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Abstract We discuss in detail the distributions of energy,
radial pressure and tangential pressure inside the nucleon.
In particular, this discussion is carried on in both the instant
form and the front form of dynamics. Moreover we show for
the first time how these mechanical concepts can be defined
when the average nucleon momentum does not vanish. We
express the conditions of hydrostatic equilibrium and stabil-
ity in terms of these two and three-dimensional energy and
pressure distributions. We briefly discuss the phenomeno-
logical relevance of our findings with a simple yet realistic
model. In the light of this exhaustive mechanical description
of the nucleon, we also present several possible connections
between hadronic physics and compact stars, like e.g. the
study of the equation of state for matter under extreme con-
ditions and stability constraints.

1 Introduction

Understanding how quarks and gluons bind together to form
nucleons is a challenging and formidable open problem.
Since a couple of decades, one of the main focuses of
hadronic physics consists in the study of the mass and spin
structure of the nucleon. This information is encoded in the
energy—momentum tensor (EMT) which can be probed in
various high-energy exclusive scattering experiments [1,2].
Since the corresponding cross-sections are small, these pro-
cesses are studied in high-luminosity setups like Jefferson
Laboratory or COMPASS at CERN, and constitute an impor-
tant aspect of the experimental program to be conducted in
a near future in a U.S.-based Electron-Ion Collider [3]. The
nucleon EMT is also intensively studied using Lattice QCD,
see [4-8] for recent developments.

Beside mass and spin, the EMT is also a fundamental
object encoding mechanical properties of the nucleon like
stress [9—11]. Unlike ordinary media at equilibrium, the stress
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inside the nucleon is not isotropic. Indeed, some theoreti-
cal investigations [12,13] already showed that the nuclear
matter itself may become anisotropic at very high densi-
ties (> 101 g/cm3), where the nuclear interactions must
be treated relativistically. Such conditions are typically met
inside compact stars which cannot be explained properly
in terms of an ordinary equation of state (EoS) [14-18].
Stress anisotropy in self-gravitating systems has been stud-
ied in [19-21] and has been shown to affect the physical
properties, stability and structure of stellar matter [22-24].
In particular, anisotropic stellar objects can be much more
compact than the isotropic ones [25]. In the chiral quark-
soliton model [26], it has been found that the energy density
at the center of the nucleon is about 3 x 10" g/em?, i.e. 13
times higher than the average density of nuclear matter. It is
therefore no wonder that stress anisotropy plays a significant
role in the mechanical structure of the nucleon.

So far, the mechanical properties of the nucleon have been
studied in the Breit frame based on the symmetric Belinfante—
Rosenfeld form of the EMT [10,26]. It is known however that
distributions defined in the Breit frame are subject to rela-
tivistic corrections [27] and that the spin of the constituents
makes the nucleon EMT asymmetric [28,29]. In view of this,
we propose a detailed revisit of the mechanical structure of
the nucleon addressing the above shortcomings.

The paper is organized as follows. In Sect. 2 we explain
how to describe a relativistic quantum system localized in
phase space and present the matrix elements of the gen-
eral asymmetric EMT. Mechanical properties of the nucleon
defined in the instant form of dynamics are discussed in
Sect. 3. After a quick review of the proper decomposition
of the nucleon EMT into quark and gluon contributions, we
present the three-dimensional spatial distributions defined
in the Breit frame where the system is in average at rest.
We extend the study to the more general class of elastic
frames introduced in [29], where two-dimensional spatial
distributions can be defined in the plane transverse to the
average motion of the system. In Sect. 4, we discuss for the
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first time the mechanical structure of the nucleon using the
front form of dynamics. In such a framework, we define two-
dimensional spatial distributions free of relativistic correc-
tions and compare them with the corresponding distributions
in instant form. The questions of hydrostatic equilibrium and
stability conditions are discussed in Sect. 5. Finally, we con-
clude the paper with Sect. 6 where we summarize our results.

2 Matrix elements of the energy—-momentum tensor

In order to define the distribution of a physical quantity inside
a system, one should first localize the system in both posi-
tion and momentum space. In a quantum theory, this can be
achieved in the Wigner sense [30]. A system with average
position R and average momentum P is described by the
covariant phase-space density operator

mp_/dﬂ (zﬂmay>m%w( +%—Mﬂ
—5)p+5). 1)

where the delta functions' ensure that initial and final
states have the same mass M. It follows from the rela-
tivistic normalization for momentum eigenstates (p’|p) =
2p°@27)3 83 (p' — p) that Tr[pg.p] = 1. Defining the
covariant “position” states as

e~ AR ’P

d4 ip-x
|x>—/(2 2 802 = M) 7 ), @)

with normalization (x'|x) e~ (0'=9) | the

| b
@2m)32p0
covariant phase-space density operator can alternatively be
expressed as

dp? 45 —iPZ z z
PR.P :/Q/d Ze IR+ 5)R - %|. ©)

If we integrate the covariant phase-space density operator
over the position R, we recover the density operator in
momentum space

|P)(P|
/d3RpRP—/—2 SPP-MH @)

and if we integrate over the momentum P, we recover the
density operator in position space

&P
5 Pr.P = |R)(R]. (&)

2n)32P

' For notational convenience, we omit to write the theta functions which
select the positive mass shells.
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Matrix elements of position-dependent operators are then
given by

(OX))r.p =Tr[O(X)pr, P, (6)

and translation invariance implies that

(O(X))r.p = (O(x))o,pP. (N

where x = X — R is the relative average position.

In the present work, we are interested in matrix elements of
the (renormalized) nucleon EMT T#V(X). The latter can be
expressed in terms of gravitational (or energy—momentum)
form factors (GFFs), first introduced” by Kobzarev and
Okun [32,33] and later by Pagels [34]. In the general case of
alocal, gauge-invariant asymmetric EMT for a spin-% target,
the standard parametrization reads [28,29,35,36]

v

pPrp
(p. 8|/ ) p,s) = a(p', s@[ Aa(t)

AFAY _nuvAZ B
+ T Cy(1) + Mn’”Cu(t)

plujgvia [t yv1A

P
+——[Au(®) + B.()] +

aM TDa(I)}H(P,S),

®)

where p (p’) and s (s”) are the four-momentum and canon-
ical polarization of the initial (final) nucleon of a mass M,
n*¥ = diag(+, —, —, —) is the Minkowski metric, and t =
A with A = p’ — pand P = (p’ + p)/2. For convenience,
we introduced the symmetrizer a'“b"} = a"b” + a"b*, the
antisymmetrizer al“p’l = b’ — a'b*, and the notation
ioh® = jo"* A;. The label a in Eq. (8) refers to the contri-
bution from a particular type of constituents, typically a = g
for quarks and @ = G for gluons, here defined in the MS
scheme. The total EMT is then simply obtained by summing
over all the constituent types 7" =Y T," Y.

The generic matrix element (8) is parametrized in terms
of five GFFs, namely A, (¢), B,(t), Cy4 (), C.(t) and D,(1).
Beside their 7-dependence, the GFFs are also usually scale
and scheme-dependent. Except for D,(¢), these additional
dependences drop out when summing over all quark and
gluon contributions. In particular, three of the GFFs asso-
ciated with the symmetric part of the EMT satisfy the sum
rules

Y A0) =1,

a=q,G

Y Bu(0)=0,

a=q,G

Y. Cut) =0,

a=q,G
)

2 Note that a tensor decomposition of the electron EMT disregarding
polarization appeared in an earlier work by Villars [31].
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which arise from the Poincaré invariance of the theory [28,
37,38]. The vanishing of the total anomalous gravitomag-
netic moment ) _, B,(0) = 0 is related to the equivalence
principle in General Relativity [32,33,37,39] and holds sep-
arately for each Fock component of the state [40]. The GFF
C,(t) accounts for the non-conservation of the partial EMT
(p,8'10, T4 (0)|p,s) = iA"Mi(p', s")u(p, s) Ca(t) and
should naturally vanish when summed over all the con-
stituents. The GFFs have been studied in a variety of the-
oretical approaches, see e.g. [41] and references therein, and
also using Lattice QCD simulations [4—7,42—44].

Although a direct measurement of nucleon scattering by
a gravitational field is not realistic with the current tech-
nology, it is remarkable that the GFFs can in principle be
extracted from experimental data. Ji [1,45] showed that the
three GFFs A, (1), B,(t) and C,(t) can be obtained from the
second Mellin moment of leading-twist generalized parton
distributions (GPDs) [2,46,47], which are accessible in sev-
eral exclusive processes, like deeply virtual Compton scat-
tering [48] and meson production [49]. Recently, the corre-
sponding GFFs for a pion target have been extracted from
Belle data on y*y — 797 [50]. The GEF C,(r), which can
formally be obtained from higher-twist GPDs [28,51,52], is
related to the o, y term extracted from N scattering ampli-
tudes [53,54], and to the trace anomaly which can be studied
through the production of heavy quarkonia at threshold [55—
59]. Finally, the GFF associated with the antisymmetric part
of the EMT is directly related to the axial-vector form fac-
tor [29]

Dy(t) = =G% (1), Dg(t) =0, (10)

and hence can be obtained from quasi-elastic neutrino scat-
tering and pion electroproduction processes [60].

For illustrative purposes, we will adopt in this work a
simple multipole Ansatz for the GFFs

Fott) = —2©@ (11

(1-1/83,)"

which is supported by model calculations for |7 < 1 GeV?
[26], together with the parameters given in Table 1 in the MS
scheme with renormalization scale © = 2 GeV. We adopt a
standard dipole Ansatz (i.e. np = 2) for A, C, and Dy, but
for B, and C, we choose a tripole Ansatz (i.e. np = 3) in
order for the energy and pressure distributions to be realistic,
see discussion in Sect. 5. The normalization A,(0) ~ 0.55
is taken from the recent MMHT2014 analysis [61]. We set
B,;(0) ~ —0.07 as suggested by the AdS/QCD correspon-
dence [62,63] and which agrees in magnitude with recent
estimates from Lattice QCD [7,64]. We also use the values
C,00) = df (0)/5 with di](O) ~ —1.59 obtained in a dis-

Table 1 Parameters for the multipole parametrization (11) of the GFFs,
in the MS scheme with renormalization scale © = 2 GeV

F, np F,(0) AF, (GeV) F5(0) Ar, (GeV)
Aq 2 0.55 0.91 045 091

B, 3 —0.07 0.8 007 08

Ca 3 —0.32 0.8 —056 0.8

C, 2 —0.11 0.91 0.11 0.91

D, 2 —-0.33 1.74 - -

persive analysis of deeply virtual Compton scattering [65]
which is close to a recent experimental extraction reported
in [66], C_'q (0) & —0.11 given by a phenomenological esti-
mate [67] supported by a recent Lattice calculation [6], and
D,(0) = —GiI‘ (0) &~ —0.33 obtained from a leading twist
NNLO analysis by the HERMES collaboration [68]. The
quark multipole masses A F, with F = A,B,C,C are
motivated’ by results obtained in the chiral quark-soliton
model [26,69], and ADq = Ach‘ is taken from a recent
Lattice estimate [70]. In the gluon sector, the normaliza-
tions A (0), B (0) and C¢(0) are determined by the sum
rules (9). As suggested in [59], we use the simple relation
C6(0) = 5, Cy(0) with ny = 3. Since we lack informa-
tion about the gluon GFFs, we simply set Ap, = A F, for
F=A, B, C,C.

This simple parametrization should be considered only as
a naive model with the sole aim of allowing us to illustrate
the various distributions discussed in the rest of the paper.
In particular, one of its advantages is to permit an evaluation
of the two and three-dimensional Fourier transforms of the
multipole distributions in closed forms

/‘dzAl e ALbL A CAD\" K,_i(AD) 12
(2m)? A2 \" bm \ 2 n—1!"
1+F
3 —iA- 3
L
T T
(1+%)
d3A e—iA~r A3 A
=14 Ar) — e 14
2m)3 (1 A2)3 (A+An e (14)
Tz

where b = |b | with b a two-dimensional vector, and r =
|r| with r a three-dimensional vector.

3 Only a dipole fit of the GFFs has been reported in that model. We esti-
mated the tripole mass A ¢, by multiplying the reported dipole mass 0.65
GeV with /372 so as to leave the quantity dC (¢)/d7|;=¢ unchanged.
No multipole mass for B, (¢) has been reported, so we simply choose
Ap , = Ac .
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3 Distributions in instant form

Performing the integrals over P2 and A in the covariant
phase-space density operator (1) leads to

_/ d’A
PRP= | 07)32P0

where the initial and final target energies are given by

2 2
P=\(P=4) +m2 pO=\(P+5) + M2

(16)

AR |p 4P+ 4

, (15)

The non-explicitly covariant form (15) coincides with that
of Appendix B in Ref. [71] if we replace the normaliza-
tion factor 2P° by 2,/pOpY. The difference in the nor-
malization comes from the fact that “position™ states in
Ref. [71] were defined with the non-relativistic normaliza-
tion (x’|x) = 8 (x’ —x) at equal times. This difference will
however not concern us since we will essentially be interested
in the case A? = 0, when p° = p°.

Setting the origin at the average position of the system
R = 0 and denoting x* = (0, r), the static EMT encoding
the distribution of energy and momentum inside the system
with canonical polarization s and average momentum P, is
defined as the following Fourier transform

AV (o, nv d3A —iAr Ay
T P) = (T Whor = [ Ssse T (n o)
(17
of the off-forward amplitude [29]
' s| TV 0] p,
(v = LSl Ol ) (18)

2P0

Note that x” = 0 because the positions X and R are consid-
ered at the same time X° = R?. If we allow X° and R° to be
different, the above static EMT 7/ (r; P) can be recovered
by considering the time average f dXx°/(27 8(0)) in a frame
where the energy transfer vanishes A? = 0 [10].

The GFFs in Eq. (8) are multiplied by two types of Dirac
bilinears, namely i’u and ir’i o u. Using the same canonical
polarization for both initial and final states, these bilinears
can be expressed in instant form as [72]

iy =N [2(}92 + MP% + ieOPAS] , (19)
dictPuy = N1 {P“A2 + Mn"°A% — A*AD)
AZ
+2 [(PO + M)ietAPS — o ienso

—(P-5) ie”“APOJ} , (20)
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where S* = (0,s) and N' = /p® + M/p® + M. In the
present work, we will restrict ourselves to the case of an
unpolarized target, which amounts to setting S* = 0 in the
above expressions. The unpolarized off-forward amplitude
then reads

(T () =

P24+ MPO (prpy
Ayt)

PON M
ARAY — np.vA2
M
A? 2PHpY
plu,vio
4PN {[ m T E ]
« Aa(t) + Ba(t) + P[,an]o Da(t)}
2 2
A° {P{“A”} Aq(1) + Bu(1)

Cq(t) + My"' C, (t)}

4PON 2

+PHAY] DT“)} ) 1)

Except the global normalization factor, the first line is iden-
tical to the standard parametrization for a spin-0 state. The
second and third lines can be interpreted as the polarization-
independent distortion arising due to the spin of the target.
Indeed, it has been shown in [10,29] that the combinations
[Aq(t) + B,(t)]/2 and —D,(t)/2 provide the information
about the spatial distribution of total angular momentum and
spin associated with constituent type a.

The static EMT can receive a (quasi-)probabilistic inter-
pretation only when no energy is transferred to the sys-
tem A® = 0 [29]. Since the onshell conditions impose that
A% =P . A/P°, we will consider the following cases:

(a) A = 0 —forward limit (FL);

(b) P = 0 - Breit frame (BF);

(c) P - A =0 - eclastic frame (EF);

(d P-A =0and|P| — oo - infinite-momentum frame
(IMF).

Note that when A? = 0 the normalization factor appearing
in Eq. (21) reduces to N = P? + M.

3.1 Forward limit

Since A is the Fourier conjugate variable to relative position
r, the forward limit (FL) A = 0 is obtained by integrating
the static EMT over r

/d%ww py— (B SIT 1P s)
“ ' 2Ep

pHpY M? -
= Aa(0)+E—Pn“”Ca(O), (22)
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where Ep = v/ P? + M?2. Note that the dependence on the
nucleon spin disappears in the FL. This is expected because
the EMT is the Noether current associated with invariance
under translations and not Lorentz transformations.

Focusing on the 7. component in the rest frame P = 0,
Ji [73,74] proposed a decomposition of the nucleon mass
based on Eq. (22). Recently, a covariant treatment of e
revealed that the gravitational charges A, (0) and C,(0) can
be interpreted in terms of partial internal energy density and
isotropic pressure [67]. Indeed, denoting the proper volume*
by V and the boost factor by y = Ep/M, one finds that the
average density

v

PHP _
’ / &Er I P) = [W Aq(0) + n“"ca«))}

<X

(23)

has the same structure as the EMT of an element of perfect
fluid [75]

" (r) = (¢ + p)u"u’ — pn™. (24)

The four-velocity of the nucleon being given in the FL by
utt = P* /M, this suggests that the following combinations

_ - M _ - M
Eqa = [Aa(0) + C4(0)] v Pa=—CaO 7 (25)

can be interpreted” as the spatial average of partial energy
density and isotropic pressure associated with constituent
type a. The contributions to proper internal energy and
pressure-volume work are then given by

Ua = [Aa(0) + Co(0)| M, W, =—C,(0) M. (26)

The nucleon being a stable system with mass M, one obtains
a mass sum rule and a stability constraint

ZU:M, ZWazo, (27)

a=q,G a=q,G

consistent with Eq. (9). While A, (0) is well determined [61],
C,4(0) is poorly known. Based on the phenomenological

4 The proper volume of the nucleon can typically be taken to be V =
%n Ri,l with the mass radius R, defined in Eq. (44). Note however that
the precise definition of V is somewhat arbitrary and does not affect our
results for the average densities as they are always expressed in units of
M/V.

5 Note that the nucleon is by no means assimilated to a perfect fluid. We
are only interested in the mechanical interpretation of particular compo-
nents of the static EMT, defined in a quantum theory as the expectation
value of the EMT operator in a specified state [9,10].

estimates in [76], C_'q (0) seems to be negative and size-
able [67,77], in agreement with the MIT Bag Model pre-
diction [78] and recent Lattice estimates [6]. In contrast,
it has been suggested based on the instanton picture of the
QCD vacuum that C_'q (0) at low scale may be small and pos-
itive [69].

3.2 Breit frame

Since the work of Sachs on the electromagnetic form fac-
tors [79], the Breit frame (BF) defined by P = 0 became
a popular frame for the physical analysis of form factors
in instant form. The phase-space perspective adopted in the
present work shows that working in the Breit frame amounts
to looking at the system which is in average at rest and sitting
in average at the origin.

The unpolarized off-forward amplitude (21) reduces in the
BF to

t

(T O |gp = M {n*‘%“” [Aa () + 7373 Ba <z)]

o] A t AFAY
+77# I:Ca(t)_mca(t)}+vca(t)}, (28)

where we used P* = "0 PV Interestingly, the GFF D, (1)
does not contribute in the BF. We therefore recover the case
of a symmetric EMT studied by Polyakov et al. [10,11,26].
After Fourier transform, we find the following unpolarized
static EMT

7100 =M {’7“071”0 [Aa(r)
+L(ii(2d6a(r))_é_ldca(r)>
ar\2a\" Tar rodr
_ 1 1d/ dC,(r)
v _ - 29, )
Tt [Ca(r) M2rdr<r dr >]
xHxV o1 d /1dC,(r)
‘r—zm’”a(; dr )} 29

where x* = (0, r) and the three-dimensional Fourier trans-
forms of GFFs are denoted by

d3A
(2m)3

Falr) = eTIAT Fu(t) (30)

with t = —AZ,

‘We observe that the unpolarized static EMT in the BF (29)
has the same structure as the EMT of an anisotropic spheri-
cally symmetric compact star [80]

O (r) = [e(r) + pi()]utu” — p;(r)n™”
+Ipr(r) — pr (M1 x"x", 3D

where u" and x* = x*"/r are unit timelike and spacelike
four-vectors orthogonal to each other. The functions &(r),

@ Springer
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pt(r)
\
Pr(r)
A e A%
- KN pr(r)

J

Fig. 1 The radial pressure p,(r) and the tangential pressure p;(r) at
a distance r from the center of the system (31). Spherical symmetry
imposes only the equality of the two tangential pressures

pr(r) and p,(r) represent the energy density, radial pressure
and tangential pressure, respectively. As noticed by Einstein
and developed first by Lemaitre in 1933 [81,82], spherical
symmetry requires only the equality of the two tangential
pressures, see Fig. 1. The tensor (31) can alternatively be
written as

"' (r) = [e(r) + p(H]u"u” — p(r)n™”

+s5(r) (X”XV—%}ZW) (32)

with h#*Y = uPu” —n™*V . Isotropic pressure p(r) and pressure
anisotropy s(r) are related to radial and tangential pressures
as follows

) +2p()
p(ry = BT 2P

3 s(r) = pr(r) —

pi(r). (33)

The comparison of the unpolarized static EMT in the
BF (29) with the EMT of an anisotropic spherically sym-
metric compact star (31) or (32) with u* = n"° suggests
that the following combinations

£a(r) = {A () +Calt) + 15
x c% (rzc%[sa (r) —4Cq (r)])} : (34)
Pra(r) = M1 —Cu(r) + A;fdcdr(’")}, (35)
Pra() =M {~Ca(r) + %l%(, dc&‘:”)} . (36)
par) = MG+ 3 S (r2dcc‘;r(r))}, 37)
)y L R

can be interpreted as the partial energy density, radial pres-
sure, tangential pressure, isotropic pressure, and pressure

@ Springer

anisotropy associated with constituent type a, respectively.
They can alternatively be written as

=M d3A
Fall) = /<2n)3

eTIAT {Aam + Cya(t)

s (B0 —4C, (r)]} , (39)
dSA —1A~r 2
Pra(r) = M[(2 e =Gt
424
—iAr ) _ &~
pta(r) M/(Zﬂ')3 Cu(t)
4171724 d 3
S E[tdz( Ca (z))]} 41)
M —iAT L _Cut 2 Ca(t
Pa(r) = /(271)3 ()+3M2 (1)
(42)
—iAr 4112 @2 /52
sar) = Mf(zﬂ)3 {‘72 s (P2cm)
(43)

As indicated by the presence of B,(f), the non-zero spin
of the target affects only the energy distribution in the BE.
Classically, we indeed expect angular momentum to push
matter away from the center.

The above distributions are illustrated in Figs. 2, 3,4, 5,6
and 7 in units of GeV/fm> = 1.7827 x 10" g/cm? using the
multipole model (11) with parameters given in Table 1. The
energy density in Fig. 2 is always positive and is approx-
imately shared equally between quark and gluon contribu-
tions. One defines the corresponding average squared mass
radius as

Ry =7 [ Errten =6 0| -G co).
@4

In our simple model, we find Ry; = 0.905 fm which is a bit
larger than the charge radius Ry = 0.841 fm extracted from
muonic hydrogen spectroscopy [83,84] and Ry = 0.879 fm
extracted from electron-proton scattering [85]. Knowing the
distribution of energy density, it is also easy to derive the
standard mass function widely used in General Relativity

m(r) = 4n f % e(r’) (45)
0

which represents the mass contained within a sphere of radius
r, see Fig. 3.

While the total radial pressure in Fig. 4 is always positive
and largely dominated by the quark contribution, the total
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€(r)
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25
q+G
"""" q
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L I r[fm
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Fig. 2 Plots of the energy density, a €(r) and b 47 r2 €(r), using the multipole model (11) with parameters given in Table 1, see Eq. (34) or

Eq. (39) for the definition in terms of GFFs

m(r)/M
1.0 q+G
0.8
0.6
————————— G 56%
_ -
-~
e q 44%
04} A
Vvt
/.
Vi
0.2 27
#
s
: ' ' ' L L L r[fm]
0.5 1.0 1.5 20 25 3.0 35

Fig. 3 Quark, gluon and total mass functions, computed using the mul-
tipole model (11) with parameters given in Table 1, see Eq. (45) for the
definition

pr(r)
[GeV/fm?]
0.8
q+G
"""" q

0.6 - == G
0.4
0.2

A I f

15 2.0 r{fm]

tangential and isotropic pressures in Figs. 5 and 6 switch
from positive sign at the center of the nucleon (where it is
dominated by the quark contribution) to negative sign at the
periphery (where it is dominated by the gluon contribution).
The pressure anisotropy in Fig. 7 vanishes at the center of the
nucleon, as required by spherical symmetry, and is positive
anywhere else, indicating that the radial pressure is always
larger than the tangential one. Looking at the separate contri-
butions, we see that the quark and gluon radial forces are both
repulsive and of similar range. For the tangential forces, the
quark contribution appears to be mostly repulsive and short
range whereas the gluon contribution appears to be mostly
attractive and long range.

If we integrate the energy density and the isotropic pres-
sure over the whole volume, we naturally recover the FL (26)
discussed in the former section

477 7 pi(r)
[GeV/fm]

(b)

Fig. 4 Plots of the radial pressure, a p,(r) and b 47 r? p,(r), using the multipole model (11) with parameters given in Table 1, see Eq. (35) or

Eq. (40) for definitions in terms of GFFs
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Fig. 5 Plots of the tangential pressure, a p;(r) and b 47 r2 p:(r), using the multipole model (11) with parameters given in Table 1, see Eq. (36)

or Eq. (41) for definitions in terms of GFFs
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Eq. (42) for definitions in terms of GFFs
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Fig. 6 Plots of the isotropic pressure, a p(r) and b 47 r2 p(r), using the multipole model (11) with parameters given in Table 1, see Eq. (37) or

am r? s(r)
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» -—-6
0.3+
: ’ - ~ N
[ , N
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[ ) L L L .-1 r [fm]
L 0.5 1.0 1.5
(b)

Fig. 7 Plots of the pressure anisotropy, a s(r) and b 47 r2s(r), using the multipole model (11) with parameters given in Table 1, see Eq. (38) or

Eq. (43) for definitions in terms of GFFs
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Fig. 8 Radial p,(¢), tangential p;(¢), and isotropic p(e) EoS for a quarks and b gluons computed using the multipole model (11) with parameters

given in Table 1, see Eqs. (34)—(37) for definitions
f &re(r) = [Aa(0) + Ca(O)] M,

/ dr pa(r) = —=C,(0) M. (46)
One can also relate the value of the GFF C,(t) atr =0toa
weighted integral of the pressure anisotropy (43) [10,11,26]

/d3r r2sa(r) = —5 C,(0). (47)

Summing over the constituents, one obtains the following
additional relations [26,86]

6
3 2 _
/d rrop.(r) = MC(O),
9
/ &rripr) = 1 €O,

/ 3.2 _ 4
d’rrop(r) = — C(0). (48)
M
Several hints suggest that C(0) is likely negative [11,26,87,
88]. Hudson and Schweitzer [87] observed that while adding
total derivatives to the EMT leaves the Poincaré genera-
tors unaffected (and hence the particle mass and spin), it
does change C(0). Since this term can be extracted from
experimental data, one should not be allowed to add these
divergence terms without changing some scheme prescrip-
tions, contrary to the common belief. The same conclusion
is reached when one consistently treats intrinsic angular
momentum at the level of spatial distributions [29,71].
Interestingly, in view of the energy density and pressure
conditions encountered in a nucleon, one may conjecture
that studies of the nucleon EMT will shed some light on
the EoS inside compact stars [67], which so far remains
largely unknown [89], and will therefore complement efforts
based on heavy-ion collisions [90] and gravitational wave
observations [91-96]. Eliminating the radial variable r in
Egs. (34)—(37), we obtain the nucleon EoS for radial pres-
sure p,(¢e), tangential pressure p;(e), and isotropic pressure

[GeV/im®]
04
p

03F T e T

—— = P
02f
01} -
Y 06 038 70 €16eV/m’]

Fig. 9 Radial p,(e), tangential p;(e), and isotropic p(e) EoS of the
nucleon computed using the multipole model (11) with parameters given
in Table 1, see Eqs. (34)—(37) for definitions

p(e). The results plotted in Figs. 8 and 9 show a pretty stiff
behavior compatible with the observation of supermassive
(~ 2 Mg) compact stars [92,97,98] well above the Chan-
drasekhar mass limit 1.44 M [99]. Although our multi-
pole model is very naive, it supports the idea of an exciting
crosstalk between hadronic physics and compact stars. An
example of such a connection is given by the use of hadronic
models to study the EoS of potential quark matter inside
compact stars [14,15,100-107].

3.3 Elastic frame

Spatial distributions with quasi-probabilistic interpretation
can also be introduced when P # 0[29]. In order to maintain
the condition A? = 0, we have to restrict ourselves to the set
of elastic frames (EF) defined by P - A = 0. They can be
obtained by integrating the static EMT over the longitudinal
coordinate rl = r - P/|P|

TH(by; P) = /dr” T (r; P)

2
A .
- [ et o
T

M e (49)
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Fig. 10 Density plot of the two-dimensional energy density p(b )
using the multipole model (11) with parameters given in Table 1, see
Eq. (56) or Eq. (61) for the definition in terms of GFFs. The cylinder
parallel to P = P, e, illustrates the integration over r/l, see Eq. (49)

where A| and b; = r, are vectors lying in the two-
dimensional plane orthogonal to P, see Fig. 10. The unpo-
larized off-forward amplitude (18) in the EF takes the form

P2 ]{ prpY
Aq (1)

«Talw(o)»\EF = |:1 - PO(PO + M) M
WAV VA2
+ AJ-A+M C,() + M’?“‘)Ca(f)}
B A% 2PHPY
4PO(PO + M) M
Aa(?) + Bu(t)
X —
2

+ p{unv}O]

D, (1
+ Py —“2( )},

(50)

2
where PO =/ P2+ &% + M2 and AY = Al =0.1f we

further integrate the static EMT over the impact-parameter
b, which amounts to setting A; = 0, in Eq. (50), we
recover the FL expression (22). If we set P = 0 in Eq. (50),
we recover the BF expression (28) integrated over rl, i.e.
with Al = 0.

Since P° depends on A in the EF, we could not find
simple expressions for the spatial distributions T4" (b, ; P)
in terms of Fourier transforms of GFFs. Moreover, these
spatial distributions will be |P|-dependent. Let us choose
for convenience the z-axis along P. If we restrict ourselves
to the (1+2)-dimensional (or transverse) static EMT® with

6 Since the longitudinal coordinate is integrated over, it follows that the
total transverse EMT is itself conserved 9, T*# (b ; P) = 0.

@ Springer

components «, 8 € {0, 1, 2}, its structure looks the same’ as

that of an anisotropic axially symmetric compact star in two
dimensions

1P (b1 P,) = [y?p(b, P) + o1(b, P)1vvP — oy (b, P)n"f
+ oy (b, P,) — 01 (b, P)1 x* X, (51)

where v* = (1,0,) and x* = (0,b,/b). The func-
tions p(b, P;), o,(b, P;) and o;(b, P;) represent the two-
dimensional version of energy density, radial pressure and
tangential pressure, respectively. Note that we have included
explicitly a factor of y2 in the energy density component that
comes from the longitudinal Lorentz boost t%(b, ; P,) =
p(b, P)uu® = y2p(b, P,) v"°, allowing us to compare
directly p (b, P;) for different values of P,. In particular, for
the total EMT we have [ d?by p(b, P;) = M. The tensor
1*F can alternatively be written as

P(by; P,) = [y>p(b, P,) + o (b, P)]v*vf — (b, P,)n*?

+T11(b, P,) (Xaxﬂ - %z“ﬁ) (52)

with /% = v*v# — P The two-dimensional isotropic pres-
sure o (b, P;) and pressure anisotropy I1(b, P,) are related
to radial and tangential pressures as follows

b, P b, P
o(b, P,) = or( ) ;_Gt( z)’

(b, P,) = o,(b, P,) — 1(b, P,). (53)

The particular case P, = 0 is simple and corresponds to
the BF. We find

TP (b3 0) = M {100 [Au(b)
1 1d /[ dB,(b)
4M2 b db (b ap G (b)>]

- 1 d2C,(b)
1753 _ a
+ 7 [Ca(b) o ]

xxf 1 d [(1dC,(b)
B Wb£<5 db )} (54)

where x“ = (0, b ) and the two-dimensional Fourier trans-
forms of GFFs are denoted by

d®A |

G ¢ R (55)

F.(b) =

with t = —Azl. Comparing Eq. (54) with the EMT of an
anisotropic axially symmetric compact star in two dimen-

7 Note that the proper identification r%# ~ y T*f involves a boost factor
accounting for the Lorentz contraction of the volume just like in the FL,
see Eq. (23).
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sions (51) and (52) suggests that the following combinations

%wm=MMMHCM)
1 1d
Widb( db[B ®) - 40“(b)]>}’
(56)
B 1 1dC,(b)
0ra(b,0) = M {—C,(b) + — e } (57)
1 d2C,(b)
0ra(b,0) =M {-C,(b) + T } (58)
B 1 dC,(b)
Ocz(bao)_M C (b)+2M2bdb< db )}’
(59)
B 1 1dCy,(b)
Ma(b,0) = _Wbdb<b db )} (60)

can be interpreted as the two-dimensional partial energy den-

sity, radial pressure, tangential pressure, isotropic

pressure,

and pressure anisotropy associated with constituent type a.

They can alternatively be written as

d Al 71AL by
FLIC

0a(b,0) = M [ Ag(t) + Cy(t)

+ m [Ba(t) — 4Ca(t)]} ;

d A -
Ira(b, 0) = M/(2 ; e ALY — ot
21
T B2 M2 dt Gl (t)]}
d A -
Tr.a(b, 0) = M/(2 )Lz *’AL”i{—Ca(z)
1 4 d 1/2d A
R all )
+szzdt[ dz( Ca(0)
p(b,0)
[GeV/fm?]
121

10}
0.8:
06
o.4f

0.2f

(61)

(62)

(63)

Fig. 11 Plots of the two-dimensional energy density, a p (b,

see Eq. (56) or Eq. (61) for the definition in terms of GFFs

L b [f
20 ffml

A - 1
oa(b,0) = M/?z )Lz —’Ar”i{—ca(t)JrEW Ca(t)},
(64)
dZA 1 4 d2
M, (b, 0) = M/ o )Ji —tAL-bl{_ﬁWdtz[l‘ Ca(l‘)]}.
(65)

Integrating Eq. (29) over z allows us to alternatively express
these quantities in terms of the three-dimensional energy den-
sity and pressures as follows

m&®=/&%®, (66)
2 2
0r.a(b, 0) = /dZ b”pr.a (V);ZZ Dr.a(r) ’ (67)
mAh®=f&mAm 68)
b2 — 272
%mm=/h{mvﬂu—7—%vﬁ, (69)
6r
b2
Ma(b, 0) = /dz—zsa(r), (70)
r

with r = /b% + 72,

These distributions are illustrated in Figs. 11, 12, 13, 14
and 15 in units of GeV/fm? = 178.27 g/cm? using the mul-
tipole model (11) with parameters given in Table 1. Their
behavior turns out to be similar to the corresponding three-
dimensional distributions, see Figs. 2, 3,4, 5, 6 and 7, except
for the gluon contribution to the radial pressure, compare
Figs. 4 and 12. This is an effect of the projection onto the
transverse plane which mixes three-dimensional radial and
tangential pressures together, as indicated by Eq. (67). While
the latter have the same sign for quarks, they are of opposite
sign for gluons.

21t b p(b,0)

[GeV/fm]
12

7 q+G
N T :

i - — =G
08|
06k o
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£ ommnes >

I e N
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041 L G
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02Hf T

H .~~...\ =
Il Il L .\.-.Tt-:-‘hm g b[fm]
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(b)

0) and b 27 b p(b, 0), using the multipole model (11) with parameters given in Table 1,
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a1(b,0) 217 b gy(b,0)
[GeV/fm]

[GeV/fm?]
0.25

L b [fm]

(a) (b)

Fig. 12 Plots of the two-dimensional radial pressure, a o, (b, 0) and b 27 b o, (b, 0), using the multipole model (11) with parameters given in
Table 1, see Eq. (57) or Eq. (62) for the definition in terms of GFFs
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Fig. 13 Plots of the two-dimensional tangential pressure, a o, (b, 0) and b 27 b o4 (b, 0), using the multipole model (11) with parameters given in
Table 1, see Eq. (58) or (63) for the definition in terms of GFFs
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Fig. 14 Plots of the two-dimensional isotropic pressure, a o (b, 0) and b 27 b o (b, 0), using the multipole model (11) with parameters given in
Table 1, see Eq. (59) or (64) for the definition in terms of GFFs
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Fig. 15 Plots of the two-dimensional pressure anisotropy, a I1(b, 0) and b 27 b I1(b, 0), using the multipole model (11) with parameters given in

Table 1, see Eq. (60) or (65) for the definition in terms of GFFs

Similarly to the three-dimensional case, we can relate the
value of the GFF C,(¢) at t = 0 to a weighted integral of the
pressure anisotropy

8
/dzbl b* T, (b, 0) = =47 Ca(®)- (71)
Summing over the constituents, we also find the additional
relations

2

/dsz b*o, (b, 0) = —27 CO0),
6

/dsz b*o,(b, 0) = 1 €O,

d’b, b? _2
Lb7o(b,0) = i C(0), (72)

which are simply the two-dimensional version of those
appearing in Eq. (48).

The last term in Eq. (50) makes the EMT asymmetric. In
particular, the density of longitudinal momentum 7;03 is not
equal to the longitudinal flux of energy 7.>° when the GFF
D, (¢) is not identically zero. Using Poincaré invariance, the
antisymmetric part of the EMT T!#"l can be expressed in
terms of the intrinsic angular momentum current S**V as
follows [28,29]

T (x) = -3, S (x). (73)
In the case of QCD, we get for the corresponding off-forward
matrix elements

vl gy — — L cmvan g
(r,”"O)) = —5€ (v Oyys¥ (0)), (74)
where the matrix elements of the axial-vector current are
parametrized as follows

(P, s|[w ©@y*ysy(0)p,s)

Atys
2

=iu(p' Mys G (t
u(p,S)[V ys G, (1) + ;

G% (t)} u(p,s) (75)

in terms of the axial-vector and induced pseudoscalar form
factors. According to Ref. [72], the corresponding bilinears
can be expressed in instant form as

iWysu =N [(PO FM)(A-S)— AP S)] , (76)
Wytysu =N {2 [S“(Pz + POM)

—(P* 4+ 0" M) (P - 5) + —M(ﬁ : S)} + ie“PAO} .

(77)
For an unpolarized target S* = 0, we can write
B i enPAO .

0)y* 0)) = ——F G4 (@), 78
(@ y"ysy(0)) 2PN A0 (78)
and hence we find in the EF

(] AL [, V10 (4
T (0 = P G (1). 79
(T 0)) g a0 T Dl Ga0 (79)

Using now the expression in Eq. (50) for the left-hand side,
we recover the relation Dy () = —Gz‘ ().

We are now ready to discuss the distribution of spin inside
an unpolarized target. The quark spin operator being given by
LU0y sy (0), the corresponding distribution in the EF is
given by
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by [fm]

by [fm]

(a)

Fig. 16 Quark spin distribution S(b, ; P) for P = (0, 0, P,) using the
multipole model (11) with parameters given in Table 1, see Eq. (80).
a Distribution of the quark spin S in impact-parameter space for

G4
4PO(PY 4 M)~
(80)

2
d Al e—iAL'bL

S Py = (P x V) [

We see that even in an unpolarized target, a nonzero quark
spin distribution appears when the target is moving, see
Fig. 16. The spin direction is orthogonal to both the target
momentum and the impact parameter. This is reminiscent
of transverse shifts observed for transversely polarized mov-
ing target, see [71] and references therein. In the latter case,
the transverse shifts appear because of a nonzero net orbital
angular momentum in the system. In the present case, the
appearance of transverse spin distribution is a result of spin-
orbit coupling [108-110].

3.4 Infinite-momentum frame

The infinite-momentum frame (IMF) is a special case of the
EF obtained by considering the limit P, — oo [111]. We
find that the (1 + 2)-dimensional unpolarized off-forward
amplitude (50) reduces in the IMF to

(TP O | e
= n“On/? (EP Ag(t) — % Bu(1) — % Aaa))
]g—j (% Ca(t) + n“ﬂéa(t)>
+ O(P7). (81)

@ Springer
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P, = 0.1 GeV, and b magnitude of the quark spin density S as a
function of the impact-parameter » and the target momentum P,

After two-dimensional Fourier transform, we obtain for
P, =0

M2 E2
T b0, P,) = i {n‘“’nﬂo V’; [As(b)

1 1d d[Ep A, (D)
(b—[ﬁBa(l’H— ! }—4@;@))]

Tz ban\” b
- 1 d2C,(b)
ﬂ o a
+ nﬂt [Ca(b M2 dbz }
x4xf 1 d [1dC,(b)
b2 M2 db\b db
+ 0P, (82)
where x* = (0,b_) and therefore, by comparison with

Egs. (51) and (52), we can write

pa(b, P;) ~ M Ay (D), (83)
or.a(b, P,) ~ M { —C,(b) + #%dcijb(b) } : (84)
or.a(b, P,) ~ M { —C,(b) + #%} : (85)

oa(b, P;) ~ M {—C,(b) + %#%%(b dcé’lfb))} ,

(86)

Mu(b, P.) ~ M —#bied%ﬁ)}, (87)
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Fig. 17 Plots of the two-dimensional energy density in the IMF, a
pME(D) = limp, 0 p(b, P;) and b 27 b pyvr(b), and their difference
with the corresponding densities in the BE, ¢ ppvp(b) — pr(b) with

keeping only the leading terms in PZ2 > P2 and taking the
boost factor y = Ep/M into account in the identification
1B~y TOB,

While the two-dimensional pressures are the same in both
the BF (P, = 0) and IMF (P, — o00), the energy den-
sities (56) and (83) differ. This may be interpreted by the
expectation that kinetic energy grows with P, whereas bind-
ing energy associated with pressure forces remains constant.
In the IMF, kinetic energy becomes by far the dominant con-
tribution and we recover the parton picture where quarks and
gluons behave as almost free massless particles. Since the
two-dimensional pressures in the IMF coincides with those
shown in Figs. 12, 13, 14 and 15, we simply illustrate in
Fig. 17 the energy density in the IMF, using the multipole
model (11) with parameters given in Table 1. The compari-
son with the energy density in the BF shows that the kinetic
energy is more concentrated around the center of the nucleon
than the binding energy. Naturally, once summed over all the
constituents and integrated over the impact parameter space,
the difference disappears.

27t b pive(b)
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141
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O.Sf
O.6f

04f
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(d)

pBe = p(b,0) and d 27 b [pimr(b) — pBr(D)], using the multipole
model (11) with parameters given in Table 1, see Egs. (56) or (61),
and (83) for the definition in terms of GFFs

4 Distributions in front form

The interpretation of form factors in the Breit frame are
known to be plagued by relativistic corrections [10,112,113].
In particular, one could multiply the off-forward ampli-
tude (18) by some function f (P /Ep)normalizedas f (1) =
1 to correct for Lorentz contractions effects. While such cor-
rection factor does not change the integrated quantities, it
does change the spatial distributions since it introduces an
additional A-dependence. Moreover, the correction factor
cannot be determined in practice in a model-independent way
because Lorentz boosts depend on the dynamics of the inter-
acting system.

An interpretation free of such relativistic corrections can
however be obtained using the light-front (LF) formal-
ism [114,115], which amounts to adopting the point of
view of a massless observer [71]. This remarkable feature is
explained by the fact that, in the LF formalism, the subgroup
of Lorentz transformations associated with the transverse
plane is Galilean [27, 116]. Burkardt used this formalism and
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introduced the boost-invariant impact-parameter distribu-
tions (IPDs) of quarks and gluons [27,112]. Including parton
transverse momentum to the picture led then to the concept of
relativistic phase-space (or Wigner) distributions [108,117—
119]. Longitudinal LF momentum IPDs [50,62,63,120-126]
and longitudinal angular momentum IPDs [29,63,127] have
also recently been discussed in the literature. Our aim here
is to introduce the IPDs associated with the EMT.

4.1 Light-front components

The LF components of a four-vector are given by

a* =[at,a",a,], (88)
where a* = (ao + a3)/\/§. In terms of these, the scalar
product of two four-vectors reads

a-b=a"b+a bt —a, -b,. (89)

One conventionally chooses x™ to the represent the LF time
coordinate. It then follows from Eq. (89) that p™ represents
the LF energy. The other conjugate components x~ and p™
represent the longitudinal LF coordinate and momentum,
respectively. Without loss of generality, we choose the z-axis
along P, so that we simply have

PY=[P*,P7,0.]. (90)

We will denote the spatial LF three-vectors as @ and use a
dotted notation to keep the tensor expressions compact. A
LF three-vector with a dotted index will indicate a minus
first component followed by the transverse ones, while an
undotted index will indicate a plus first component fol-
lowed by the transverse ones, i.e. a? = (a,a;) and
a® = (a™, a ). Thus, in position space, the spatial LF coor-
dinates read x¢ = (x7, x), and in momentum space they
read p* = (p™, p ). We can then rewrite the scalar product
of two four-vectors (89) as

x-p=xtp +x-p 91)

with ¥ - p = x4 p* = x¥py = x pt —x, - p,. Using
LF components is convenient because they behave in a sim-
ple way under LF boosts [114,115]. In particular, perform-
ing a longitudinal LF boost amounts to a mere rescaling of
the LF components [a*,a™,a,] — [e “at,e®a™,a,],
where y = cosh w.

Because of the Galilean symmetry in the transverse plane,
it is interesting to organize the LF components of the EMT
as follows [128]

@ Springer
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The upper left corner corresponds to a (1+2)-dimensional
Galilean EMT T*# . The upper right corner corresponds to a
“mass” current J¢ = T%*, where the role of “mass” in the
transverse plane is played by the longitudinal LF momentum.
Since we are considering only the static EMT, the above
currents are conserved in the (1+2)-dimensional subspace

9T = o TP £ 5,TF =0, 8,J% =0. (93)

Together, they form the so-called covariant non-relativistic
stress-energy tensor 7“* appearing in the context of Newton—
Cartan geometries, which find important applications in con-
densed matter and in the study of non-relativistic holographic
systems, see e.g. [129] and references therein. The last line in
Eq. (92), which describes the flux of energy and momentum
along the spatial LF direction x ~, does not have any known
simple interpretation within the Galilean picture.

4.2 Light-front amplitudes

We can repeat the same procedure as in Sect. 3 in the LF for-
malism. Integrating the covariant phase-space density oper-
ator (1) over P% and A~ leads to

PR.P = Ae_iA'R |P—2)P+% (94)
: 2m)3 2P+ 2 2b
with A= = —AT P~ /P%,since P, =0, (90), and
2 2
I
p = A p = T (95)
2 (P _ 7) 2 (P + T)

The non-explicitly covariant form (94) coincides with that
in Ref. [29] if we replace the normalization factor 2P+
by 2,/ p’t pT. Once again, the difference in the normaliza-
tion comes from the fact that “position” states in Ref. [29]
were defined with the non-relativistic normalization {(x'|x) =
8@ (%' — %) at equal LF times. This difference will however
not concern us since we will essentially be interested in the
case AT = p'~ — p~ =0.

Setting the origin at the average position of the system, the
LF distribution of energy and momentum inside the system
with canonical polarization s and average LF momentum
P= (P™*,0,) is given by the Fourier transform
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L= - dBA Ag

T (x; P) =(T;""(X))o,p = e AT (T (0)))
(96)

of the LF off-forward amplitude [29]

/ 1234
oo (P ST )] p,s)

(1,7 O)) = T 97)

Note that x* = 0 because the LF positions X~ and R~

are considered at the same LF time Xt = R*. If we

allow Xt and R to be different, the above static EMT
T (%; P) can be recovered by considering the LF time
average [dX™*/[27 §(0)] in a frame where the LF energy
transfer vanishes A~ = 0.

The Dirac bilinears appearing in the parametrization of
the EMT (8) can be expressed in front form as [72]

i = N1 [2MP+ + ie+PASL] : (98)

Wighby = N1 {M(n“mz — AFAT)

AZ
+2 [P+ ieMAPSL_ — jenASiLt
4
—[(P-51) + Ms.] ie“AP+]} , (99)

where S =[0,0,s ] and N' = /p’+/p*. The unpolar-
ized off-forward LF amplitude then reads

o wpv AMAY _np.uAZ
(T ) = AN Aq(t) + —w Cu(t)
+M’7’wéa(t)}
A? Ag(t) + Ba (1)
{mvi+ 7@ a
T T 2
e 220
2
At Aq(t) + Bu(1)
= ) plupvy e/ T Pall)
4PN 2
D,(t
+PHAY] %} ) (100)

Note that the structure is slightly simpler than the correspond-
ing expression in instant form (21).

The static LF EMT can receive a (quasi-)probabilistic
interpretation only when no LF energy is transferred to the
system A~ = 0 [29]. Since the onshell conditions impose
that A~ = —ATP~ /P and since PT > 0 for a massive
target, we will consider the following cases:

(a) AT = 0 - Drell-Yan frame (DYF);

(b) PT — oo — infinite-momentum frame (IMF).

Note that in both cases the normalization factor appearing in
Eq. (100) reduces to N ~ P,

4.3 Drell-Yan frame

The Drell-Yan frame defined by A™ = 0 can be seen as
the LF version of the elastic frame defined by P - A=0.
Distributions in the DYF can be obtained by integrating the
static LF EMT over the longitudinal LF coordinate x ™~

T (b, ; P) = /dx_ T %: P)
d’A;
(2m)?

where b = x is the same impact parameter as in instant
form. The unpolarized off-forward LF amplitude (97) in the
DYF takes the form

e ALPLYTIVO0))  pype  (101)

) M (PHPY
(T O |pyp = Vs {T Aq(1)
KAV Y
M+'7Al Ca(t) + MnWCa(t)}
i Ay (t) + By (r) D, (1)
(o vi+ v+ Ha
ey {P K 2 P }

(102)

where Ai = [0,0,A ;] and P~ = If

2P+ I+ 4M2
we further integrate the static LF EMT over the impact-
parameter b, which amounts to setting A; = 05 in
Eq. (102), we recover the FL expression (22) with Ep
replaced by PT.

However for A; # 0, unlike PY in instant form (50),
P in front form is an independent variable which does not
depend on A . One can therefore write a relatively simple
expression for the static LF EMT in terms of Fourier trans-
forms of GFFs.® The (1 + 2)-dimensional Galilean “mass”
current takes the simple form
JEb1: PY=Ter by P) = P y"" Au(b). (103)
Its LF time component J,” = T,/ can be interpreted as the
density of longitudinal LF momentum carried by constituent
type a and has been discussed in [50,62,63,120-126]. As
expected, the distribution of longitudinal LF momentum
coincides with the properly rescaled instant-form energy

8 Keeping terms up to order 1/ (P1)2, we observe that T4V (b ) has
the same structure as the asymmetric anisotropic version of the EMT
for a type-II fluid used in General Relativity to describe gravitational
collapse [130-132].

@ Springer



89 Page 18 of 25

Eur. Phys. J. C (2019) 79:89

[GeV/fm?]

06
0.5
o.4i
0.3?-:
0.2 :“-_

0aF

5 blml

27t b p(b)

[GeV/fm]

0.4k
0.3}
02f

01F

Fig. 18 Plots of the two-dimensional Galilean energy density, a 1 (b) and b 27 b (), using the multipole model (11) with parameters given in

Table 1, see Eq. (107) for the definition in terms of GFFs

density in IMF u,(b) = pmmr(b)Pt/M. For the (1+2)-
dimensional Galilean EMT, we find

; - M? 5. [AL (D)
off . _ a— B+ a
1 1d <b d

* i (3 45 B+ D] = 10,0

2 = 1 d2C,(b)
af _ a
+n [Ca(b) e ]

o , <ldCa(b)>}

p2 M2 db\b db (104)

where x* = [0, 0, b ]. Note that the Galilean EMT Tgﬁ has
a global boost factor M/ PT. We can get rid of this factor by
integrating 7*” (%; P) over the coordinate r;, = r— Pt /M
invariant under longitudinal LF boosts instead of r~. The
structure of the Galilean EMT then looks like

1°B(b)) = [u(b) + o (b)] n®it — oy (b)y*P

+ 100 (b) — 0r ()] % %P (105)

where n% = n%~, b = nB+, and x* = [0, 0, b, /b]. This
tensor can alternatively be written as

1°B(b)) = [u(b) + o (b) n*iP — o (b)n™?
+T1(b) (X"‘x’é - %l"‘ﬂ) , (106)

with [ = n*aP — p®P. We can therefore define P*-
independent two-dimensional Galilean energy density, radial
pressure, tangential pressure, isotropic pressure, and pressure
anisotropy associated with constituent type a as

@ Springer

1a(b) = M {¥ +Ca(b)
ﬁ%%(l}%[wb)f”(m —4Ca<b>])},
(107)
ora(b) = M {—Cqu(b) + #%dcglfb) } , (108)
or.a(b) = M { —Cu(b) + # dzgg;b) (109)
wu) = |-Ca)+ 3o p 2 (p ) o)
M, (b) =M —#b%(%dcé‘;b)) (111)

The two-dimensional pressures are the same as the ones
obtained in the BF (57)—(60). For this reason, we used the
same notation as in instant form. It is also not surprising
that the energy densities p, and p, defined, respectively, in
instant form and front form differ because they are simply
related to different components of the EMT. The latter is
illustrated in Fig. 18 using the multipole model (11) with
parameters given in Table 1. The difference in the behavior
around b = 0 between the quark and gluon contributions
comes from the fact D, () = 0 whereas D, () # 0. One
might also be at first sight puzzled by the fact that total LF
energy is given by Y, [ d%b | pu,(b) = M/2 instead of M.
This simply comes from our definition of the LF components
which implies that [ d3% 77~ (¥; P) = M?/2P™.

4.4 Infinite-momentum frame

In Refs. [133,134] three-dimensional LF distributions for
finite P have been defined by means of a Fourier transform
with respect to the longitudinal LF boost-invariant skewness
variable £ = —AT /2P instead of AT. The problem with



Eur. Phys. J. C (2019) 79:89

Page 19 0of 25 89

these distributions is that the (quasi-)probabilistic interpre-
tation is lost owing to the non-vanishing LF energy transfer
A~ # 0. Moreover, the center of the target with respect to
which the transverse coordinates are defined differs between
the initial and final states when & #~ 0 [135].

The above issues disappear when & = 0. In the literature,
one usually considers finite P and hence A* = 0, reducing
the LF distributions to two spatial dimensions. This option
was discussed in the previous section. The other possibility
is to consider P* > AT, V/P2, i.e. the IMF within the LF
formalism. In this case, we can formally define another type
of three-dimensional LF distributions free of the aforemen-
tioned problems. To the best of our knowledge, this is the first
time that such an option is explored. The reason can likely
be attributed to the fact that one usually has in mind reaching
the IMF through an infinite longitudinal boost. In that case,
both P and A will get large with their ratio & fixed. Actu-
ally, one should just consider P™ — oo with AT fixed. The
information about the longitudinal spatial structure is then
encoded around & & 0.

Expanding the unpolarized off-forward LF amplitude
(100) in powers of 1/ P, we find

(117 0))
(AT)?
4(P+)?

M _ Aq(t)
M n—rpvi+ 24
+ T { nn 5

ARAY 4 A }

=Pl y"" {Aaa) - [5 Aa(®) + Ba(t)]}

m L Cu(t) + Mn" Co(1)

A% B (1) D (1)
—{u i+ Za —lu v+ Za
4p+ { e }

) Aa®) + Ba(t) 1 Da(?)
_ m {7) {MAJ_ f n [”AJ_ 5 }
+O(1/(PH?). (112)

Its Fourier transform 7" can be expressed in terms of 3-
dimensional Fourier transforms of GFFs. The expression
we obtain is however so complicated that we were not able
to recognize the EMT structure of any known continuous
medium discussed in the literature. Note also that since
A~ o¢ 1/(P*)2, we can write t & —A3 . The GFFs there-
fore do not contribute to the A*-dependence in the LF IMF
and the longitudinal structure is essentially determined by
Lorentz symmetry. As a final remark, we naturally recover
the DYF results in the limit A™ — 0. This means that the
projection of the distributions defined in the LF IMF onto the
transverse plane coincides with the two-dimensional distri-
butions defined in the DYF.

5 Discussion

Having defined the notions of energy density and pressure
inside the nucleon, we can go on and discuss the questions
of hydrostatic equilibrium and stability constraints. While
the former are automatically satisfied once GFFs are deter-
mined, the latter provide new constraints particularly useful
for the phenomenology of high-energy scatterings involving
nucleons.

5.1 Hydrostatic equilibrium
5.1.1 Three-dimensional case

Conservation of the total EMT 9, 7" (x) = 0 implies that
the static total EMT 7HY = 3" T}*" satisfies in the BF

ViTU(r;0) =0, (113)
or equivalently
dpr(r) _ _25(r) (114)

dr r

which is the equation of hydrostatic equilibrium in the pres-
ence of pressure anisotropy.” The RHS of Eq. (114) repre-
sents the effects of a force arising from the anisotropic nature
of the medium. When p, (r) < p;(r), we gets(r) < 0andthe
force is repulsive.10 When p,(r) > p;(r), we get s(r) > 0
and the force is attractive. This force is the mechanical origin
of the surface tension between a liquid and its vapor [137]. In
the bulk of ordinary fluids, the density is essentially constant
and the pressure is isotropic. The density changes however
drastically across the interface, and generates an asymme-
try in the stress tensor which can be understood as arising
from a difference of ranges between attractive and repul-
sive interactions. The interface being usually extremely thin

9 For spherically symmetric compact stars, the line element in
Schwarzschild coordinates is given by

ds? = 00 qf2 — oM g2 _ )2 <d92 +sin? 6 d(p2> ,

and the equation of hydrostatic equilibrium, which directly derives from
the vanishing of the covariant divergence of the EMT in the static limit,
reads

dp.(r) _ 1dv(n) [+ pr ()] — 2s(r)

dr 2 dr r (15

in the presence of anisotropic matter [19]. If we switch off gravitational
effects by sending Newton’s constant to zero, both functions v(r, t) and
A(r, t) vanish and we recover Eq. (114).

10 This seems to be the favored case for neutrons stars since it allows the
construction of more compact and more stable objects than with ordi-
nary isotropic matter [23,136], relaxing therefore the tension between
observations and theoretical bounds.
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Fig. 19 Illustration of the hydrostatic equilibrium in the Breit frame. a Integrand of the von Laue condition (120) and b the same integrand

multiplied by r2

for ordinary fluids, the asymmetry can usually be modelled
by a simple surface tension. This picture is supported by a
molecular dynamics simulation of molecules interacting via
a Lennard-Jones potential [137,138], which shows that the
transition in the time-averaged density profile from the high-
density liquid to the low-density gas takes place in a very
narrow region that is a few molecules wide. At the same
time, the profile of the stress anisotropy indicates that there
is a force localized in the same narrow region acting in the
direction parallel to the interface.

If r is the coordinate normal to the interface, the surface
tension y is obtained from the Bakker equation [139] (also
known as the Kirkwood and Buff method [140])

y:/ drs(r),
D

where D is the domain where s(r) is significant. When
the domain is very narrow, we can make the approximation
s(r) = y 8(r — R). Integrating then the equation of hydro-
static equilibrium (114) over the radial coordinate yields the
well-known Young-Laplace relation p,(0) = 2y /R for a
spherical drop with radius R [141]. For compact stars and
hadrons, the anisotropic stress spreads over a significant frac-
tion of the volume of the system and cannot be realistically
approximated by a delta function.

Many relations can be derived from Eq. (114), as discussed
in [11,26]. Let f(r) be some radial function, one finds using
integration by parts

s(r)i| .

(117)

(116)

A0y IO

dr r

LF () pr(MIE = /0 dr[

@ Springer

For f(r) = 1, one obtains the generalized Young—Laplace
relation

Py (0) =2/wdr@.
0

r

(118)

If p,(r) is finite at 7 = 0 and decays faster than 1/r" with
N > 0 for r — o0, the choice f(r) = r leads to

f drrN_l[Npr(r)—ZS(r)]zo- (119)
0

The case N = 3 is known as the von Laue condition [142]

/OO drr? p(r) =0, (120)
0

and indicates that the isotropic pressure has to change sign.
We illustrate this in Fig. 19 using the multipole model (11)
with parameters given in Table 1. As one can see from panel
(a) showing the integrand of the von Laue condition (120),
the net positive pressure (i.e. repulsive force) of the inner
region is exactly balanced by the net negative pressure (i.e.
attractive force) of the outer region. Multiplying this inte-
grand by an additional factor r2 as in Eq. (48) explains why
the gravitational charge C(0) turns out to be negative.
Similarly, the case N = 2

o0
/ drrps(r) =0
0

indicates that the tangential pressure also changes sign. The
net tangential force in the inner region is repulsive whereas it
is negative in the outer region, leading once more to the con-

(121)
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clusion that C(0) < 0 based on Eq. (48). The other remark-

able values are N = 1, g, %, 4,6

f“drp,(,)zjwdrs(r), (122)

0 0

/ drr'/3 p(r) =/ dr VI/SS(V), (123)
0 0

/ S ar 5 i) = f 4 o), (124)
0 0

/Ooodrr3pr(i’)=—fooodf”r3pt(r), (125)
[wmwﬁmﬂz—/mdﬂjmﬁl (126)
0 0

All the above relations are automatically satisfied by
our expressions (35) and (38) when summed over the con-
stituents. The reason for this is that the parametrization (8)
together with the sum rules (9) already encode the conserva-
tion of the total EMT, implying that the equation of hydro-
static equilibrium (114) is identically satisfied. These rela-
tions can however be particularly useful to test model pre-
dictions where full Lorentz covariance are often absent.

5.1.2 Two-dimensional case

The discussion in the EF proceeds analogously to the BF.
The main difference is that the spatial distributions are now
two-dimensional instead of three-dimensional. Note also that
since the two-dimensional pressure distributions are the same
in both EF (with P, = 0 or P, — o0) and DYF, the following
results apply to both instant and front forms.

Using the conservation of the static total EMT in two
dimensions
ViTU(by;0) =0, (127)
we find that the equation of hydrodynamic equilibrium in the
EF takes the form

doy(b) _ TI(b)
db b’

(128)

where we omitted the P,-dependence for convenience. If
f(b) is some radial function, we obtain using integration
by parts

o [T [dFB) o fB)
Lf (b)) or(D)]g —/0 db[ b or(b) b l'l(b)]
(129)
For f(b) = 1, we get
0r(0) = /oodb &b) (130)
0 b

When the pressure anisotropy is concentrated within a thin
region, it can be approximated by I1(b) ~ 7 §(b — R). Equa-
tion (130) reduces then to the two-dimensional version of
the Young-Laplace relation 0,(0) = t/R, where t can be
thought of as some sort of effective string tension. More gen-
erally, the effective string tension can be defined from the
two-dimensional version of the Bakker equation

r:/%ﬂ@.
D

If o, (b) is finite at » = 0 and decays faster than 1/b" with
N > 0 for b — o0, the choice f(b) = b leads to

(131)

/mdmﬂ—%way—nwnzo. (132)
0

The case N = 2 corresponds to the two-dimensional version
of the von Laue condition

/meMmZQ (133)
0

and indicates that the isotropic pressure has to change sign.
We illustrate this in Fig. 20 using the multipole model (11)
with parameters given in Table 1. As one can see from panel
(a) showing the integrand of the two-dimensional version of
the von Laue condition (133), the picture is similar to the
one in the BF. Namely, the net positive pressure of the inner
region is exactly balanced by the net negative pressure of
the outer region. Multiplying this integrand by an additional
factor b as in Eq. (72) explains why the gravitational charge
C(0) turns out to be negative.
Similarly, the case N = 1

/°° dboy(b) = 0 (134)
0

indicates that the tangential pressure also changes sign. Once
again, the net tangential force in the inner region is repulsive
whereas it is negative in the outer region, in agreement with
C(0) < 0Oaccording to Eq. (72). The other remarkable values

—_ 124
areN_2,3,3,4

Ammw”ﬂmwyzﬁwmw*ﬂnwx (135)
Awam*ﬂawy=ﬁwmm*”nwx (136)
Amﬁwﬁam=—ﬂmﬁwﬂm@, (137)

Awﬁﬁa®=—AmMﬁm@) (138)
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Fig. 20 Illustration of the hydrostatic equilibrium in the elastic frame. a Integrand of the two-dimensional von Laue condition (133) and b the

same integrand multiplied by b

For the same reason as in the three-dimensional case, all
the above relations are automatically satisfied by our expres-
sions (59) and (60) when summed over the constituents.

5.2 Stability

We have seen earlier that the study of the nucleon EMT might
provide some clues about the EoS for the matter lying in
the heart of compact stars. The stability of compact stars
made of anisotropic matter has been extensively discussed
in [20,143,144]. We suggest that applying these results to
the case of the nucleon can in turn provide new constraints
on the nucleon EMT, and hence on the GPDs.
For a stable system, it is expected that!!

) £(0) < o0, p(0) < oo and s(0) = 0; (139)
(ii) e(r) > 0and p,(r) > 0; (140)
i) 0 _ g ana 3220 _ . (141)

All these constraints are satisfied by our simple multipole
model (11) with parameters given in Table 1. We observe in
particular that the constraint (i) rules out the dipole Ansatz for
the GFFs B, (t) and C,(t) sometimes used in the literature,
because it generates a 1 /r pole in () and p(r), and leads to

T Note that for compact stars it is also expected that p;(r) > 0,
and hence p(r) > 0. This does not contradict Eqs. (120) and (121)
since the gravitational force is attractive and long range, leading to
a significant stress anisotropy. In some sense, we could interpret the

gravitational contribution in Eq. (115) as %d‘&(rr) [er(r) + pr(r)] =

gray rav ;
er M, with the expectation that p,(r) > pgm(r) and
fooo drr [pr(r) + p;grav(r)] =0.

@ Springer

s(0) # 0. We therefore used in our simple multipole model
the tripole Ansatz which does not have the same problem and
which agrees with the asymptotic behaviour expected from
the quark counting rules [145-148].

It is also expected that the (squared) radial and tangential
speeds of sound defined as v2, (r) = S/ ang 2 (r) =

= de(n/d
dp:(r)/dr t' f “r
W satisty
(v) 0<v2(r) <land0 < vi(r) <1; (142)
2 2 .
(v) |5 () —v, (M| < 1; (143)
: 4
V) ) = % L3 (144)
r

Violations of these additional constraints are observed over
some range in » within our simple multipole model.

Finally, there exist also energy conditions which reflect the
principles of relativity and play an important role in General
Relativity. They constitute an essential ingredient for estab-
lishing general results like the no-hair theorem, the laws of
black hole thermodynamics or the singularity theorems of
Penrose and Hawking [ 130, 149—154]. The most popular ones
are the Null Energy Condition (NEC), Weak Energy Condi-
tion (WEC), Strong Energy Condition (SEC), and Dominant
Energy Condition (DEC)

NEC e(r)+ pi(r) =0, (145)
WEC ¢e(r)+pi(r) >0 and e(r) >0, (146)
SEC e(r)+ pi(r)y>=20 and e(r)+3p@) >0,
(147)
DEC  &(r) =|pi(r)l, (148)
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wherei = r, t. Some of these energy conditions have a simple
physical interpretation. Namely, the weak energy condition
arises from the requirement that the energy density is non-
negative for any observer, and the dominant energy condition
ensures that the energy flow cannot exceed the speed of light
for any observer. All known forms of matter so far satisfy
these energy conditions. Our simple multipole model (11)
with parameters given in Table 1 also satisfy these energy
conditions except the SEC ¢(r) +3 p(r) > 0 for some range
inr.

All the above conditions on the distributions of energy
density and pressure are extremely interesting since, when
transposed to the nucleon case using our expressions (34)—
(38), they can provide new phenomenological constraints on
the GFFs and hence on the GPDs of the nucleon. 2 Recently,
criterion (ii) has been considered in [86] and led to the con-
clusion that C(0) should be negative owing to Eq. (48). We
note that this agrees with criterion (iii) which implies that
s(r) > 0 (as assumed in [26]) using the equation of hydro-
static equilibrium (114), and in turn C(0) < 0 according
to Eq. (47). Note also that the inequalities can in principle
be easily transposed to the two-dimensional case, which in
conjunction with our expressions (56)—(60), may lead to yet
further new constraints on the GPDs.

Satisfying all the constraints at the same time is not at all
a trivial task. Some may even perhaps be unapplicable to the
nucleon case. For these reasons, we refrain from developing
here a more realistic model since its main purpose in the
present study was only to illustrate the various distributions.
A detailed analysis of the stability constraints in the hadronic
context goes beyond the scope of the present paper and is left
for future investigations.

6 Conclusions

We revisited the interpretation of spin-1/2 gravitational form
factors in terms of the mechanical properties of hadrons. We
rederived and significantly extended the existing literature,
which so far has been exploiting only the Breit frame and
the instant form of dynamics. In particular we discussed here
both the instant and front forms of dynamics, and the separate
quark and gluon contributions to the energy and pressure dis-
tributions in the Breit, elastic, infinite-momentum and Drell—
Yan frames. Our key results are contained in Egs. (34)—(38)
for the Breit frame, Eqgs. (56)—(60) for the elastic frame, and
Egs. (107)—(111) for the Drell-Yan frame. We illustrated our
argument with a simple phenomenological model, and high-
lighted the constraints coming from mechanical properties
that should generically be satisfied in model-building.

12 Note however that some of the bounds may be violated by quantum
effects, see [155-158].

We put a special emphasis on the pressure anisotropy,
which offers an innovative perspective on the nucleon struc-
ture from our rapidly growing knowledge on compact stel-
lar objects. The direct observation of neutron star mergers
in terrestrial gravitational wave observatories indeed already
brought constraints on the equation of state of nuclear matter
at high density and low temperature. Orders of magnitude
and model studies suggest that the nucleon itself may be
described with the same concepts and pictures. In particu-
lar, the stability and hydrostatic equilibrium conditions are
presumably the best theoretical ingredients to elaborate on
this picture since most of the gravitational form factors are
within contemporary experimental reach through hard exclu-
sive experiments and generalized parton distributions. How-
ever, determining how much we can learn about the physics
of compact stars from the nucleon structure (or conversely)
is still an exciting open question.
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