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Abstract We calculate quantum corrections to the clas-
sical statistical approximation (CSA) within the Keldysh–
Schwinger technique for both static and longitudinally
expanding scalar fields. Relaxation of highly excited quan-
tum fields is naturally described in terms of semiclassical
approaches, such as CSA. However, the expansion of the
system reduces the applicability of semiclassical approaches
making quantum corrections important. We study nonequi-
librium evolution of the trace of the energy–momentum ten-
sor of the homogeneous static and the longitudinally expand-
ing scalar field. It turns out that, for an expanding field, the
calculated equation of state can differ from ultrarelativistic
one due to the quantum corrections. We provide analytical
and numerical arguments for the appearance of the nontrivial
intermediate regime of the evolution of the expanding matter
where quantum corrections are significant.

1 Introduction

Highly nonstationary dense quantum fields define the ini-
tial stage of many physical problems. These include physics
of the early stage of ultrarelativistic heavy ion collisions
[1,2], cold atomic gases [3–5] and the processes in the early
Universe [6–8]. Theoretical description of such dense fields
characterised by high occupation numbers can be naturally
based on the classical approximation (classical solutions of
the equations of motion). In the high energy physics the
corresponding solution is termed glasma, which represents
strong longitudinal color electric and magnetic fields formed
almost instantly after an ultrarelativistic hadron-hadron col-
lision [9].

Quantitative description of the evolution of highly excited
matter should include resummation of the leading order (LO)
quantum corrections. This is due to characteristic instabili-
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ties of tree-level dynamics that can appear in the form of the
family of parametric resonances. The corresponding instabil-
ities of glasma were first described in [10]. To overcome this
problem one needs to resum the contributions of the corre-
sponding quantum fluctuations. Such resummation demon-
strates that the result can be rewritten in the form of averag-
ing over classical trajectories with a distribution of the initial
conditions. We refer to such an equivalence as to Classi-
cal Statistical Approximation (CSA). To our knowledge this
approximation for quantum field theory was introduced in
the work [11], and the first diagrammatic proof of the equiv-
alence of such resummation was given in works [6]. In the
literature on physics of the early stage of heavy ion colli-
sions, this statement was proven and used in the analysis
of quantum corrections to the evolution of glasma in [12].
The present research is relevant to the profound works on
aforementioned equivalence used in a study of quantum cor-
rections to the evolution of strong scalar field in static [13,14]
and expanding [15] geometries.

The Keldysh–Schwinger (KS) technique (closed-time
path formalism) [18,19] provides a systematic way of study-
ing time-dependent nonequilibrium phenomena in quantum
field theory, see the recent review in [3]. Within this formal-
ism, the CSA (averaging over classical trajectories with dif-
ferent initial conditions) does naturally arise at the leading
order of the semiclassical approximation [20,21], see also
Appendix A for details. In the quantum field theory context
this was discussed in [30] where the JIMWLK equations [26–
29] were shown to follow from such a semiclassical expan-
sion. For the scalar field model of [13] such equivalence was
established in [16].

An evident question of computing the quantum correc-
tions to the results of LO resummation/semiclassical approxi-
mation is being risen. Such NLO corrections to the LO resum-
mation of the evolving scalar field [13,14] was discussed in
[24] with a very thought-provoking conclusion of their non-
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renormalizability. The computation of the NLO corrections
to the JIMWLK equations was described in [31].

The fact that resummation of one-loop corrections results
in LO term of the semiclassical approximation indicates that
we are dealing not with a plain small coupling expansion.
For the CSA the initial conditions become rather important,
in particular, the scale characterizing the initial field. Com-
putation of quantum corrections to the semiclassical approx-
imation in the KS formalism was discussed in [25] for the
cold quantum gas. A problem of computing NLO corrections
to the evolution of quantum scalar field in the model of [13]
was discussed in the two preceding works [16,17]. In the
first work we described the systematic procedure of comput-
ing quantum corrections in the framework of KS formalism,
derived analytical expressions for pressure relaxation in the
scalar field model and wrote down explicit expressions for
the NLO corrections for one-point and two-point correla-
tion functions. In the second paper [17] we derived analyt-
ical expressions for the mean field, energy and pressure of
the homogeneous scalar field in the static geometry and dis-
cussed the critical role of the character of initial conditions
for applicability of the CSA approximation.

In the present paper we study the NLO corrections to the
evolution of the trace of energy-momentum tensor of the
homogeneous scalar field in the static and expanding geome-
tries. This problem is of particular interest for the physics of
the early stage of heavy ion collision because the behavior of
this trace is of direct relation to the issue of thermalization
and isotropization of the initially produced highly excited
matter [1,2], see the recent advanced analysis of this issue in
[22,23].

The paper is organized as follows:
In Sect. 2 we describe the model under consideration and

discuss assumptions and simplifications which make deriva-
tion of the analytical answers possible.

Section 3 is devoted to the static geometry. We calculate
NLO corrections to the evolution of the trace of the energy–
momentum tensor and demonstrate that these corrections do
vanish at large times.

In Sect. 4 we perform calculations analogous to ones of
Sect. 3 but for the expanding geometry. We conclude with
the analytical prove of the existence of the intermediate qua-
sistationary regime with the equation of state different from
relativistic one.

In Sect. 5 we demonstrate the results of the numerical
calculations.

In Sect. 6 we summarise obtained results and discuss the
region of applicability of the CSA.

In Appendix A we describe a general scheme suitable for
derivation of the quantum corrections to the CSA for the
scalar field theory ϕ4.

2 Model and assumptions

The main object of our study is an evolution of the energy-
momentum tensor of the highly excited quantum field in the
massless scalar ϕ4 theory

L = 1

2
∂μϕ∂μϕ − g2

4
ϕ4 + Jϕ, (1)

where the source J is used for the construction of diagram-
matic expansion only and is set to zero in all final expressions.
This is the stylized model proposed to study the dynamics
of nonequilibrium matter created at the early stages of heavy
ion collisions in [13]. The observable that we are interested
in is the canonical energy–momentum tensor

Tμν = ∂μϕ∂νϕ − gμνL. (2)

Of particular interest is the trace of the energy-momentum
tensor including contributions of energy density and pres-
sure. An existence of the definite relation between energy
density and pressure (equation of state, EOS) is known to
be a crucial prerequisite for hydrodynamic description of the
problem under study. For the homogeneous case (∂xϕ = 0)
the expressions for energy density ε and pressure p read

Tμ
μ = ε − 3p,

ε = ϕ̇2

2
+ g2ϕ4

4
,

p = ϕ̇2

2
− g2ϕ4

4
. (3)

At the classical level Tμ
μ is a periodic function [13] and,

therefore, the equation of state in this approximation does not
exist. Summation of quantum corrections in the CSA approx-
imation [13,14] lead however to 〈Tμ

μ 〉 = 0 and, therefore, to
the EOS ε = 3〈p〉 expected for the ultrarelativistic liquid.
In the present paper we continue the study of the quantum
corrections to CSA began in [16,17] with a particular focus
on the case of expanding geometry.

3 Static geometry

In this section we consider the evolution of the energy–
momentum tensor in the static geometry. The action for the
homogeneous scalar field theory under consideration reads

Sst = V3

∫
dt

(1

2
ϕ̇2 − g2

4
ϕ4 + Jϕ

)
, V3 =

∫
d3x . (4)

The corresponding equation of motion

ϕ̈ + g2ϕ3 = J (5)
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can be solved analytically for J = 0 [13] in terms of the
Jacobi elliptical function cn with module k2 = 1

2

φcl(t) = φmcn

(
1

2
, gφmt + C

)
(6)

with the period Tcl = 4
gφm

K (1/2), where K (1/2) is the com-
plete elliptic integral of the first kind. The constants φm and
C are the amplitude and the phase of the solution.

The corresponding energy–momentum tensor reads

Tμν = diag(ε, p, p, p), (7)

where the energy density and the pressure are given by Eq.
(3). The expression for its trace takes the form

Tμ
μ = ε − 3p = −ϕ̇2 + g2ϕ4. (8)

At the classical level the trace

(
Tμ

μ

)
cl = −φ̇2

cl + g2φ4
cl (9)

is the function of the periodic classical solution (6), there-
fore the exact correspondence between the energy density
and pressure is missing and it is necessary to study quantum
evolution [13].

Temporal evolution of the energy–momentum tensor in
the KS formalism from some initial state at t = t0 till t = t1
is given by

〈Tμ
μ (ϕ̂)〉t1 =

∫
dξ D[ξ1, ρ0, ξ2] Tμ

μ (ξ)

×
ηF (t1)=ξ∫

ηF (t0)=ξ1

DηF (t)

ηB (t1)=ξ∫

ηB (t0)=ξ2

DηB(t) ei SK [ηF ,ηB ],

(10)

where ρ̂(t0) is the density matrix of the initial field configu-
ration,

D[ξ1, ρ0, ξ2] =
∫

dξ1

∫
dξ2 〈ξ1|ρ̂(t0)|ξ2〉 (11)

the Keldysh action is SK [ηF , ηB] = S[ηF ] − S[ηB] and the
fields ηF (t) and ηB(t) are the fields that lie on the forward
(ηF ) and the backward (ηB) sides of the Keldysh contour (for
more details see Appendix A).

It turns out convenient to rotate the fields ηF (t) and ηB(t)
to so-called “classical” φc = 1

2 (ηF + ηB) and “quantum”
φq = ηF − ηB components:

〈Tμ
μ 〉t1 =

∫
dξ D[ξ1, ρ0, ξ2]

ϕc(∞)=ξ∫

ϕc(t0)= ξ1+ξ2
2

Dϕc

×
ϕq (∞)=0∫

ϕq (t0)=ξ1−ξ2

Dϕq ei SK [ϕc,ϕq ]( − ϕ̇2
c + g2ϕ4

c

)
.

(12)

The Keldysh action for the theory (4) reads

SK [φc, φq ] = V3

∞∫

t0

dt
(
φ̇cφ̇q − g2φ3

cφq

− g2

4
φcφ

3
q + Jφq

)
. (13)

The variation over φq is

δSK
δϕq

∣∣∣
J=0

= −V3
(
ϕ̈c + g2ϕ3

c + 3

4
g2ϕcϕ

2
q

)
(14)

and, therefore, the Eq. (12) for the trace of the energy–
momentum tensor can be rewritten in the following form:

〈Tμ
μ 〉t1 =

∫
dξ D[ξ1, ρ0, ξ2]

∫
DϕcDϕq

(
− ϕc

V3

δSK
δϕq

− 3

4
g2ϕ2

cϕ
2
q − ϕ̇2

c − ϕcϕ̈c

)
ei SK [ϕc,ϕq ]. (15)

The first term of in Eq. (15) can be shown to vanish by inte-
grating by parts and neglecting the surface term. The second
term vanishes because the considered observable depends
only on one time variable, and, therefore,

∫
DηFDηB ηF (t1)e

i SK [ηF ,ηB ]

=
∫

DηFDηB ηB(t1)e
i SK [ηF ,ηB ]. (16)

we see that all terms withϕn
q ≡ (ηF−ηB)n disappear. The last

two terms can be expressed through the total time derivative,
so that the final expression for 〈Tμ

μ 〉t1 takes the form

〈Tμ
μ 〉t1 = −1

2

∫
dξ D[ξ1, ρ0, ξ2]

×
∫

DϕcDϕq ei SK [ϕc,ϕq ] ∂2
t1ϕ

2
c (t1)

≡ −1

2
∂2
t1〈ϕ̂2(t)〉t1 . (17)

Let us stress that the above expression (17) is exact. It
describes full quantum evolution of the trace of energy–
momentum tensor Tμ

μ . Intuitively at large enough time, when
the field equilibrates to some constant value, the trace of
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energy–momentum tensor should vanish due to time deriva-
tive. In the static geometry case this will indeed be shown
below by analytical calculation of 〈Tμ

μ 〉 at the leading and
next-to-leading order in quantum corrections to the classi-
cal approximation. As shown in detail in the Appendix A,
the expression for 〈Tμ

μ 〉 in the leading and next-to-leading
approximation of the semiclassical expansion reads

〈Tμ
μ 〉t1 = −1

2
∂2
t1

〈
φ2
cl(t1)

+ g2

4V 2
3

t1∫

t0

dt2φcl(t2)
δ3φ2

cl(t1)

δ J (t2)3

∣∣∣∣
J=0

〉
i.c.

, (18)

where φcl(t) is the solution (6) of the EoM, and brackets
〈〉i.c. denote integration over initial conditions with the weight
given by the Wigner function fW (α, p, t0)

〈F(t)〉i.c. =
∫

dαdp fW (α, p, t0)F(t),

fW (t0, α, p) =
∫

dβ〈α + β

2
|ρ̂(t0)|α − β

2
〉eiV3βp, (19)

α = φcl(t0),

p = ∂tφcl(t0). (20)

Let us note that the first term in Eq. (18) corresponding to
the leading order (LO) quantum correction matches with the
Classical Statistical Approximation.

Let us first work out an expression for the LO term in Eq.
(18). Due to periodicity of the classical solution (6)

φcl(t) = φm

∞∑
k=−∞

uke
2π ik
Tcl

(gφmt+C)
,

uk = 1

Tcl

Tcl∫

0

cn
(1

2
, t

)
e
− 2π ikt

Tcl (21)

it is possible to calculate the LO term in Eq. (18) analytically
with the Gaussian Wigner function ansatz

fW (α, p, t0) = 1

α0 p0π
e
− (α−A)2

α2
0 e

− p2

p2
0 . (22)

Note that the amplitude φm and phase C of the classical
trajectory are functions of the initial conditions

α = φmcn
(1

2
,C

)
, p = −gφ2

msn
(1

2
, t

)
· dn

(1

2
, t

)
,

(23)

where sn(k2, x) and dn(k2, x) are the Jacobi elliptic func-
tions. With help of relations (23) we can replace integra-
tion over initial conditions with that over possible ampli-
tudes and phases of the trajectory

∫
dαdp → ∫

dφmdC and

perform the integration in the saddle point approximation
(φm = A, C = 0). The resulting expression for the LO
contribution in Eq. (18) then reads

〈Tμ
μ 〉LOt1 ≡ −1

2
∂2
t1〈φcl(t1)

2〉i.c.

= −1

2
∂2
t1

(
A2

∞∑
k=−∞

I (k)e
− π2 p2

0k
2

g2 A4T 2
cl e

− π2α2
0 g

2k2 t21
T 2
cl e

i2π Agkt1
Tcl

)
,

I (k) =
∞∑

n=−∞
unuk−n = 1

Tcl

Tcl∫

0

cn2
(1

2
, t

)
e
− 2π ik

Tcl dt. (24)

The parameter A of the Wigner distribution (22) is a measure
of the field intensity. As shown in the previous papers [16,17],
the large A limit is directly related to the validity of the CSA.
In what follows we show that quantum corrections to the CSA
(or next-to-leading order of the semiclassical decomposition)
scale as A−n and, therefore, vanish in the large A limit.

After averaging over initial conditions Eq. (24) contains
three types of exponents: constant in time, oscillating and
decaying as e−t2 . Obviously, in the large time limit t →
∞ the LO part does vanish. The only dangerous term in
the sum is the one with k = 0. However, as this term is
time-independent, it vanishes after differentiation over time
in Eq. (24).

Let us now consider the NLO term in Eq. (18)

〈Tμ
μ 〉NLO

t1 = −1

2
∂2
t1

〈
g2

2V 2
3

t1∫

t0

dt2φcl(t2)

×
(
φcl(t1)Φ3(t1, t2) + 3Φ1(t1, t2)Φ2(t1, t2)

)〉
i.c.

, (25)

where Φn(t1, t2) are variations of the classical EoM over the
auxliary source J . They can be shown to satisfy the following
differential equations (see Appendix A):

Φn(t1, t2) = δnφcl(t1)

δ Jn(t2)
,

Lt1Φ1(t1, t2) = δ(t1 − t2),

Lt1Φ2(t1, t2) = −6g2φcl(t1)Φ
2
1 (t1, t2),

Lt1Φ3(t1, t2) = −6g2Φ3
1 (t1, t2)

−18g2φcl(t1)Φ1(t1, t2)Φ2(t1, t2),

Lt1 = ∂2
t1 + 3g2φ2

cl(t1). (26)

It turns out convenient to define a dimensionless variable
z = gφmt + C and dimensionless variations fn as

φcl(t) → φm f0(z),

Φn(t1, t2) → g−nφ1−3n
m fn(z1, z2), n = 1, 2, 3. (27)
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The Eq. (25) takes the form

〈Tμ
μ 〉NLO

t1 = −1

2
∂2
t1

〈
1

2V 2
3 g

2φ4
m

z1∫

z0

dz2 f0(z2)

×
(
f0(z1) f3(z1, z2) + 3 f1(z1, z2) f2(z1, z2)

)〉
i.c.

. (28)

Using the integral representation of Eq. (26) one can show
that in the limit z1 − z2 → ∞ the functions fn scale as

fn(z1, z2)|z1−z2→∞ ≈ (z1 − z2)
n . (29)

Hence, the dimensionless integral in Eq. (28) can be rewritten
as

z1∫

z0

dz2Fnlo(z1, z2) ≡
z1∫

z0

dz2 f0(z2)
(
f0(z1) f3(z1, z2)

+ 3 f1(z1, z2) f2(z1, z2)
)

=
3∑

n=0

ψn(z1)z
n
1, (30)

where ψn(z1) are periodic functions (with period equal to
Tcl ) which can be found numerically.

We can use Fourier transform of these periodic functions

ψn(z) =
∞∑

k=−∞
ψ(k)
n e

ikz 2π
Tcl (31)

to perform integration over initial condition using the same
method as for the LO calculations (24). The final expression
for the trace of the energy–momentum tensor including LO
and NLO contributions in quantum corrections of the semi-
classical expansion does then read

〈Tμ
μ 〉LO+NLO

t1 = − A2

2
∂2
t1×

∞∑
k=−∞

(
I (k) + 1

2V 2
3 g

2A6

3∑
n=0

ψ(k)
n (gAt1)

n
)

× e
− π2 p2

0k
2

g2 A4T 2
cl e

− π2α2
0 g

2k2 t21
T 2
cl e

i2π Agkt1
Tcl . (32)

From Eq. (32) we see that at large times the trace of the
energy–momentum tensor does indeed vanish. The only sub-
tlety is again related to the zero Fourier components of the
periodic functions ψ

(0)
n . However, it is easy to restore these

functions numerically using evaluated value of the integral
Eq. (30) and the Vandermonde matrix. This calculation shows
that all the zeroth Fourier components vanish ψ

(0)
n = 0 and,

therefore, the trace of the energy–momentum tensor does
indeed relax to zero at large enough observation time t1.

This fact very important for working out physical inter-
pretation of the studied evolution of nonequilibrium quantum

field. Vanishing of the trace of energy–momentum tensor
means that there establishes a well defined relation between
energy density and pressure, i.e. the equation of state thus
making it possible to work out a hydrodynamics description
of the dynamics under consideration.

Let us note that from the expression (32) we see that sig-
nificant contributions form the NLO terms correspond to the
limit of small A. Therefore for the CSA approximation to be
valid we need to choose the Wigner distributions with large
initial amplitudes φm(α, p) and fast decaying tales [16,17].

4 Expanding geometry

Let us now turn to the analysis of evolution of energy-
momentum tensor in the case of the geometry expanding
in the longitudinal direction [15]. The natural coordinates
describing a system undergoing longitudinal expansion along
the z axis are

τ 2 = t2 − z2,

η = 1

2
log

t + z

t − z
,

x⊥ = x⊥. (33)

As before, we consider the spatially homogeneous case,
∂ηϕ = 0 and ∂⊥ϕ = 0. The action for the case of expanding
geometry reads

S = V2

∫
dτ τ

(1

2
ϕ̇2 − g2

4
ϕ4 + Jϕ

)
,

V2 =
∫

d2x⊥dη, (34)

where ϕ̇ ≡ ∂ϕ
∂τ

. The classical trajectories are given by the
solutions of the following EoM

φ̈cl.e + 1

τ
φ̇cl.e + g2φ3

cl.e = 0 (35)

equipped with certain initial conditions. The subscript “e”
stands for “expanding” and refers to the values related to
the expanding coordinate system. The EoM Eq. (35) for the
expanding case does not allow the analytical solution. How-
ever, using the substitution

y = τ
2
3 ,

φcl.e(τ ) = τ− 1
3 ξ(τ

2
3 ), (36)

which effectively takes into account the expansion rate, one
can see that the EoM Eq. (35) in new variables

ξ̈ (y) + 1

4y2 ξ(y) + 9

4
g2ξ(y)3 = 0 (37)

does at large times take the form of the one for the static
geometry Eq. (5) and thus possess in this limit an asymptotic
analytical solution of the form
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ξ(y) → ξmcn
(1

2
, ḡξm y + Cξ

)
, (38)

where ḡ = 3
2g and ξm, Cξ are correspondingly the ampli-

tude and the phase characterizing the asymptotic periodic
trajectory. Let us denote by ỹ the “time” where this periodic
regime sets in. As one can see from Eq. (37) this “periodiza-
tion” scale ỹ decreases with increasing coupling constant
and/or field amplitude. Let us note that these conditions are
similar to those controlling the validity of the CSA. The cor-
responding asymptotic solution of the classical EoM Eq. (35)

for τ > τ̃ = ỹ
3
2 then reads

φ̃cl.e(τ ) = ξmτ− 1
3 cn

(1

2
, ḡξmτ

2
3 + Cξ

)
. (39)

It is important to note that presence of the small initial time
interval 0 < τ < τ̃ in which the solution is not periodic
precludes us from establishing analytical relation between
the initial condition (α = φcl.e(t0), p = φ̇cl.e(t0)) and the
parameters of the trajectory (ξm , Cξ ).

At tree level the expression for the trace of the energy
momentum tensor reads1

(
Tμ

μ

)e
cl = −φ̇2

cl.e + g2φ4
cl.e (40)

The quantum evolution is described in the same way as in
the static case Eq. (17)

〈Tμ
μ 〉τ1 = −1

2

∫
dξ [ξ1, ρ0, ξ2]

×
∫

DϕcDϕq ei S
e
K [ϕc,ϕq ] (

∂2
τ1

+ 1

τ1
∂τ1

)
ϕ2
c (τ1)

≡ −1

2

(
∂2
τ1

+ 1

τ1
∂τ1

)
〈φ2

cl.e(τ1)〉τ1 , (41)

with the following Keldysh action in the expanding coordi-
nates

SeK [φc, φq ] = V2

∞∫

τ0

dτ τ
(
φ̇cφ̇q − g2φ3

cφq

− g2

4
φcφ

3
q + Jφq

)
. (42)

The asymptotic large τ1 behavior of the quantity

〈φ2
cl.e(τ1)〉τ1 in Eq. (41) is 〈φ2

cl.e(τ1)〉τ1 ∼ τ
− 2

3
1 and, there-

fore, Tμ
μ = 0 for τ → ∞ to all orders in the semiclassical

expansion. However, if we take into account the expansion
rate, we can find an intermediate quasistationary regime with
a nontrivial equation of state. To describe this regime it turns
out convenient to rescale the expression for the averaged trace

1 Note that φcl.e is an exact solution of Eq. (35) whereas φ̃cl.e of Eq.
(39) corresponds to the approximate periodic-like solution.

of the energy–momentum tensor in Eq. (41) by dividing it on
the LO energy

εeLO =
〈1

2
φ̇2
cl.e + g2

4
φ4
cl.e

〉e
i.c.

∼ τ− 4
3 , (43)

thus effectively removing the influence of the expansion rate,
see Eq. (49) below.

The averaging over initial conditions in the expanding case
is described by

〈F(t)〉ei.c. =
∫

dαdp f eW (α, p, t0)F(t),

f eW (τ0, α, p) =
∫

dβ〈α + β

2
|ρ̂(τ0)|α − β

2
〉eiV2τ0βp,

α = φcl.e(τ0),

p = ∂τφcl.e(τ0). (44)

The semiclassical decomposition for the expanding case
reads

〈Tμ
μ 〉t1 = −1

2

(
∂2
τ1

+ 1

τ1
∂τ1

)〈
φ2
cl.e(τ1)

+ g2

4V 2
2

τ1∫

τ0

dτ2

τ 2
2

φcl.e(τ2)
δ3φ2

cl.e(τ1)

δ J (τ2)3

∣∣∣∣
J=0

〉e
i.c.

. (45)

The equations for variations Φe
n(τ1, τ2) are similar to the ones

in the static case Eq. (26), albeit with a different differential
operator

Lt → Lτ = ∂2
τ + 1

τ
∂τ + 3g2φ2

cl.e. (46)

We write expression for the trace of the energy-momentum
tensor at the NLO accuracy as a sum of two contributions - the
initial aperiodic, corresponding to the time interval [τ0, τ̃ ],
and asymptotic periodic corresponding to the interval [τ̃ , τ1].

Let us make the following substitutions:

– to take into account the effects of expansion

y = τ
2
3 ,

φcl.e(τ ) = τ− 1
3 ξ(τ

2
3 ),

Φe
n(τ1, τ2) =

(
3

2

)n

τ
− 1

3
1 τ

2n
3

2 ρn

(
τ

2
3

1 , τ
2
3

2

)
, n = 1, 2, 3.

(47)

– to make relevant quantities dimensionless

ze = ḡξm y + Cξ ,

ξ(y) = ξm f e0 (ze),

ρn(y1, y2) = ḡ−nξ1−2n
m f en (ze1, z

e
2). (48)

The resulting rescaled expression for the trace of the
energy–momentum tensor then reads
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〈Tμ
μ 〉LO+NLO

τ1

εeLO
= − 1

2εeLO(τ1)

(
∂2
τ1

+ 1

τ1
∂τ1

)〈
φ2
cl.e(τ1)

+ τ
− 2

3
1

2V 2
2 g

2ξ4
m

( z̃∫

ze0

dze2F
e
nlo(z

e
1, z

e
2)

+
ze1∫

z̃

dze2F
e
nlo(z

e
1, z

e
2)

)〉e
i.c.

. (49)

In these new notations the “periodization” scale ỹ turns
into z̃ = ḡξm ỹ+Cξ . After time z̃ the dimensionless variations
(48) become periodic (of the form of (27))

f ek (ze1, z
e
2) = fk(z

e
1, z

e
2), ze2 > z̃. (50)

There follows that the dimensionless integral over the asymp-
totic periodic-like interval (z̃, ze1)

ze1∫

z̃

dze2F
e
nlo(z

e
1, z

e
2) ≡

ze1∫

z̃

dze2

(
f0(z

e
1) f3(z

e
1, z

e
2) (51)

+3 f1(z
e
1, z

e
2) f2(z

e
1, z

e
2)

)
(52)

becomes similar to its static analogue (30). Therefore, one
can use the same arguments as in the previous section in order
to show that after averaging over the initial conditions the last
term in Eq. (49) vanishes at large times.

The LO contribution (the first term in Eq. (49) ) also van-
ishes after averaging due to periodicity at the large-times. As
it is shown in [13] this statement about the LO contribution
can be proved with the other arguments as well.

Therefore, the large-time behaviour of the trace of the
energy–momentum tensor is governed by the second term
of Eq. (49) which include integration over the initial time
interval [ze0, z̃]

〈Tμ
μ 〉LO+NLO

τ1

εeLO
=

τ
τ̃
− 1

2εeLO(τ1)

(
∂2
τ1

+ 1

τ1
∂τ1

)

×
〈

τ
− 2

3
1

2V 2
2 g

2ξ4
m

z̃∫

ze0

dze2F
e
nlo(z

e
1, z

e
2)

〉e
i.c.

. (53)

The above expression manifest differences between static
and longitudinally expanding theories. This term breaks scale
invariance (see discussion in Sect. 6) that can lead to a
nonzero contribution to the trace of the energy-momentum
tensor. It is not so easy to perform the integration over ini-
tial condition analytically in Eq. (53). However, we expect
this term to be suppressed by the intensity of the initial field
(parameter A in Eq. (32)); to have decaying, constant and
growing with time parts.

5 Numerical results

In this section we present the results of the numerical calcu-
lations for the trace of the energy-momentum tensor in the
expanding background. These calculations are made with
formula

〈Tμ
μ 〉LO+NLO

τ1
=

〈
Tμ

μ (τ1)cl.e

+ g2

4V 2
2

τ1∫

τ0

dτ2

τ 2
2

φcl.e(τ2)
δ3 Tμ

μ (τ1)cl.e

δ J 3(τ2)

〉e
i.c.

(54)

followed from the definition of the NLO corrections with-
out additional assumptions (see Appendix A). The classical
solutions φcl.e and the trace Tμ

μ (τ1)cl.e are given by formu-
lae (35) and (40) respectively. The variation over additional
source reads

δ3 Tμ
μ (τ1)cl.e

δ J 3(τ2)
= 4g2[6φcl.e(τ1)

(
Φe

1(τ1, τ2)
)3

+ 9φ2
cl.e(τ1)Φ

e
1(τ1, τ2)Φ

e
2(τ1, τ2) + φ3

cl.e(τ1)Φ
e
3(τ1, τ2)

]
− 2

(
φ̇cl.e(τ1)Φ̇

e
3(τ1, τ2) + 3Φ̇e

1(τ1, τ2)Φ̇
e
2(τ1, τ2)

)
, (55)

where functions Φn(τ1, τ2) are the solutions of the differen-
tial Eqs. (46) and (26), the dot means derivative with respect
to τ1. Averaging over the ensemble of the initial condition is
done with the Gaussian Wigner function (22).

Simulations are performed at different values of the
parameter A of the initial distribution Eq. (22). This param-
eter defines the intensity of the initial field for the described
homogeneous model or, in other words, the applicability of
the semiclassical decomposition. It is easy to show that, for
the static box, the amplitude of each classical trajectory (6)
can be expressed through the initial conditions as

φ4
m = α4 + 2

p2

g2 ,

α = φcl(t0), p = φ̇cl(t0). (56)

Using the Gaussian Wigner function (22) as a weight for
averaging over the initial conditions we claim that most tra-
jectories have amplitudes φm ≈ A. It means that the larger
parameter A corresponds to the higher intensity of the ini-
tial field. The expressions (28) and (32) show that the NLO
term is suppressed as the power of the amplitude φm or the
parameter A after averaging over initial conditions.

In the case of the longitudinally expanding field, one
unable to express the amplitude of the classical solution
through the initial conditions analytically. However, the
approximate solution Eqs. (36) and (38) allows relating of
the amplitude and the averaging parameter as ξm ≈ A2/3.
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Fig. 1 Top panel: the trace of the energy-momentum tensor Eq. (54)
normalised by LO energy density; bottom panel: the ration of the NLO
energy density and the LO energy density. All values are averaged over
the ensemble of the initial condition with the Wigner function of Eq.
(22). Parameters of the averaging are following: A=10, α0=1, p0=1,
g=2

Fig. 2 The same as for Fig. 1 but with A=1

According to the formula (49) the NLO term for the expand-
ing field is suppressed by the power of the parameter A as
well.

The figures are organised as follows: the top panel shows
the evolution of the trace Tμ

μ as a function of time τ1, the
bottom one shows the ratio of the NLO energy density to
the LO energy density which demonstrate the applicability
of the semiclassical decomposition.

Figure 1 shows the case in which the CSA works extremely
well. The parameter A is large enough to suppress the NLO
term contribution at large times. Hence, the trace of the
energy-momentum tensor averages to a very small constant.

Figure 2 demonstrates the evolution of the trace of energy–
momentum tensor for the “intermediate” range of the initial

Fig. 3 The same as for Fig. 1 but with A=0.1

parameters , where semiclassical decomposition is still ade-
quate, but the NLO corrections are already important. One
can observe a regime with Tμ

μ ∝ ε indicating formation of the
equation of state of the form of ε = cp with c > 3. This result
demonstrates a direct nontrivial effect of the NLO quantum
corrections.

Figure 3 shows the result for the deeply quantum case in
which the CSA approximation does not hold.

6 Conclusions

We calculated the quantum corrections to the trace of the
energy–momentum tensor for the homogeneous ϕ4 scalar
field in two cases.

In the first case, the field placed inside a static box, we
demonstrated that the NLO quantum corrections give contri-
butions that vanish at large enough times. As one can see from
Lagrangian Eq. (1) the system posses the scale invariance
which is broken by the initial conditions. However, during
the time evolution the system forgets about initial state due
to the self-interaction. That is why at the large times the scale
invariance restores, Tμ

μ = 0 and the quantum correction are
negligible.

In the second case, the longitudinally expanding field, we
claimed that the quantum correction might change the mean-
value of the trace of the energy–momentum tensor. In other
words, the intermediate quasistationary regime characterised
by the equation of state of the form different from the rel-
ativistic one ε = 3p is realised. This regime exists in the
expanding geometry because the system transforms from the
classical to the quantum one during the expansion. This phe-
nomena occurs for the certain range of the parameters char-
acterising the distribution of the initial conditions.

123



Eur. Phys. J. C (2019) 79 :55 Page 9 of 11 55

Note that the nonzero value of the trace of the energy-
momentum tensor seen in Fig. (2) does not contradict with
the scale invariance mentioned above. The scale invariance
results in the requirement of 〈Tμ

μ 〉 = 0 in equilibrium. How-
ever, the new regime we observed is an intermediate nonequi-
librium one. Asymptotically, the system evolves to the equi-
librium state with ε = 0, p = 0 due to expansion, hence
scale invariance is restored.

Let us remark that the question of the non-renormalizabi-
lity of the CSA raised in work [24] does not affect our results
because we consider only the first quantum correction and
neglect all spatial gradients. In work [24] the question of
renormalizability of the CSA is analysed in the regime of
the small coupling constant and the Gaussian initial state,
which is not necessary for the CSA and our approach. In our
opinion, the question of the renormalizability of the CSA is
still unclear for the general situation.

In this work we describe the oversimplified scalar system.
However, the phenomena we observed might be valuable for
the description of the ultrarelativistic heavy-ion collisions
as well. We suggest that similar quasistationary state can be
formed due to nonequilibrium conditions, which are present
in the matter created in such collisions.
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Appendix A: Quantum corrections to the CSA: scalar
field theory

In this Appendix we describe a general formalism for cal-
culation of quantum corrections to the Classical Statistical
Approximation. For simplicity we consider the case of the
scalar field, however, the idea can be extended to gauge
fields as well. The main observation is that in the Keldysh–
Schwinger formalism the CSA represents the Leading Order
term of the semiclassical decomposition thus providing a
basis for the systematic expansion.

Out of equilibrium an expectation value of observable
F(ϕ̂) at the moment t1 can be calculated as a trace with
density matrix as

〈F(ϕ̂)〉t1 = tr(F(ϕ̂)ρ̂(t1))

=
∫

Dξ(x) F(ξ)〈ξ |Û (t1, t0)ρ̂(t0)Û (t0, t1)|ξ 〉,
(A.1)

where evolution of the density matrix ρ̂(t) is governed by the
evolution operator Û (t, t0)

ρ̂(t) = Û (t, t0)ρ̂(t0)Û (t0, t), (A.2)

|ξ 〉 is an eigenstate of the field operator ϕ̂(x)|ξ 〉 = ξ(x)|ξ 〉
and

∫
Dξ(x) is a path integral over all possible functions ξ(x)

originating from unity operator 1̂ = ∫
Dξ(x) |ξ 〉〈ξ |.

After the usual procedure of the unity operator insertion
we obtain the matrix elements of the evolution operator which
path-integral representation is2

〈ξ |Û (t1, t0)|ξ1〉 =
ηF (t1,x)=ξ(x)∫

ηF (t0,x)=ξ1(x)

D ηF (t, x)ei S[ηF ],

〈ξ2|Û (t0, t1)|ξ 〉 =
ηB (t1,x)=ξ(x)∫

ηB (t0,x)=ξ2(x)

D ηB(t, x)e−i S[ηB ].

Here ηF (t, x) and ηB(t, x) are the fields that lie on the
forward (ηF ) and backward (ηB ) sides of the Keldysh contour
(see [16] for details). Thus the observable (A.1) reads

〈F(ϕ̂)〉t1 = D[ξ1, ρ0, ξ2]
∫

Dξ F(ξ)

×
ηF (t1,x)=ξ(x)∫

ηF (t0,x)=ξ1(x)

D ηF (t, x)

×
ηB (t1,x)=ξ(x)∫

ηB (t0,x)=ξ2(x)

D ηB(t, x) ei SK [ηF ,ηB ] (A.3)

where integration over initial configuration and the Keldysh
action are

D[ξ1, ρ0, ξ2] =
∫

Dξ1

∫
Dξ2 〈ξ1|ρ̂(t0)|ξ2〉,

SK [ηF , ηB] = S[ηF ] − S[ηB].
The final point of the trajectories which we integrate over

is the time of observation t1. However, it is convenient to
extend the Keldysh contour to infinity so that the t1 remains
only in the observable F . The semiclassical decomposition is
more evident with the following change of variables3 (often
called the Keldysh rotation)

φc = ηF + ηB

2
, φq = ηF − ηB . (A.4)

2 We denote path integrals over space and time functions as
∫ D f (t, x),

whereas integrals over functions constant in time as
∫
D f (x).

3 One can meet equivalent notations for such rotation in the literature
φc ≡ φr and φq ≡ φa .
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Then general expression for the observable reads

〈F(ϕ̂)〉t1 = D[ξ1, ρ0, ξ2]
∫

Dχ

φc(∞,x)=χ(x)∫

φc(t0,x)= ξ1(x)+ξ2(x)
2

D φc

×
φq (∞,x)=0∫

φq (t0,x)=ξ1(x)−ξ2(x)

D φq F(φc(t1)) e
i SK [φc,φq ].

(A.5)

This formula is rather general, hence we need to specify
the Lagrangian. We use a scalar model with a quartic inter-
action term.

L = 1

2
∂μϕ∂μϕ − g2

4
ϕ4 + Jϕ,

S =
∫

d4x L . (A.6)

Here J (t, x) is an auxiliary source which is kept to perform
semiclassical decomposition. This source should be set to
zero at the end of calculations.

For the Lagrangian (A.6) the Keldysh action (after inte-
gration by parts) reads

SK [φc, φq ] =
∫

d3x φ̇c(t0, x)(ξ1(x) − ξ2(x))

−
∫

d3x

∞∫

t0

dt
(
φq A[φc] − g2

4
φcφ

3
q

)
,

(A.7)

A[φc] = [∂μ∂μφc + g2φ3
c − J ]. (A.8)

Note that the term φq A[φc] = 0 corresponds to project-
ing onto the classical equation of motion for the Lagrangian
(A.6).

The semiclassical approximation of (A.8) means expan-
sion on φq around its saddle-point value

e
i g

2

4

∞∫
t0

dt
∫
d3x φcφ

3
q = 1︸︷︷︸

LO

+ ig2

4

∞∫

t0

dt
∫

d3x φcφ
3
q

︸ ︷︷ ︸
NLO

+ . . .

(A.9)

This expansion does not require smallness of the coupling
constant g. Practically, the Leading Order contribution con-
tains quantum fluctuation up to one loop order.

The Leading Order contribution to observables corre-
sponds to the first term in decomposition (A.9). The integra-
tion over φq and φc fields gives (see [17,30] for details)

〈F(ϕ̂)〉t1 =
=

∫
Dα(x)Dp(x) fW [α(x), p(x)), t0]F(φcl(t1, x)),

(A.10)

where

fW [α(x), p(x), t0] =
∫

Dβ(x)
〈
α + β

2

∣∣∣ρ̂(t0)
∣∣∣α − β

2

〉

× exp

(
i
∫

d3x p(x)β(x)
)

. (A.11)

is the Wigner functional defining initial state of the system,
φcl is the solution of classical equation of motion

∂μ∂μφcl + g2φ3
cl = J

∣∣∣
J=0

= 0 (A.12)

with initial conditions given by

φcl(t0, x) = α(x), φ̇cl(t0, x) = p(x) (A.13)

and at zero axillary source J (t, x).
Let us introduce new notation for averaging over initial

conditions

〈O〉i.c. =
∫

Dα(x)Dp(x) fW [α(x), p(x)), t0] O. (A.14)

Then we can rewrite Eq. (A.10) shorter as

〈F(ϕ̂)〉LOt1 = 〈F(φcl(t1, x))〉i.c.. (A.15)

TheNext-to-LeadingOrder of the semiclassical decom-
position (or quantum corrections to the CSA) is calculated as
the second term of the expansion (A.9). The path integration
over φq can not be done as easy as at LO level because of
the additional φ3

q part. However, each φq can be replaced by
functional derivative over source J due to φq J term in the
Keldysh action (A.8) as

δ

δ J (t, x)
ei SK [φc,φq ] = iφq(t, x)ei SK [φc,φq ]. (A.16)

This observation allows to perform functional integration
over φq and φc to obtain the answer for expectation value
of the observable up to NLO level

〈F(ϕ̂)〉LO+NLO
t1 =

〈
F(φcl(t1, x))

+ g2

4

t1∫

t0

dt2

∫
d3x2φcl(t2, x2)

δ3F(φcl(t1, x))
δ J 3(t2, x2)

∣∣∣∣
J=0

〉
i.c.

.

(A.17)

The expression above shows that there is no necessity in any
new information for evaluation of the NLO correction. One
should find the classical trajectory as a function of the initial
conditions, perform three variations over auxiliary source,
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integrate over intermediate time and average with the Wigner
functional. It is easy to recast all terms of the semiclassical
approximation to the following general form

〈F(ϕ̂)〉t1

=
〈
T̄ e

g2

4

∫
dτdy φcl(τ, y)

δ3

δ J 3(τ, y) F(φcl(t1, x))
〉
i.c.

(A.18)

Here T̄ denote the anti-time ordering which is required to
recover exponential form. The formula (A.18) shows that the
building block of the semiclassical decomposition is the full
nonperturbative solution of the classical EoM φcl rather than
the Green’s function of the perturbative approach. Hence,
the strong field limit can be considered with the semiclassi-
cal method, however, only for the narrow range of problems
allowing the semiclassical decomposition itself.

Numerical calculations can be slightly simplified. Let us
define k-th variation of the classical solution over source J
as

δkφcl(x1)

δ J k(x2)
= Φk(x1; x2). (A.19)

Then

δ3F(φcl(x1))

δ J 3(x2)
= ∂F

∂φcl
Φ3(x1; x2) + ∂3F

∂φ3
cl

Φ3
1 (x1; x2)

+ 3
∂2F

∂φ2
cl

Φ1(x1; x2)Φ2(x1; x2). (A.20)

Functions Φk(x1; x2) can be found by variation of the clas-
sical EoM.

δ3

δ J 3(x2)

(
∂μ∂μφcl(x1) + g2φ3

cl(x1) = J (x1)
)

.

Hence, to calculate the quantum correction to the CSA one
need to find the solution of four linked differential equations

∂μ∂μφcl(x1) + g2φ3
cl(x1) = 0,

Lt1Φ1(x1; x2) = δ(4)(x1 − x2),

Lt1Φ2(x1; x2) = −6g2φcl(x1)Φ
2
1 (x1; x2),

Lt1Φ3(x1; x2) = −6g2Φ3
1 (x1; x2)

− 18g2φcl(x1)Φ1(x1; x2)Φ2(x1; x2)

Lt1 = ∂2
t1 − ∂2

x1
+ 3g2φ2

cl(x1). (A.21)

without knowledge of the exact dependence of the classical
solution φcl(x) of auxiliary source J (x).
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