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Abstract The present paper provides a new exact and
analytic solution of the Einstein–Maxwell field equations
describing compact anisotropic charged stars satisfying the
MIT bag model equation of state for quark matter. The model
is obtained by assuming the Tolman–Kuchowicz spacetime
geometry (Tolman, in Phys Rev 55:364, 1939; Kuchowicz,
in Acta Phys Pol 33:541, 1968). Our stellar model is free
from central singularity and obeys all the conditions for a
realistic stellar object. The solution is smoothly matched
with the exterior Reissner–Nordstrom spacetime in order to
obtain the physical parameters of the system. An interesting
phenomenon which arises in this model is the fact that the
force due to the pressure anisotropy initially dominates the
Coulomb repulsive force, nevertheless as the radius increases
the electric force dominates the anisotropic one. This may be
an additional mechanism required for stability and equilib-
rium against the gravitational collapse of the stellar object.
Detailed analyses of the obtained model are also given with
the help of graphical representations.

1 Introduction

At present, it remain a great challenge to obtain analytic solu-
tions to Einstein field equations describing compact config-
urations e.g neutron stars, strange stars, white dwarfs and
black holes, all of them representing the final stages of a
star’s evolution. However, last decades the theoretical stud-
ies modeling these kind of objects have improved consid-
erably. Specifically the development of fluid sphere mod-
els containing anisotropic matter distributions i.e. unequal
radial and tangential pressure: pr �= pt . Of course, from
the astrophysical point of view it represents a more realistic
and intriguing scenario. The pioneering work by Bowers and
Liang [3] about anisotropic spheres with uniform energy den-
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sity suggested that anisotropy could also play an important
role in describing the high redshift objects like quasars and
could has a significantly affect on the physical parameters like
maximum compactness, mass and radius of star. Later on it
was shown that the inclusion of anisotropies within the stel-
lar configuration play an important role in the stability and
equilibrium. Heintzmann and Hillebrandt [4] studied fully
relativistic anisotropic neutron star models at high densities
and have shown that for arbitrary large anisotropy there is no
limiting mass for neutron star. Moreover, Herrera and San-
tos [5] studied local anisotropy in self-gravitating systems
supposing that an anisotropic model can be stable. On the
other hand the studies by Gokhroo and Mehra [6] suggested
that stability is improved for a positive anisotropy factor i.e.
Δ ≡ pt − pr > 0, in distinction with the isotropic case,
allowing it the construction of more massive and compact
objects. Another way to enhance the stability of the system
was analyzed by K. Dev and M. Gleiser submitting the object
under small radial adiabatic oscillation when anisotropy is
present [7], also they explain that for many compact stars
with surface redshift Zs > 2 can be described by assuming
anisotropic matter distributions at the interior [8]. There is an
abundant literature devoted to the study of the effect of local
anisotropy on the global properties of relativistic compact
objects [9–72] (and references contained therein).
Bonnor’s [73] investigations on charged isotropic solutions
and subsequent studies by Ivanov [74] showed that singular-
ities can be avoided during the gravitational collapse, con-
sequently the presence of a net electric charge improves the
balance and stability of the system. It is worth mentioning
that some solutions which do not meet the admissibility phys-
ical criteria become relevant after the inclusion of charge in
them [75,76]. Over the years several works available in the
literature have been addressed the study of models includ-
ing both anisotropy and electric charge [77–92]. In fact, as
was pointed out early the presence of anisotropy and electric
charge improve the stability and equilibrium of the configu-
ration. The first one introduces a repulsive force (in the case
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Δ > 0) that counteracts the gravitational gradient, while the
second one does it due to the Coulomb force.
On the other hand, as mentioned earlier, it is not an easy
task to solve Einstein’s equations analytically. In the case of
isotropic uncharged fluid solutions, one has four unknown
functions i.e. {ρ, p, eν, eλ} and in the case of anisotropic
uncharged solutions one has five unknown functions that is
{ρ, pr , pt , eν, eλ} and three equations. However, in the case
of Einstein–Maxwell equations one has six unknown func-
tions i.e. {ρ, pr , pt , eν, eλ, E} and four equations. Therefore,
in order to solve this system it is necessary to give addi-
tional information. For example, assume a suitable form for
the metric potentials and impose an adequate equation of
state (EoS) e.g. pr = f (ρ). Within this framework several
authors have been considered the well known linear equa-
tion of state based on the MIT bag model [6,14,36,44,79–
83,85,92–128]. From the theoretical point of view, the quark
matter hypothesis put forward by Witten [129], has driven
the study of an entirely new class of compact astrophysi-
cal objects composed of strange quark matter called strange
stars. According to Alford [130], in the dense core of a neu-
tron star there is sufficiently high density and corresponding
low temperature to crush the hadrons into quark matter. In
the MIT bag model [131] for strange stars, the quark confine-
ment has been assumed to be caused by a universal pressure
Bg , called the bag constant. The studies by Farhi and Jafee
[132] and Alcock et al [133] had shown that for a stable
strange quark matter the value of the bag constant should be
Bg ∼55–75 MeV/fm3. Besides the studies by Chamel et al.
[134] on nucleonic EOSs BSk 19, BSk 20 and BSk 21, used
the values of effective bag constant to be 78.6, 65.5 and 56.7
Mev/fm3, respectively. However, the datasets of CERN-SPS
and RHIC22 [135] show that a wide range of bag constant
are permissible.
Following the above spirit the main motivation of this article
is to develop some new analytical relativistic stellar mod-
els by obtaining closed-form solutions of Einstein–Maxwell
field equations. So, the outline of this work is: Sect. 2
presents the Einstein–Maxwell equations for anisotropic
fluid spheres, regarding the MIT bag model EoS, Sect. 3
is devoted to the physical and mathematical analysis on the
constant parameters in order to obtain a well behaved solu-
tion. In Sect. 4 we match the solution with the Reissner–
Nordstrom spacetime, Sect. 5 we study the equilibrium, sta-
bility and energy conditions. Finally, Sect. 6 concludes the
work.

2 The Einstein–Maxwell field equations

We begin with the space–time describing the interior of a
spherically symmetric star with zero angular momentum in
the form:

ds2 = eν(r)dt2 − eλ(r)dr2 − r2
(

dθ2 + sin2 θdφ2
)

, (1)

where

λ(r) = ln(1 + a r2 + b r4), and ν = 2h r2 + lnC, (2)

being a, b, h and C constants parameters and the above metric
potentials describe as a Tolman–Kuchowicz (TK) metric [1,
2,67]. However, these constants will be fixed by physical
requirements of the solution.

The Einstein–Maxwell equations for a static charged fluid
can be given in terms of density ρ(r), radial pressure pr ,
tangential pressure pt , electric field E(r) and proper charge
density σ(r) as,

8π pr − E2 = − 1

r2 + e−λ

[
1

r2 + ν′

r

]
, (3)

8π pt + E2 = e−λ

4

[
2ν′′ + ν′2 − λ′ ν′ + 2(ν′ − λ′)

r

]
(4)

8π ρ + E2 = 1

r2 − e−λ

[
1

r2 − λ′

r

]
, (5)

E(r) = 1

r2

∫ r

0
4 π r2 σ eλ/2 = q(r)

r2 (6)

where q(r) is the total charge within a sphere of radius r . To
solve the system of equations, we take the following EOS for
a strange matter,

pr = 1

3
(ρ − 4 Bg) (7)

The above EOS represents MIT bag model equation of state
where Bg is a Bag constant. To solve the system of equations
for above EOS, we have four unknowns namely, pr , pt , ρ

and σ . By substituting the metric potentials λ(r) = ln(1 +
a r2 + b r4) and ν = 2 h r2 + ln C in Eqs. (3–6), we obtain

ρ = 3 [a2 B r4 + B f 2 + 4 (h f + b r2) + 2 a (1 + 2 h r2 + B r2 f )]
32 π (1 + a r2 + b r4)2 ,

(8)

pr = −3 a2 B r4 − 3 B f 2 + 4 (h f + b r2) + a (2 + 4 h r2 − 6B r2 f )]
32 π (1 + a r2 + b r4)2 ,

(9)

pt = a2 r2 (3 B r2 − 4) + 3 B f 2 + 2 a [−5 + 10 h r2 − 4 b r4+Φ(r)]
32 π (1 + a r2 + b r4)2 ,

(10)

E2 = a2 r2 (4 − 3 B r2) − 3B f 2+4 [−3 h f +b r2 (2+b r4)] − E1(r)

4 (1 + a r2 + b r4)2 ,

(11)

Δ = a2r2(−2 + 3 B r2)+3B f 2 + a [−2 − 4 f + 8hr2(1+hr2)]+Δ1(r)

16 π (1+ar2+br4)2 .

(12)

where,

f = (1 + b r4), B = 32 π Bg

3
Φ(r) = 8 h2 r4 + 3 B r2 f
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+4[−br2 (4 + br4) + h (7 + 3b r4) + 4 h2r2 f ],
E1(r) = 2 a (−3 + 6 h r2 − 4 b r4 + 3 β r2 f )

Δ1(r) = 6B r2 f

+2 [2 h (3 + br4) − b r2 (5 + b r4) + 4 h2 r2 f ]
Moreover, the gradients of density and pressures can be

written as,

dρ

dr
= −3r

[a2 (1 + hr2) + a(h + 3br2 + 3bhr4) − b(1 − 3br4 − 2hr2 f )]
4 π (1 + ar2 + br4)3 (13)

dpr

dr
= −r

[a2(1 + h r2) + a(h + 3br2 + 3bhr4) − b(1 − 3br4 − 2h r2 f )]
4 π (1 + ar2 + br4)3 (14)

dpt

dr
= r

[
4h2 + a3r2 + b3r8 − 2b(2 + 11hr2) + a2(1 + 3 f − 5hr2) + pt11

]

4 π (1 + ar2 + br4)3

(15)

where,

pt11 = b2 r4 (9 − 6 h r2 − 4 h2 r4) + a [b r2 (3 f + 7)

−3 h (5 f − 2) + 4 h2 r2 (1 − b r4)] (16)

3 Bounds on the physical parameters

3.1 Regularity at centre (r = 0)

One of the most important features in the study of compact
configurations in general relativity, correspond to the study of
the existence of physical and geometric singularities within
the star. To check the presence of singularities, one needs to
analyze the behaviour of both metric potentials eν(r) and eλ(r)

at the center r = 0 and also study the behaviour of the energy
densityρ, radial pr and tangential pt pressures. For the metric
potentials at the center, it is expected: eλ(r)|r=0 = 1 ans
eν(r)|r=0 > 0. So, from Eq. (2) we get

eλ(r)|r=0 = (1 + ar2 + br4)|r=0 = 1, (17)

eν(r)|r=0 = Ce2hr2 |r=0 = C. (18)

Of course, Eq. (18) demands C > 0. Figure 1 shows the
monotonically increasing behavior with increasing r for both
metric potentials. On the other hand, Eqs. (8), (9) and (10)
yield to

pr (r)|r=0 = 2a − 3B + 4h

32π
, (19)

pt (r)|r=0 = −10a + 3B + 28h

32π
, (20)
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Fig. 1 Behavior of gravitational potentials (eλ and eν ) versus radial
coordinates r/R. For plotting of this figure, the corresponding values
of arbitrary constants or parameters are displayed in Table 1

ρ(r)|r=0 = 3(2a + B + 4h)

32π
. (21)

Besides, the radial and tangential pressures must be equal at
the center of the configuration. So, equating (19) and (20) we
obtaining the following constrain for the constant B (related
with the bag model constant Bg)

pr (0) = pt (0) > 0 ⇒ B = 2a − 4h. (22)

Since pressure anisotropy factor Δ and electric field intensity
E must be regular within the star, the above constraint over
B ensures,

Δ(r)|r=0 = 0 and E(r)|r=0 = 0. (23)

On the other hand, for any realistic strange star models the
pressure must be positive at centre, then using Eqs. (19) and
(22) we get,

h >
a

4
. (24)

Because all the thermodynamic observables must be
monotone decreasing functions of the radial coordinate r ,
we check the second derivative evaluated at the center of the
configuration,
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Fig. 2 Behavior of pressures (radial pressure (pr ) and tangential pres-
sure (pt )) versus radial coordinates r/R. For plotting of this figure, the
corresponding values of arbitrary constants or parameters are displayed
in Table 1

(
d2ρ

dr2

)
|r=0 = −2

(
3 a2 − 3 b + 3 a h)

8 π

)
(25)

(
d2 pr

dr2

)
|r=0 = −2

(
a2 − b + a h

8 π

)
(26)

(
d2 pt

dr2

)
|r=0 = 2

(
4 a2 − 4 b − 9 a h + 4 h2

8 π

)
, (27)

which give

h >
b − a2

a
and 4a2 − 4b − 9ah + 4h2 < 0. (28)

Figures 2 and 3 (upper panel) expose the thermodynamic
variables within the configuration, that is the radial pressure
pr , the tangential pressure pt and the density ρ, respectively.
It can be seen that all of them have their maximum values at
the center of the star, are monotone decreasing functions of
the radial coordinate, finite and positive definite everywhere
inside of the compact object. Moreover, Fig. 3 (lower panel)
shows the anisotropy factor behaviour. It is remarkable that
the anisotropy factor is Δ = 0 at the center of the star which
is in complete agreement with the statement pr (0) = pt (0),
additionally it is positive in all points inside the star, implying
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Fig. 3 Behavior of density (ρ) and anisotropy factor (Δ) versus radial
coordinates r/R. For plotting of this figure, the corresponding values
of arbitrary constants or parameters are displayed in Table 1

pt > pr . This fact, as was pointed out by Gokhroo and Mehra
[6] allows the construction of more massive and compact
object. Furthermore, a positive anisotropy factor, introduces
a repulsive force that counteracts the gravitational gradient.

4 Junction conditions

Besides the above, the charged fluid balls are expected to join
smoothly with the Reissner–Nordstrom exterior solution at
the pressure free boundary Σ (defined by r = R)

ds2 =
(

1 − 2M

r
+ q2

r2

)
dt2 −

(
1 − 2M

r
+ q2

r2

)−1

dr2

−r2(dθ2 + sin2 θ dφ2) (29)

where M is a constant representing the total mass of the
charged compact star and q is representing the total charge
of the ball. For this purpose we employ the Israel–Darmois
junction conditions [136,137]. So, the continuity of eλ, eν

and q across the boundary, is known as the first fundamental
form [ds2]Σ = 0, yielding to

e−λ(R) = 1 − 2M

R
+ Q2

R2 (30)
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eν(R) = 1 − 2M

R
+ Q2

R2 (31)

q(R) = Q. (32)

On the other hand the radial pressure (8) vanishes at the
surface star (r = R), consequently

pr |r=R = 0. (33)

The above expression corresponds to the second fundamental
form [Gμνxν]Σ = 0, where xν is a unit vector projected
in the radial direction. Therefore, we obtain the following
expression for the constant h (using B = 2a − 4h)

h = −2bR2 + 3a3 R4 + 6a2 R2(1 + bR2) + a(3b2 R4 + 6bR2 + 2)

2(1 + a R2 + bR4) (4 + 3a R2 + 3bR4)

(34)

The constant C can be determined by using the condition
eν(R) = e−λ(R), which yields:

C = e−h R2

1 + a R2 + bR4 (35)

The condition (30) gives the total mass of the charged
compact star as

M

R
= R2 [2a2 R2(1−3F +3h R2)+2bR2(1+2F +3h R2 F)+Ψ (R)]

4 (1+a R2+bR4)2

(36)

where,

F = 1 + b R4,

Ψ (R) = −3a3 R4 + a[2F − 3b2 R4 + 6h R2(2F − 1)].
(37)

In Table 1 are displayed the values obtained for the mass
M , the radius R, the bag constant Bg and all the constant
parameters. Moreover, in Table 2 the corresponding values of
the central density ρ0, surface density ρs and central pressure
p0 are shown and the bag constant Bg is expressed in energy
units Mev/fm3. At this stage we observe that the values of the
bag constant Bg are larger than those claimed in the literature
for stable compact objects that include anisotropic matter
distributions formed by quarks [133]. From the perspective
of a mathematically self-consistent model, it appears that a
wide range of values of the bag constant are possible which
is consistent with the CERN-SPS and RHIC data [135]. The
possibility of large values of the bag constant are also claimed
by Rahaman et al. [114]. Ta
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Table 2 The central density (ρ0), surface density (ρs ), central pressure (p0), surface redshift (zs ) and bag constant (Bg) for Strange star candidates

Strange stars candidates ρ0 (g/cm3) ρs (g/cm3) p0 (dyne/cm2) zs Bg (MeV fm−3)

I 4.103217 × 1015 1.079809 × 1015 9.072097 × 1035 0.95918 151.5457

II 6.58899 × 1015 1.31536 × 1015 1.582416 × 1036 1.21452 184.6062

5 Some silent features of strange star models

5.1 Equilibrium under four different forces

It is interesting to study the equilibrium conditions under
the different forces, namely, gravitational Fg , hydrostatic Fh ,
anisotropic Fa and electric Fe forces, respectively. In the case
of isotropic uncharged fluid spheres this study can be per-
formed using the well known Tolman–Oppenheimer–Volkov
(TOV) equation [138,139]. Nevertheless, in this opportunity
we are in presence of an anisotropic charged fluid sphere,
then the TOV equation should be modified in order to ana-
lyze the equilibrium of the configuration. So, the modified
TOV equation is given by

dpr

dr︸︷︷︸
Fh

= −ν′(λ′ + ν′)
2reλ︸ ︷︷ ︸
Fg

+ q

4πr4

dq

dr︸ ︷︷ ︸
Fe

+ 2Δ

r︸︷︷︸
Fa

, (38)

where the effective gravitational mass MG(r) inside the fluid
sphere of radius ‘r ’ is given by :

MG(r) = 4π

∫ r

0

(
T 0

0 − T 1
1 − T 2

2 − T 3
3

)
r2e(ν+λ)/2dr,

(39)

and, for notational convenience, the factors may be written
as

MG(r) = 1

2
r2ν′ e(ν−λ)/2. (40)

The explicit form of the above forces are

Fg = − h r
[a + 2 a h r2 + 2 (h + b r2 + b h r4)]

2 π (1 + a r2 + b r4)2 (41)

Fh = r
[a2 (1 + h r2) + a(h + 3b r2 + 3b h r4) − b(1 − 3 b r4 − 2h r2 f )]

4 π (1 + a r2 + b r4)3

(42)

Fe = r
[Fe1 − 3 a4 r4 − 8 a3 r2 + Fe2 + Fe3]

4 π (1 + a r2 + b r4)3 (43)

Fa = r
4h2 + 3a3r2 − b2r4(1 + 6hr2) + a2(5 − 6hr2 + 6br4) + Fa1

4 π (1 + a r2 + b r4)2 (44)

where,

Fe1 = a3r2(6hr2 − 9br4) − 3a2

[2 + 5br4 + 3b2r8 − hr2(5 + 6br4)],
Fe2 = b[6 + 3br4 + b2r8

+6hr2(2 + 3br4 + b2r8)],
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Fig. 4 Behavior of different forces versus radial coordinates r/R. For
plotting of this figure, the corresponding values of arbitrary constants
or parameters are displayed in Table 1

Fe3 = a [−br2(2 + 6br4 + 3b2r8)

+3h(3 + 11br4 + 6b2r8)],
Fa1 = b(4h2r4 − 5 − 10hr2)

+a[4h2r2 − 4h(2 + 3br4) + br2(4 + 3br4)]

It is observed from Fig. 4 that the system is in complete
equilibrium under the foregoing mentioned forces. Inspec-
tion of the upper panel (corresponding to the star I) and the
lower panel (corresponding to star II) shows that the force due
to anisotropy initially dominates the electromagnetic force,
nevertheless as the fractional radius r/R increases the elec-
tromagnetic force dominates the anisotropic force (it phe-
nomenon occurs approximately at r/R = 0.5). This change
between these forces can be explained by the presence of
a high electric field (approximately at r/R = 0.5) of the
compact object.
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Fig. 5 Behavior of energy conditions versus radial coordinates r/R.
For plotting of this figure, the corresponding values of arbitrary con-
stants or parameters are displayed in Table 1

5.2 Energy condition

In the study of compact configurations describing charged
anisotropic matter distributions, is necessary to check if
the energy-momentum tensor is well behaved i.e. positive
defined everywhere within the star. To check it, the follow-
ing energy conditions must satisfy simultaneously [140]

NEC: ρ(r) + E2

8 π
≥ 0, (45)

WEC: ρ(r) + pr (r) ≥ 0 , ρ(r) + pt (r) + E2

4 π
≥ 0, (46)

SEC: ρ + pr (r) + 2pt (r) + E2

4 π
≥ 0. (47)

The above inequalities correspond to the null energy con-
dition (NEC), the weak energy condition (WEC) and the
strong energy condition (SEC). In Fig. 5 it is shown that
all the above inequalities are satisfied inside the star. Then
the energy-momentum tensor associated with this model is
positive defined.
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Fig. 6 Behavior of radial velocity (v2
r ) and tangential velocity (v2

t ) ver-
sus radial coordinates r/R. For plotting of this figure, the corresponding
values of arbitrary constants or parameters are displayed in Table 1

5.3 Stability via subliminal sound speeds

It is well known that for physically acceptable anisotropic
charged models, the radial and transverse subliminal speed
of sound should lie between 0 and 1, i.e. 0 ≤ vr < 1 and
0 ≤ vt < 1. It is observed from these inequalities that the
parameters also should satisfy the inequalities 0 ≤ v2

r < 1
and 0 ≤ v2

t < 1. From Fig. 6, we conclude that the square of
the radial and transverse speeds of sound are within the range
everywhere inside the stars. Therefore causality condition
is preserved. Moreover, from Fig. 7 we observe that 0 ≤
|v2

t − v2
r | < 1, which means that the system is stable where

the radial speed of sound is greater than the transverse speed
of sound. This implies that there is no change in sign of
v2

t − v2
r and v2

r − v2
t [32].

5.4 Effective mass–radius relation

Regarding the mass–radius ratio of a compact object, in the
case of a perfect fluid spheres (uncharged) it is well known
that this is given by the Buchdhal’s limit i.e. 2M/R ≤ 8/9
[141]. In the case of uncharged anisotropic fluid spheres
this limit is more general [142], notwithstanding it can be
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Fig. 7 Behavior of v2
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r/R. For plotting of this figure, the corresponding values of arbitrary
constants or parameters are displayed in Table 1

obtained from the effective mass [27]. However, in the case
of anisotropic charged spheres this limit is still quite general
respect to the previous cases. The lower limit was given by
Andreasson [143] and the upper bound was given by Bohmer
and Harko [144]. This constraint on the mass–radius ratio for
anisotropic charged spheres explicitly reads

Q2
(
18R2 + Q2

)

2R2
(
12R2 + Q2

)

≤ M

R
≤ 4R2 + 3Q2 + 2R

√
R2 + 3Q2

9R2 . (48)

In Table 3 we can see the values for the mass–radius ratio
and its lower and upper bounds for both strange star candi-
dates considered in this study. Of course, due to the presence
of anisotropies and electric charge in the matter distribution,
the corresponding values for the mass–radius ratio are greater
that the corresponding ones for the isotropic uncharged mat-
ter configurations. Furthermore, the mass–radius ratio (the
compactness parameter u) can be expresses in terms of the
effective mass Mef f which for charged matter distribution is
given by

Mef f = 4π

∫ R

0

(
ρ + E2

8π

)
r2dr = R

2

[
1 − e−λ(R)

]
, (49)

explicitly

Mef f = R

2

[
a R2 + bR4

1 + a R2 + bR4

]
, (50)

so, the compactness parameter of the star is therefore

u(R) = Mef f

R
= 1

2

[
1 − e−λ(R)

]
, (51)

u(R) = 1

2

[
a R2 + bR4

1 + a R2 + bR4

]
. (52)

On the other hand, an important quantity related with the
above compactness factor u is the gravitational surface red-
shift Zs . It can be calculated as

Zs = (1 − 2u)−1/2 − 1. (53)

As was pointed out by Bowers and Liang [3], anisotropic
matter distribution can affects the value of the surface red-
shift. In the case of isotropic matter distribution the maximum
value that Zs can reaches is Zs = 2, which is in complete
agreement with the Buchdahl’s limit u = M/R ≤ 4/9. Then
from Eq. (53), we observed that the surface redshift of star
cannot be arbitrary large due to Buchdahl’s limit. However,
Bowers and Liang considered an hypothetical model con-
taining a constant density ρ = ρ0 (incompressible fluid) and
a specific form of the anisotropy factor Δ. They concluded
that when the anisotropy factor is null i.e. Δ = 0 ⇒ pr = pt

the maximum value for the surface redshift corresponds to
Zs = 4.77, and in the case of a positive anisotropy factor
Δ > 0 ⇒ pt > pr the above value can be exceed (otherwise
if Δ < 0). Moreover, if the anisotropy factor is extremely
large then the surface redshift will be too. On the other hand,
Ivanov [74] shown that for a realistic anisotropic star mod-
els the Zs can not exceed the value Zs ≤ 5.211 (this value
corresponds to a model without cosmological constant). We
can see in Fig. 8 the monotonically increasing behaviour of
the surface redshift Zs within the compact configuration and
in Table 2 the maximum values reached by the considered
strange star candidates I and II. So, based on the above dis-
cussion we therefore conclude that for an anisotropic star
without cosmological constant the values for our model are
in good agreement.
On the other hand, as we said before the electric charge has
an incidence on the mass–radius relation. We note from Table
3 that charged stars have large mass and radius as we should
expect due to the effect of the repulsive Coulomb force with
the M/R ratio increasing with charge [29].

5.5 Electric charge

The electric charge on the surface in Coulomb unit: 4.04378×
1019 [C] for the I star whose radius is 8 km and 1.638631 ×
1020 [C] for the II star whose radius is 7.1 km, these values
are in accordance with the upper limits reported in previous
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Table 3 The lower and upper bounds for the mass–radius ratio and the mass–radius relation for Strange star candidates

Strange star candidates Lower bound
Q2

(
18R2+Q2

)
2R2(12R2+Q2)

Mass–radius ratio M
R Upper bound 4R2+3Q2+2R

√
R2+3Q2

9R2

I 0.00140965 0.370594 0.445697

II 0.0293571 0.41757 0.470205
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Fig. 8 Behavior of surface redshift function (zs ) versus radial coor-
dinates r/R. For plotting of this figure, the corresponding values of
arbitrary constants or parameters are displayed in Table 1
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Fig. 9 Behavior of electric field (E2) versus radial coordinates r/R.
For plotting of this figure, the corresponding values of arbitrary con-
stants or parameters are displayed in Table 1

studies [34,146–148]. As was argued by Thirukkanesh et
al. [145] on the study reported by Madsen [149], electron-
positron pair creation in supercritical electric fields limits
the net charge Q of a static, spherically symmetric strange
star consisting of quark matter to Q < 7 × 1033 (units in
fm scale), which is self-bound due to strong interactions in
addition to gravity. Then we can conclude that our model is in
agreement with the established values for the electric charge
in the literature. On the other hand we can see from Fig. 9 the
behaviour of the electric field intensity E2. As we expect it is
vanishes at center and completely regular everywhere inside
the star.

6 Concluding remarks

We have presented an exact static model of the Einstein–
Maxwell equations which describes a spherically symmetric
charged body arising from the requirement that the internal
geometry is given by the Tolman–Kuchowicz spacetime and
assuming the MIT bag model EoS. We have studied differ-
ent features of a strange star presenting interesting physical
characteristics and featured the variation of different physical
parameters with the fractional radial coordinate graphically.
One of the most remarkable result obtained in this work were
the predicted exact values for the bag constant Bg which are
incomplete accordance with other model reported in the lit-
erature [115,128]. It shown that the bag constant values are
not restricted to be Bg ∼55–75 MeV/fm3 [133] and as was
shown by Burgios [135] a wide range of the bag constant
value are permissible. Moreover, the value of the bag con-
stant increases with the increasing values of the density of the
stellar systems as can be seen in Table 2. On the other hand,
we find in the same table that the central and surface density
of both stars are much higher than the normal nuclear density
ρ ∼ 2×1014 g/cm3 and such high density confirms the pres-
ence of quark matter inside the discussed stars. The another
salient features of the present study can be summarized as
follow:

• It is observed from Figs. 1, 2 and 3 that the model
is free from physical and geometrical singularities. Of
course, both metric potentials are finite, positive and well
behaved at the center of the star i.e. eλ(r)|r=0 = 1 and
eν(r)|r=0 = C > 0 and are monotone increasing func-
tions with increasing radial coordinate r towards the sur-
face within the compact configuration. Furthermore, all
the thermodynamic observables ρ, pr and pt are mono-
tonically decreasing functions with increasing radius,
positive and well behaved everywhere inside the system.

• Through out the stellar distribution the anisotropy factor
is positive (i.e. Δ > 0 ⇒ pt > pr ), it helps to construct
a more massive and compact stellar structure.

• The model satisfied simultaneously the standard point
wise energy conditions that are required by normal mat-
ter, i.e. the NEC, WEC and SEC. Therefore, the energy-
momentum tensor is well defined everywhere inside the
star, it can be corroborated in Fig. 5. The graphical rep-
resentation of TOV equation (Fig. 4) shows that the stel-
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lar structure is in equilibrium under gravitational, ani-
sotropic, electric and hydrostatic forces. Where initially
the aniso- tropic force dominates the electric one, how-
ever as the radial coordinate grows the electric force
finally dominates the anisotropic force. This implies that
the surface layers are more stable (larger repulsive forces
here) than the inner core layers. Therefore, the equilib-
rium of the compact object is enhanced.

• For our model, causality condition is satisfied and sta-
bility through Abreu et al. criterion hold, representing a
stable configuration.

• The influence over the surface redshift Zs and the mass–
radius ratio u due to the presence of anisotropies and
electric charge in the system are shown in Tables 2 and 3
respectively. The obtained values obtained here are in
correspondence with the expected values for compact
objects including charged anisotropic matter distribution.
Additionally, Fig. 8 shows the trend of the surface red-
shift inside the star. As we can see it can not be arbitrary
large due to the value of compactness (u = M/R) of the
stars.

• The values for the surface electric charge found in this
model, are within the range of the values reported in pre-
vious studies [34,146–148]. These values may be inter-
preted to represent the strangelet charge of strange stars
made of color superconducting strange matter [145]. Fur-
thermore, the electric field intensity E2 is well behaved
in all points inside the configuration and it is vanishes at
center as is expected. This can be seen in Fig. 9.

At this stage it is noteworthy to mention that the experi-
mental support given by the LIGO and Virgo observatories
in the detection of the GW 170817 signal in 2017 from the
merging of a binary neutron star system, has made possi-
ble to investigate and study the properties of matter in the
extreme conditions found inside these stars [150]. A few
months ago Abbott et al. [151] based on the observational
data provided by LIGO and Virgo in the detection of gravita-
tional waves and using the equation-of-state-insensitive rela-
tions between various macroscopic properties of the neutron
stars, presented a study on the size of such stars. Determin-
ing that the heaviest component had a radius R1 = 10.8+2.0

−1.7

km while the lightest had a radius R2 = 10.7+2.1
−1.5 km, both

results with 90% reliability. On the other hand the use of
an efficient parametrization of the defining function p(ρ)

of the equation of state supports neutron stars with masses
larger than 1.97M� as required from electromagnetic obser-
vations, constraining R1 = 11.9+1.4

−1.4 km and R2 = 11.9+1.4
−1.4

km at the 90% confidence level. They also predicted that at
twice the nuclear saturation density the pressure should be
3.5+2.7

1.7 × 1034 dyne/cm2. In comparison with the obtained
model whe- re the star I with a mass 2.1M� and radii RI = 8

km has a central pressure p0 = 9.072097 × 1035 dyne/cm2

and the star II with 2.1M� and radii RII = 7.1 km with a
central pressure value p0 = 1.582416 × 1036 dyne/cm2, it
can be highlighted that the strange stars having more dense
and smaller in size compared to the neutron stars. On the
other hand, this results can be matched within the range of
the data as predicted by Abbott et al. [151].
Finally, it can be concluded that an analytic solution to the
Einstein–Maxwell field equations has been obtained, which
meets all the requirements to be a physically and mathemat-
ically admissible solution representing a static, spherically
symmetric spacetime described by a charged anisotropic en-
ergy-momentum tensor.
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