed star

Recall that the infinite spherical well is given by

V(i) =0forr <a

=ooforr >a. (5)

Inside this well, the wavefunction has the structure appropri-
ate to spherical symmetry : Wy, (7, 0, ¢) = Ry (r) Y1 (0, @).

2.1.1 Non-relativistic wavefunction

Defining the reduced wave function u,; = r Ry, the radial
Schrodinger equation assumes the form

2
dPun _ [1(1+1) —k2] - ©

dr? 72

where k> = 2m,E /h’. Restricting our attention to [ = 0
states for simplicity,! we observe that Eq. (6) has the solution

! The reason for this simplifying assumption is our primary aim to
determine an order-of-magnitude correction to the limiting mass, due
to background gravity, through minimizing the energy with respect to
n. The minimum value of n being n = ng =~ 108, such high values
of n, and the fact that the perturbing potential is spherically symmetric
imply together that [ # 0 (with [ = O(1)) states are unlikely to affect
the first order perturbative correction to the energy eigenvalue estimate.
Note that the incipient papers [8—12] exclusively consider the energy
eigenvalues and/or the density of states corresponding to [ = 0 states,
(which is obvious from their use of the energy spectrum corresponding
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uno(r) = Asinkr + B coskr. @)

Regularity of the radial wavefunction R,o(r) at the origin
r = 0 implies that B = 0. The boundary condition at the
surface of the star r = a implies that the wavefunction must
vanish at this surface, which leads to the standard spectrum
of the unperturbed system

n?m2p?

2

E.o=
" 2mea

n=0,1,2,.... 8)

The correspondng unperturbed energy eigenstate is given by
the normalized wavefunction,

1 sin(nmr/a)

©)

W00 =
2ma r

2.1.2 Relativistic (Dirac) wavefunction

From Eq. (30) of [15], considering only the case of [ = 0
as before, using the boundary condition of vanishing large-

component, which implies k = % and using 5 _f;lk o =
hck k '
= we get:
\/hzczkz-l—m%,c“+mec2 \/k2+m§2¢2+%
V.0,j=1/2,m(, 6, @)
Jo("ZE)Y1/2,0.m (6, )
=A ; . 10
—%11("%)1/1/2,1,;71(9, ®) (19)
[R45+5,
nmhc
E?2 —m2c* = (1D

where, A is the normalization constant, Yj;,(6,¢) are
the two-component normalized spherical harmonics, j; the
spherical Bessel functions of the first kind and for mathemat-
ical convenience, we have defined % = %, m, being the

mass of the electron. Normalizing Eci (10), we get:

/\Wyo\yd3r =1

10
where, yp = (0 —I) (12)
= A= \/_n—|n3| (13)
) ie
i_,’_ L_i_nzrrz
e 2 2

Footnote 1 continued

to the momentum spectrum p = ? in place of p = 5”’(4—”” where ¢,
is the nth zero of the 1th spherical bessel function of the first kind) for
the purpose of estimating the limiting mass. Since our focus is on the
first order corrections to the limiting mass due to background gravity,
we have followed the same practice of restricting to / = 0 states. For a
slightly longer discussion on this, section 3 of the paper may be perused.

2.2 Background gravity correction

2.2.1 Non-relativistic approximation

The first order perturbation correction to the energy spec-
trum, due to the background gravitational potential experi-

enced by the electrons in the star, can be easily computed:

E! = /d3r\11,’fU(r)\Iln

dnGp (4 5,  mea®
B <_§me“ T ann?) (14)
But
_ M
p_%ncﬁ
Hence
1 GMm, 4 1 w 4 1
E = —— — _
a 3 4x2n2 a 3 4x2p2
(15)
where
w=Gm.M

The heavier the star is, the smaller and hence denser it is. The
Fermi momentum, the threshold momentum of the electrons
is an increasing function of density:

h 43n3p "
pf:”f:(” p) , (16)
: a Aom

where, Ag is the average mass number of the nuclei and
m is the mass of the proton. For the average white dwarf,
p =~ 10° g/cc. This corresponds to momentum of the order
of ~ mc. At such high momenta the electrons have to be
treated relativistically. So, in ultra-relativistic approximation,
kinetic energy with the above first-order perturbation is:

nmhc 1 nmhc
E(n) = +E, =——
a a
L4 an—pB—2 a7
-l VY=An—B- =
a 3 4nZp2 n?
where
whe 4w D= w (18)
T a T 3a’ T dan?

The numerical order of magnitude values of A, B and D
have been calculated from the observed density and radius
of typical white dwarf stars: p ~ 10° g/em?, a ~ 7000 km
yielding A ~ 10732], B ~ 10723J, D &~ 10~2°J. Here, the
relatively large values of the constants B and D, compared to
that of the unperturbed constant A raise a question of validity
of the perturbative result. One expects that the perturbative
result would not dominate the zeroth order unperturbed result
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corresponding to the original scenario of the free electron gas;
thus

D
Emn)>0= An> B+ L (19)

Since the correction terms decrease with increasing n, there
must be a minimum n = ng such that E(ng) = 0; any value
of n > ng is acceptable as a perturbative correction.

To find ng, note that one has to solve a cubic equation;
this can be done exactly, without any assumption on D,
yielding ng ~ 10°. This implies that our perturbative correc-
tion is valid only for electron states lying within the domain
ng < n < ny, and this is consistent with our analysis in the
ultrarelativistic limit. The density of states is, of course, still
given by g(n)dn = w(n%/2)dn.

The total kinetic energy of the electrons can be computed
using the formula

nf

Eiin = / 2E,g(n)dn . (20)
0

with only the n = 0O lower limit of the integration being
replaced by ng; this gives us the result

nf
Ekin :/<AYZ—B——2> 7Tl’l2dn

no
4 4 3
n n

_ oAl 1_("_0) .5t 1_("_0)

4 ny nf

—7Dny (1 —”—°> . Q1)

ny

Now, ny ~ N% ~ 1020, since, N ~ 10°0 it follows that
~ 10-11
;’—2 ~ 107", so that all powers of ng/ny can be safely
ignored.
With these approximations, and substituting the expres-

sions for the constants A, B, , D, the total kinetic energy can

be written as
4 1
34 Gm, Z 3
M3 —Cy M
a A()mp

Evi — C fic Z
kin = L1 a AOmp
G Z
Me (—) M2 (22)
a Aom

Wl

—C;

where, C; = (243/256)'3% , C; = (2)ik, ¢ =
%, Aom is an average nuclear mass, a is the radius of the
étar, M 1is the mass of the star.

The total energy with the perturbative correction can now

be written as
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Etot = Ekin -3G—
Sa
4 1
hcZ3 Gm,Z3
a (AOmp)3 (A()Wlp)3

M? <C3GmeZ 3G>
- = + -

(23)

a A()mp 5

Minimizing this new expression for total energy, i.e., setting
dE;s/da =0 and dzE,m/da2 > 0, the dependence on the
stellar radius a cancels out as before, leaving a limiting mass:

3/2
(Agm )2 3 Aomp)
(24)

M < Mjimir ~ (gcl)

2.2.2 Relativistic calculation

Now using first order non-degenerate perturbation theory
for the potential U(r) = Qum.Gpr?/3) — 2nGpm.a* =
D1r? + D, we have:

El = /\pTyOU(r)\pd%

2
a
nmr
=A,%4n/ (D1t + Dar?) | o =
0
2
k p
- i (50 e
a

(25)

Now, to compute the correction to total kinetic energy of the
completely degenerate electron gas :

T! = Z/E,ig(n)dn (26)
0
nDzn} y'rale )
= + —nr9+nmw
3T a8ka? | ke O+
27 1\2 nym?
~5— nygmw (E) + 22
2
2 a2
1 nymw+a (i) + {12
+a| — | log 27
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Now, ;- = € ~ 102~ is small compared ton  /a =
4

()13 /a ~ 70010703 ~ 103 m~!(taking radius a ~ 7000

km), we can approximate Eq. (27) by,

3
71~ 7 Doy
3
2 2
D 1 1 27
#n? 18—n;2 +2—7%—
18)\—712 Ae Ae 2man g

For the leading order effect in the correction term, all powers

1 : .
of n; can be ignored to get:

N JTDQn} 1

1 2 3
T 3 + §na Dlnf (28)
Substituting the values of D and D;, we get:
4GM°’m.Z
rh= (el (29)
3aAom

using p = T i”a 3
mass number of one nucleus of constituent particle of the star
and m , is the mass of the proton, N is total number of nuclei
multiplied by their charge number Z and the one with the
subscript e is the mass of the electron. Thus the total energy

of the star is:

g Cilic ((ZM \'° 3GM?
o Aomp

and N = Z% where, Ay is the average

4GM*m,.Z
Sa 3aAomp

(30)
a

- . 2 .
The stability condition % > 0 from Eq. (30) gives us the
same order of magnitude correction term in the limiting mass
as using the Schrodinger wave function.:

E>3/2 (%)3/222 |:

20m,z773?
M < Mjjpir =

3 (Ao )2 9Aom,
N<5C1)3/2 (%)3/222 |:1 10 m, Z:| (31)
~ | — - - —
3 (Agm ) 3 Agm,

The expression of the first two factors with first term in
the last factor in parenthesis is the original limiting mass,
while the second term is our leading correction arising from
background-gravity of the star due to the nucleons, produc-
ing an effective gravitational potential inside the star. Clearly,
this dimensionless correction term is a ratio of the mass of the
electron to that of the proton, i.e., of the order of 104, and
hence substantially smaller compared to the original contri-
bution. This is as may have been expected, and in a sense
justifies the neglect of the physical effect discussed here, in
the incipient analysis. However, the effect is not so small as
to be completely ignorable, especially if future observational
studies require more precise results than what is available
from the incipient analysis.

We also note en passant that the non-relativistic approx-
imation indeed produces exactly the same correction to the
limiting mass as the relativistic calculation, even though the

ultra-relativistic nature of the electrons in the problem would
prioritize the latter approach over the former.

3 Conclusion and pending issues

e The effect of a background gravitational potential on the
electrons inside a White Dwarf is physical and has been
demonstrated here to produce a change in the mass-limit
of white dwarfs, the change being of the order of 1074

e One technical point is the simplifying assumption of
restricting our estimation to the s-wave states of the
wave functions. The reason for this restriction is primar-
ily because what we are attempting to determine is an
order-of-magnitude change of the limiting mass due to
the effect of background gravity on the electron equation
of state. This determination entails computing the first
order change in the electron energy under the spherically
symmetric perturbing background gravity potential, and
then minimizing the total energy with respect to a. For
the perturbation contribution to the energy to be small
compared to unperturbed energy, the minimum value of
n is ng ~ 10°. The largest possible value of n corre-
sponds to the Fermi level and is O (10?7). Recalling that
we are considering an estimate of the order-of-magnitude
correction to the limiting mass, with n € [10%, 102°], it is
unlikely that non-zero ! = O(1) states of the electrons in
the spherically symmetric perturbing potential will have
a major effect on the minimum total energy with first
order perturbative corrections. Our restriction to / = 0
states for the energy minimization, or determination of
the density of states, leading to the limiting mass follows
the same restriction followed in the incipient papers on
the limiting mass [8—12], which is obvious from their use
of the energy quantization corresponding to the momen-
tum spectrum p = @ in place of p = @ where
Cni 18 the nth zero of the Ith spherical bessel function
of the first kind . The inclusion of [ # O states, even
for the unperturbed spherical well will no doubt alter the
energy spectrum non-trivially, leading to aresult that is no
longer a simple analytic function of n. For large enough
[, one may expect modifications to the limiting mass, as
a result, whose determination lies outside the purview of
the present work. The effect of such states on the first
order perturbation correction to the limiting mass, due to
the effective background gravity, is an interesting techni-
cal issue which we hope to resolve in a future publication
[21].

e This change will also affect the absolute luminosity of
Type-la Supernovae as calculated from the Mass-Limit.
Since Type-la Supernovae act as Standard candles, our
correction might have a significant effect in the mea-
sured value of the cosmological parameters. In light of
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the second point, considering type 1-a supernovae to be
thermonuclear explosions of super chandrasekhar mass
white dwarfs, the total energy released in such an explo-
sion and hence the luminosity can be thought to be
approximately proportional to the mass of its progeni-
tor times the speed of light squared. E.g., the luminosity
L = aMjj,i;c?, when our correction term is incorpo-
rated, becomes: L* &~ L(1 — 0.0001). This will change
the measured value of the luminosity distance by:

a = a1~ 00001
L 47 Flux ’

~ dr, (1 —0.00005) (32)

The resultant change is indeed small but the correspond-
ing change in cosmological parameters might be signif-
icant enough, given the ever-increasing precision cur-
rently being achieved in measurement of these param-
eters. From this standpoint, there seems to be scope for
further research in the area.

e Our paper clearly ignores many corrections to the lim-
iting mass, including those due to electron exchange
and correlations, electron-ion electrostatic interactions,
electron screening, finite temperature effects and so on.
Many of these effects produce corrections more signifi-
cant than the background gravity corrections considered
in this paper (see, e.g., [20]). However, the physical effect
we are considering in this paper is novel, and herein lies
its importance. If such background gravitational aspects
are considered for other more compact objects like neu-
tron stars, the final effect on the equation of state may be
significantly different from what is obtained by ignoring
such effects altogether.

e Similarly, for denser white dwarfs, one might wonder
whether general relativity ought to be used. There is some
discussion on this in [2], regarding the use of general
relativity. We are grateful to the anonymous referee for
pointing out our omission in the earlier version of the
paper.

e As far as observations directly related to the mass
limit is concerned, our knowledge is scanty, except for
one reported observation which concludes that the data
reveals a white dwarf about twice the limiting mass
[18]. It has been shown [4—7] that rotation and magnetic
fields indeed produce a heavier white dwarf. We thank an
anonymous referee for bringing these references to our
attention.

e There is an argument in the literature due to Glendenning
[19], originally for neutron stars, which could be adapted
to the present context to argue that the effect of the back-
ground gravity on the electron equation of state ought to
be negligibly small. Essentially, this argument employs

@ Springer

the exterior Schwarzschild metric to argue that its change
over the radius of an atom is negligibly small. We are not
persuaded that this argument captures the gravitational
effect of the matter in the interior of a white dwarf suffi-
ciently accurately, especially the large densities present
there. Indeed, the spacetime metric deep inside a white
dwarf (and of course a neutron star) is expected to be
quite different from an exterior Schwarzschild metric
which solves only the vacuum Einstein equation. Our
calculation above, even in the Newtonian gravity con-
text, clearly shows that the effect of background gravity
on the electron equation of state is not as negligible as
Glendenning’s argument would imply.
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