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Abstract Further progress in hadron spectroscopy neces-
sitates the phenomenological description of three particle
reactions. We consider the isobar approximation, where the
connected part of the 3 → 3 amplitude is first expressed as a
sum over initial and final pairs, and then expanded into a trun-
cated partial wave series. The resulting unitarity equation is
automatically fulfilled by the B-matrix solution, which is an
integral equation for the partial wave amplitudes, analogous
to the K -matrix parameterization used to describe 2 → 2
amplitudes. We study the one particle exchange and how
its analytic structure impacts rescattering solutions such as
the triangle diagram. The analytic structure is compared to
other parameterizations discussed in the literature. We briefly
discuss the analogies with recent formalisms for extracting
3 → 3 scattering amplitudes in lattice QCD.

1 Introduction

Modern high-energy experiments are accumulating high
quality data on three-hadron final states, that are expected to
be the main decay channels of several poorly known or miss-
ing resonances. These include, for example, the enigmatic a1,
ω2, and the exotic π1 resonances that can be studied in periph-
eral production at COMPASS, GlueX, and CLAS12 [1–7].
In addition to conventional hadrons, many of the exotic XY Z
and pentaquark states observed in the heavy quarkonium sec-
tor [8–10], are also found in three particle final states.
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Many of these newly observed or anticipated states lie
close to thresholds of their decay products. For example, the
mass difference between the X (3872) [11] and the D0 D̄0π0

threshold is only 6 MeV. The proximity of the three particle
threshold together with the possibility of long-range interac-
tions mediated by a single pion exchange can significantly
influence the X (3872) line-shape [12] and one needs to care-
fully analyze the role of pion exchange and whether it is able
to bind D∗0 and D̄0 [13–17]. In the light meson sector, the
recently observed a1(1420) [2] is yet another candidate for a
state not expected in the quark model that can be influenced
by meson exchange interactions and thresholds [18,19].

On the theory side, lattice QCD has made substantial
progress in extracting the resonance spectrum from simu-
lations of 2 → 2 reactions [20–28], and recently, the formal-
ism for 3 → 3 scattering has been developed [29–39]. Anal-
ysis and interpretation of both experimental data and lattice
simulations require input in the form of reaction amplitudes
that can be analytically continued into the complex energy
plane. For example, in partial waves, resonances appear as
pole singularities, while particle exchanges lead to logarith-
mic branch points. Fortunately, reaction amplitudes are con-
strained by unitarity, which can be used to determine the
discontinuities of partial waves in the near threshold region.

The problem of constraining 3 → 3 reactions from the S-
matrix principles of unitarity and analyticity has been studied
previously in Refs. [40–45]. In this paper we extend these
earlier works and clarify some of the results. Moreover, we
present the 3 → 3 reaction amplitudes in a way that can be
directly translated to the finite volume.
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Our description relies on the isobar approximation, where
the amplitude is constructed as a sum of truncated partial
wave expansions. This provides a good description of three-
particle final states in the resonance region, where analyses of
Dalitz plots indicate that they are dominated by intermediate
two-body resonances. For example, the decay of thea1(1260)

resonance into three pions occurs primarily via a decay to
the ρπ intermediate state with the subsequent decay of ρ to
two pions [3,4]. The isobar approximation can be regarded
as an effective way to incorporate the relevant singularities
in all Mandelstam variables, and will be discussed in detail
later.

The rest of the paper is organized as follows. In Sect. 2
we define the 3 → 3 amplitude for three spinless particles
and discuss the relevant kinematics. In Sect. 3 we introduce
the isobar approximation and investigate the consequences
of unitarity. We explain the difference between isobar and
the partial wave amplitudes , which are often confused. In
short, we use the isobar representation to describe the 3 → 3
amplitude, A = ∑

Ak j , where the indices k and j label the
spectator particle in the final and initial state, respectively.
We refer to the Ak j ’s as isobar–spectator amplitudes, since
they can be pictured as scattering of a quasi-particle, the iso-
bar, and a stable spectator. The latter are expanded in partial
waves of the three-particle system. Unitarity constrains the
3 → 3 amplitudes on the real energy axis, which results in
specific relations involving the imaginary parts of the partial-
wave-projected isobar–spectator amplitudes. Unitarity alone
does not uniquely specify partial wave amplitudes, as evident,
for example, in the K -matrix parametrization of 2 → 2 scat-
tering amplitudes [46,47]. In Sect. 4 we discuss a specific
parameterization for the isobar–spectator amplitudes which
satisfies the three-body and two-body unitarity. It is given as
a solution of a set of linear integral equations that involve,
among others, the one particle exchange (OPE) as a driv-
ing term. We call this the B-matrix parameterization and it
satisfies,

Ak j = Bk j + BknτnAnj , (1)

where B is the driving term that contains the OPE, τ is a
known function of the phase space and of the 2 → 2 ampli-
tudes. The product formally represents an integration over the
intermediate isobar mass. In contrast to Ref. [45], we restrict
the domain of the integrals to physical values of energies.
This enables us to use the experimentally accessible sub-
channel amplitudes and we also discuss the consequences
of this restriction. We derive Eq. (1) for isobars with arbi-
trary spin s, and for any value of the isobar–spectator orbital
angular momentum �.

The B-matrix parameterization can be analytically con-
tinued to the complex energy plane and in Sect. 5 we discuss
aspects of its analytic properties. Specifically, the one parti-

cle exchange process has some unique features, as it contains
a kinematic singularity due to the exchange of a real parti-
cle, which can be isolated from the full 3 → 3 scattering
amplitude. In addition, we also study the triangle amplitude
that emerges from the B-matrix parameterization, and the
relation to the Bethe–Salpeter solution. We summarize our
results in Sect. 6.

2 Kinematics, invariants, and amplitudes

We consider elastic scattering of three distinguishable, spin-
less particle, e.g. Dπ D̄, Kπ K̄ , or π+π−π0. The particles
have mass m j , where j = 1, 2, or 3 labels the individ-
ual particles. A single particle state, with four-momentum

p j = (ω j ,p j ), where ω j =
√
m2

j + |p j |2 is the energy

and p j is the three-momentum, is denoted |p j 〉 and has rela-
tivistic normalization 〈p′

k |p j 〉 = (2π)3 2ω jδ
(3)(p′

k −p j )δk j .
We are interested in the S-matrix element of the elastic
3 → 3 scattering process. We can decompose the S-matrix as
S = 1+ iT . The T -matrix contains two terms, T = Td +Tc,
where the disconnected part, Td , involves interactions of two
particles at the time with the third one being a spectator, while
the connected part, Tc, contains interactions of all three parti-
cles. The disconnected part can always be identified kinemat-
ically by the spectator momentum conserving delta function
[48]. The disconnected part is written as Td = ∑

j 1 j ⊗T ( j),
where1 j is the identity operator in the single particle space of
the spectator, j and T ( j) describes 2 → 2 scattering between
the other two particles. The amplitudes associated with the
matrix elements of scattering operators Td and Tc are defined
as F and A, respectively. Specifically, the connected ampli-
tude A is given by

〈p′| Tc |p〉 = (2π)4δ(4)(P ′ − P)A(p′;p), (2)

where |p〉 ≡ |p1p2p3〉 and |p′〉 ≡ |p′
1p

′
2p

′
3〉 denote the initial

and final states of the three particles, and P = p1 + p2 +
p3 and P ′ = p′

1 + p′
2 + p′

3 are the initial and final total
four-momenta, respectively, as illustrated in Fig. 1. Time-
Reversal symmetry implies that the amplitude is symmetric
in the initial-final state variables, A(p′;p) = A(p;p′). The
chosen normalization implies that the amplitudeA(p′;p) has
mass dimension −2. The disconnected amplitudes F j are
defined by

〈p′| Td |p〉 = (2π)4δ(4)(P ′ − P)

×
3∑

j=1

(2π)3 2ω jδ
(3)(p′

j − p j )F j (p′;p),
(3)

where the delta function enforces that the spectator j does not
interact. We remark that the F j is the genuine 2 → 2 scat-
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Fig. 1 Diagrammatic representation of the disconnected 2 → 2 ampli-
tude of Eq. (3) (black disk with four external legs) and connected 3 → 3
amplitude of Eq. (2) (black disk with six external legs)

Fig. 2 Momenta labels for three particles. The left side denotes the
final state particles, while the right is the initial state

tering amplitude, as required by the LSZ construction [48].
We also define Pj ≡ P − p j and P ′

j ≡ P ′ − p′
j as the initial

and final total four-momenta of the interacting pair recoiling
against spectator j , cf. Fig. 2.

In this paper we adopt the so-called spectator notation
or odd-one-out notation [49], where the 2 → 2 amplitudes
associated with the spectator j are labeled by the spectator
index. The spectator notation requires additional information
specifying the first particle in the two-particle system. There
are two conventions which are useful for our discussions:
the two-pair convention, and the cyclic convention. The two-
pair convention is more practical when interaction in one of
the three pairs is negligible. An example of such a system
is π+π+π−, where the π+π+ system interacts weakly. In
this case it is convenient to choose the noninteracting system
as, say, particles (13) and designate particle 2 as the second
particle for both the interacting sub-systems. Therefore, the
spectator index j = 1 and j = 3 uniquely identifies the two
orderings in the pairs to be (32) and (12), respectively. If
the interactions in all three subchannels are important, one
can define the ordering through cyclical permutation, i.e. the
spectator label j = 1, 2, 3 corresponds to ordering of the two
particles subsystems as (23), (31), and (12), respectively.
For simplicity, in the following we assume only two relevant
subchannels, and use the former convention. Generalization
to the latter case is straightforward. The type of applications
we have in mind are systems like MM̄π elastic scattering,
where M is an open-flavor meson, such as K , D, and B.
The interacting pairs will be assumed in the Mπ and M̄π

channels only, and pion being designated as particle j = 2.
The 3 → 3 amplitude depends on eight independent

kinematic variables. The choice of variables largely depends
on the kinematical range of interest, e.g. the low vs high

total energy region. Here we are interested in the low-energy
region and use the following redundant set of Mandelstam
variables,

s = (p1 + p2 + p3)
2 = (p′

1 + p′
2 + p′

3)
2, (4a)

t jk = (p j − p′
k)

2 = (Pj − P ′
k)

2, (4b)

u jk = (Pj − p′
k)

2 = ((P − p j ) − p′
k)

2, (4c)

σ j = P2
j = (P − p j )

2, (4d)

σ ′
k = P ′2

k = (P − p′
k)

2. (4e)

where s, σ j , and σ ′
k are the invariant mass squares of the total

three particle system, the initial pair, and the final pair, respec-
tively. The transferred momenta, t jk and u jk , are between the
initial and final spectators and the initial pair and final spec-
tator, respectively. The Mandelstam invariants are related by
energy-momentum conservation,

s + t jk + u jk = σ j + σ ′
k + m2

j + m2
k, (5a)

3∑

j=1

σ j = s +
3∑

j=1

m2
j , (5b)

3∑

k=1

σ ′
k = s +

3∑

k=1

m2
k . (5c)

In the physical region of the 3 → 3 reaction, s can take any
value above the three particle threshold, s ≥ sth = (m1 +
m2 + m3)

2, while the subchannel invariant masses σ j and

σ ′
k are bounded by σ

(th)
j ≤ σ j ≤ (

√
s − m j )

2 and σ
(th)
k ≤

σ ′
k ≤ (

√
s−mk)

2, where σ
(th)
j are the sub-energy thresholds,

e.g. σ (th)
1 = (m2 +m3)

2. We will need the relations between
the invariants and energies and scattering angles, in three
reference frames. The frames of interest will be the overall
center-of-momentum frame (CMF) and the isobar rest frame
(IRF). There are two IRFs corresponding to the initial and
final states: the initial IRF j , labeled by the spectator j , and
the final IRF′

k , labeled with spectator k and a prime.
To distinguish momenta in the CMF we denote them by a

	, i.e. P	 = P′	 = 0. In the CMF the scattering angle, 
	
k j , is

defined as the angle between the initial and final state specta-
tor momenta, cos 
	

k j ≡ p̂′	
k · p̂	

j , where p̂	
j and p̂′	

k denote the
CMF orientations of the initial and final spectators, respec-
tively. The kinematic variables in the other frames, IRF j

(P j = 0) and IRF′
k (P′

k = 0) are obtained from the CMF
by a Lorentz boost in the direction opposite to momentum
of the corresponding spectator. The momentum of the first
particle in the pair is denoted by q j , and q′

k in IRF j and
IRF′

k , respectively. Orientation of these momenta are given
by solid angles, q̂ j = (γ j , χ j ) and q̂′

k = (γ ′
k, χ

′
k), respec-

tively. Here, γ j and γ ′
k are the azimuthal angles between the

decay plane of the isobar and the isobar–spectator scattering
plane and χ j and χ ′

k are helicity angles, cf. Fig. 3 for the
specific scheme (23)1 → (12)3. The relations between all
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Fig. 3 Connection between the three reference frames for the (32)1 →
(12)3 system. The total reaction plane in the CMF is shown in gray, and
the initial and final IRFs are shown in blue and green, respectively. The

Lorentz boosts β1 and β ′
3 indicate the transformations between the three

frames

relevant kinematical variables and the Mandelstam invari-
ants are given in “Appendix A”. In the following, we will use
the set (̂q′

k, σk, s, t jk, σ j , q̂ j ) to describe the isobar–spectator
amplitude.

2.1 Unitarity relations

We consider elastic unitarity in the physical region of the
3 → 3 reaction below inelastic thresholds. It yields two
relations [50], one for the disconnected 2 → 2 amplitude F j

and one for the connected 3 → 3 amplitude A. For F j , one
finds

Im F j (p′;p) = ρ2(σ j )

∫

dq̂′′
j F∗

j (p
′′;p′)F j (p′′;p) (6)

where

ρ2(σ j ) = 1

64π2

2|q j |√
σ j

(7)

is the phase space for the two particle system, and q′′
j is the

intermediate state relative momentum. The IRFs are defined
with their z-axes defined along the opposite direction of
the spectator and their x-axes defined by their azimuthal
angles w.r.t. the total CMF plane spanned by the initial and
final spectator momenta, cf. Fig. 3. Note that from energy-
momentum conservation, |q j | = |q′

j | = |q′′
j |. Figure 4 is

a diagrammatic representations of Eq. (6). Elastic unitar-
ity yields the following condition for the connected 3 → 3
amplitude,

Im A(p′; p)

= 1

2(2π)5

∫
d3p′′

1

2ω′′
1

d3p′′
2

2ω′′
2

d3p′′
3

2ω′′
3

δ(4)(P ′′ − P)A∗(p′′; p′)A(p′′; p)

+
∑

k

ρ2(σ
′
k)

∫

dq̂′′
k F

∗
k (p′′; p′)A(p′′; p)|p′′

k=p′
k

(σ ′

k − σ
(th)
k )

Fig. 4 Diagrammatic representation for the 2 → 2 disconnected
amplitude unitarity relation in Eq. (6). The red vertical dashed line
indicates the intermediate particles are put on-shell

+
∑

j

ρ2(σ j )

∫

dq̂′′
j A

∗(p′′; p′)|p′′
j=p j

F j (p′′; p)
(σ j − σ
(th)
j )

+
∑

j,k
j �=k

π δ(u jk − μ2
jk)F

∗
k (p′′; p′)|p′′

j=p j
F j (p′′; p)|p′′

k=p′
k
, (8)

where μ jk is the mass of the exchanged particle that is neither
j nor k, e.g. if j = 1, and k = 3, then the exchanged mass is
μ13 = m2. Note that the evaluations p′′

k = p′
k in the second

and fourth lines enforce that σ ′
k = σ ′′

k , and similarly in lines
three and four, p′′

j = p j implies that σ ′′
j = σ j . Figure 5 is a

diagrammatic representation of Eq. (8) and its derivation is
given in “Appendix B”.

The implications of unitarity for the F j are summarized
below. The unitarity relation for the connected, A amplitude
is more complicated. The first term in Eq. (8) is analogous to
the 2 → 2 case, in the sense that it is given by the product of
the same connected amplitude A. The next two terms orig-
inate from the contribution to S†S given by the product of
Tc and Td , and represents the situation when only two of the
three particles rescatter. The last term is the contribution to
the imaginary part of the connected amplitude from the prod-
uct of two disconnect amplitudes and reflects the real one
particle exchange process. Since the unitarity relation deals
with physical, on-shell amplitudes, this last contribution is
non-vanishing only when the exchanged particle is on-shell,
where it is singular and proportional to δ(u jk − μ2

jk).
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Fig. 5 Diagrammatic
representation for the 3 → 3
connected amplitude unitarity
relation in Eq. (8). The red
vertical dashed line indicates the
intermediate particles are put
on-shell

The implications of unitarity for the analytic properties of
the 2 → 2 amplitude are well known [47]. In the physical
region the partial wave expansion

F j (p′;p) =
∞∑

s j=0

N 2
s j fs j (σ j )Ps j (̂q

′
j · q̂ j ), (9)

converges and reduces the integral relation given by Eq. (6)
to a countable set of algebraic ones. Here s j is the angular
momentum of the two-particle system j defined in the IRF j -
frame, N 2

s j = (2s j + 1)/4π is a normalization constant,
fs j (σ j ) is the partial wave amplitude, and Ps j (̂q

′
j · q̂ j ) is

the Legendre polynomial describing the rotation dependence
in terms of the cosine of the 2 → 2 scattering angle. The
unitarity relation is diagonalized to the partial wave unitarity
relation,

Im fs j (σ j ) = ρ2(σ j )| fs j (σ j )|2
(σ j − σ
(th)

j ). (10)

This equation is automatically satisfied by

f −1
s j (σ j ) = K−1

s j (σ j ) − 1

π

∫ ∞

σ
(th)
j

dσ̂
ρ2(̂σ )

σ̂ − σ j
(11)

where the K -matrix is a real function along the unitarity cut.
The 3 → 3 amplitude in the physical region can be

expanded in partial waves in any of the (12), (13), (23) sub-
systems. We refer to a subchannel of choice, e.g. (12) as
the direct channel and to the others as the cross channels.
Since each term in the partial wave expansion is analytic
in the angular variables, and therefore in the (13) and (23)

invariant masses, singularities in the latter variables can hap-
pen only when the series diverges. In contrast to the 2 → 2
case, the unitarity equations for each partial wave would not
decouple, and would contain an infinite number of terms.
Since in practice one must truncate the series, the amplitude
would be regular in the (13) and (23) invariant masses, and
the information about the cross channels dynamics would be

lost. Instead, we will represent 3 → 3 amplitude in an isobar
approximation, where only a finite number of terms in the
direct and cross channels are included.

3 The isobar representation

To be concrete, the partial wave expansion of the connected
3 → 3 amplitude reads

A(p′;p) =
∑

J

∑

�′
k ,s

′
k

∑

� j ,s j

MJ
�′
k s

′
k ;� j s j

(σ ′
k, s, σ j )

×
∑

M

Z JM ∗
�′
k s

′
k

(P̂′	
k , q̂′

k)Z
JM
� j s j (P̂

	
j , q̂ j ),

(12)

where we project the amplitude onto the chosen j and k initial
and final channels. Here s j (s′

k) is the angular momentum
of the initial (final) pair, � j (�′

k) is the angular momentum
between the pair and the spectator, J and M are the total
angular momentum of the three particles and its projection,
and MJ

�′
k s

′
k ;� j s j

is the partial wave amplitude. The angles P̂	
j

and P̂′	
k are the orientations of the initial and final pair, which

are related to the CMF scattering angle via cos 
	
k j = P̂′	

k ·P̂	
j .

The functions Z JM
�s contain the rotational dependence of the

amplitude A, which are defined as

Z JM
�s (P̂, q̂) = N�Ns

s∑

λ=−s

〈Jλ|�0sλ〉D(J )
Mλ(P̂)D(s)

λ0 (̂q).

(13)

The Z -functions contain all the angular dependence, and they
fulfill the orthonormality condition
∫

dP̂
∫

dq̂ Z J ′M ′∗
�′s′ (P̂, q̂)Z JM

�s (P̂, q̂) = δJ J ′δMM ′δ��′δss′ .

(14)

More details are in “Appendix C”.
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We next discuss the relation between partial wave expan-
sion, isobar representation, and finally the isobar approxima-
tion. The partial wave expansion given by Eq. (12) is in prin-
ciple an exact representation of the amplitude in the physical
region of 3 → 3 scattering. However, unlike the analogous
expansion in 2 → 2 scattering, the partial wave expansion
cannot be used in practice in the 3 → 3 case.

In practice, one needs to restrict the series to a finite num-
ber of partial waves. In the physical region of 2 → 2 scat-
tering, the low-energy behavior of the partial waves is deter-
mined by barrier factors due to the finite range of interac-
tions. This suppresses the strength of higher partial waves at
threshold, provided the latter are regular in the cross chan-
nel Mandelstam variables. Cross channel exchanges generate
singularities that spoil the convergence of the partial wave
series. However, in the 2 → 2 kinematics, these singularities
do not overlap with the direct channel physical region. There-
fore, the partial wave series can be safely truncated in a finite
domain of CMF energies above the two particle threshold.

This is not the case, for example, when one of the particles
can decay to the other three, and similarly it is never the
case for 3 → 3 scattering. If we consider indistinguishable
particles, explicit Bose symmetry is lost for the MJ

�′
k s

′
k ;� j s j

partial waves, since the partial wave expansion in the initial
and final states singles out specific two-body channels. The
symmetry is only recovered upon resummation. The isobar
representation, in principle, takes care of this problem. One
writes the connected 3 → 3 amplitude as a redundant sum
of expansions in all the initial and final pairs to make the
symmetry explicit. Bose symmetry is thus preserved upon
truncation.

As discussed above, one can manage only a finite number
of terms in the sums over the subchannel spins. Therefore
one reduces the isobar representation

A(p′;p) =
∑

j,k

Ak j (p′;p), (15)

to the isobar approximation, by representing the connected
3 → 3 amplitude as a sum over a finite number of isobar–
spectator amplitudes,

Ak j (p′;p) =
∑

J

max′
∑

�′
k ,s

′
k

max∑

� j ,s j

AJ
�′
k s

′
k ;� j s j

(σ ′
k, s, σ j )

×
∑

M

Z JM ∗
�′
k s

′
k

(P̂′	
k , q̂′

k)Z
JM
� j s j (P̂

	
j , q̂ j ),

(16)

as shown in Fig. 6. The truncation is reflected by “max” in
the sums. We projected the isobar–spectator amplitudes onto
the total angular momentum J of the three particle system.
In the following, we refer to AJ

�′
k s

′
k ;� j s j

(σ ′
k, s, σ j ) as the par-

tial wave isobar spectator (PWIS) amplitudes. We emphasize

Fig. 6 Diagrammatic representation of the isobar approximation
amplitude in Eq. (15). The double lines with the black disk represents
the isobar amplitude fs j (σ j ), while the gray disk represents the isobar–
spectator amplitude Ak j (p′; p)

that, while truncation in s′
k and s j cannot be avoided in prac-

tice, unitarity is diagonal in the total angular momentum.
Amplitudes for each J are thus independent and can in prin-
ciple be resummed.

We also stress that the PWIS amplitudes AJ
�′
k s

′
k ;� j s j

are

not the genuine 3 → 3 partial wave amplitudes MJ
�′
k s

′
k ;� j s j

in Eq. (12):

MJ
�′
k s

′
k ;� j s j

(σ ′
k, s, σ j ) = AJ

�′
k s

′
k ;� j s j

(σ ′
k, s, σ j )

+ X J
�′
k s

′
k ;� j s j

(σ ′
k, s, σ j ),

(17)

where X J
�′
k s

′
k ;� j s j

contains all the cross channel terms which

recouple to the direct channel amplitude,

X J
�′
k s

′
k ;� j s j

(σ ′
k, s, σ j )

=
∑

a �= j,
b �=k

∑

�′
b,s

′
b

∑

�a ,sa

∫

dP̂′	
k

∫

dq̂′
k

∫

dP̂	
j

∫

dq̂ j

× Z JM
�′
k s

′
k
(P̂′	

k , q̂′
k)Z

JM ∗
�′
bs

′
b

(P̂′	
b , q̂′

b)

× Z JM ∗
� j s j (P̂	

j , q̂ j )Z
JM
�asa (P̂

	
a, q̂a)

× AJ
�′
bs

′
b;�asa (σ

′
b, s, σa).

(18)

The kinematic relations given in “Appendix A” can be used
to write the cross channel variables in terms of the direct
channel variables.

Often in the literature, Bose symmetry is considered as a
motivation for Eq. (15). However, this is completely indepen-
dent: the representation can be applied to the distinguishable
particle case (in this case the various Ak j (p′;p) contain dif-
ferent physics and have different functional forms), and Bose
symmetry can be imposed to the expansion in Eq. (12) with-
out requiring an explicit sum over channels. For example we
consider the π+π−π0 → π+π−π0 process in the isoscalar
vector channel, where the ω is observed. Thinking in isospin
basis, where the three pions are indistinguishable, and in the
charge basis, where they are distinguishable, leads to the
same form of the amplitude, showing that Bose symmetry
plays no role in defining the representation.

Isobars parameterize the 2 → 2 dynamics in a given
subchannel and angular momentum state. Contrary to the
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2 → 2 partial waves, they have only right hand singu-
larities constrained by unitarity. The isobars can have res-
onant or bound state poles. In the N/D formalism, the
isobars can be identified with the denominator function,
where the left hand cuts are removed via a dispersive inte-
gral [51]. In the following, we will ignore all left hand sin-
gularities of the 2 → 2 amplitudes, and identify their par-
tial waves with the isobars. Although we do not need to
assume any resonant content for the isobars (e.g. we could
use an isobar to describe the π+π+ dynamics), it is a pop-
ular picture to think of them as a quasi-particle, and to
identify the invariant mass and angular momentum of the
pair with the isobar mass and spin. Isobars are customarily
labeled with the name of the dominant resonance, if any.
Isobars can be parameterized as in Eq. (11). For example,
the a1(1260) decays into three pions dominantly in the ρπ

and σπ channels [52]. If one chooses to perform a trun-
cated partial wave expansion of the 3 → 3 amplitude in
only the ρπ → a1(1260) → ρπ channel, rescattering
effects between the ρπ → σπ isobars are ignored. The iso-
bar approximation corrects this by including amplitudes for
σπ → a1(1260) → ρπ , ρπ → a1(1260) → σπ , and
σπ → a1(1260) → σπ .

The approximation is expected to be valid at low values
of energy, where a finite number of singularities dominate
the amplitude. Moving to higher energies, the left hand cuts
controlling the crossed 2 → 4 processes will become rele-
vant, and the behavior of the amplitude will be controlled by
analyticity in angular momentum, rather than direct-channel
unitarity.

Since the isobar approximation includes the cross channel
effects in the summation, the isobar–spectator amplitudes
contain only normal threshold singularities determined by
unitarity. Therefore, the analytic structure of each isobar–
spectator amplitude in the energy variables, s, σ j , and σ ′

k ,
are determined by unitarity.

The problem of convergence in J is more severe. The 3 →
3 amplitude contains an OPE process (see the last diagram
in Fig. 5), which can go on-shell in the direct channel, and
results in an interaction of infinite range. In this case the cross
channel singularities overlap with the physical region and
project onto an infinite number of partial waves. The analytic
properties of the projected amplitude are highly nontrivial.
We discuss them in detail in Sect. 5. However, since the main
goal in this and similar studies of three particle scattering is
to identify the spectrum, ultimately one needs to deal with
amplitudes of well defined total angular momentum J . In
other words, these amplitudes diagonalize unitarity, which
is the basis for analytic continuation and identification of
complex singularities as resonance poles. For this reason, in
the following we will not address the problem of convergence
in J .

Unitarity relations

It is advantageous to introduce an amputated PWIS ampli-
tude ÃJ

�′
k s

′
k ;� j s j

, in which the isobar amplitudes are factor-

ized,

AJ
�′
k s

′
k ;� j s j

= fs′k (σ
′
k)ÃJ

�′
k s

′
k ;� j s j

(σ ′
k, s, σ j ) fs j (σ j ). (19)

The amputation reduces the number of terms in the isobar–
spectator unitarity relation by making use of subchannel uni-
tarity in Eq. (10). However, the amputated PWIS ampli-
tudes still have a non-trivial dependence on the subchan-
nel energies due to rescattering effects. As shown in detail
in “Appendix C”, combining Eqs. (8), (10), (13), (14),
(16), and (19) results in the amputated PWIS unitarity rela-
tion

Im ÃJ
�′
k s

′
k ;� j s j

(σ ′
k , s, σ j )

= 1

π(32π2)2

∑

n

∑

�′′
n ,s

′′
n

∫ (
√
s−mn)

2

σ
(th)
n

dσ ′′
n

|q′′
n ||p′′	

n |
√

σ ′′
n
√
s

| fs′′n (σ ′′
n )|2

× ÃJ ∗
�′′
ns

′′
n ;�′

k s
′
k
(σ ′′

n , s, σ ′
k)ÃJ

�′′
ns

′′
n ;� j s j

(σ ′′
n , s, σ j )
(s − sth)

+ 1

2πs(32π2)2

∑

n,r
n �=r

∑

�′′
n ,s

′′
n

∑

�′′
r ,s′′r

∫ (
√
s−mn)

2

σ
(th)
n

dσ ′′
n

×
∫ σ

(+)
r (σ ′′

n )

σ
(−)
r (σ ′′

n )

dσ ′′
r f ∗

s′′r (σ ′′
r ) fs′′n (σ

′′
n )

× C J
�′′
ns

′′
n ;�′′

r s
′′
r
(σ ′′

n , s, σ ′′
r ) ÃJ ∗

�′′
r s

′′
r ;�′

k s
′
k
(σ ′′

r , s, σ ′
k)

× ÃJ
�′′
ns

′′
n ;� j s j

(σ ′′
n , s, σ j )
(s − sth)

+ 1

64π2
√
s

1

|p′ 	
k |

∑

r �=k

∑

�′′
r ,s′′r

∫ (
√
s−mr )

2

σ
(th)
r

dσ ′′
r

× C J
�′
k s

′
k ;�′′

r s
′′
r
(σ ′

k , s, σ
′′
r ) fs′′r (σ ′′

r ) ÃJ
�′′
r s

′′
r ;� j s j

(σ ′′
r , s, σ j )

× 
(σ ′
k − σ

(th)
k )

+ 1

64π2
√
s

1

|p	
j |

∑

n �= j

∑

�′′
n ,s

′′
n

∫ (
√
s−mn)

2

σ
(th)
n

dσ ′′
n

× C J
�′′
ns

′′
n ;� j s j

(σ ′′
n , s, σ j ) f ∗

s′′n (σ
′′
n ) ÃJ ∗

�′
k s

′
k ;�′′

ns
′′
n
(σ ′

k , s, σ
′′
n )

× 
(σ j − σ
(th)
j )

+ π

2|p	
j ||p′	

k | C
J
�′
k s

′
k ;� j s j

(σ ′
k , s, σ j )(1 − δ jk)

× 
(1 − cos2 θ	
k j ),

(20)

where C J
�′′
ns

′′
n ;�′′

r s
′′
r
(σ ′′

n , s, σ ′′
r ) is a purely kinematical recou-

pling coefficient between different intermediate state iso-
bars,
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C J
�k sk ;� j s j

(σk , s, σ j )

= 2π Ns jNskN� jN�kN−2
J

∑

λk ,λk

〈Jλk |�k0skλk〉 〈Jλ j |� j0s jλ j 〉

× d(sk )
λk0 (cos χk) d

(J )
λkλ j

(cos θ	
k j ) d

(s j )
λ j0

(cos χ j ).

(21)

The recoupling coefficients relate two different orientations
of three particles in the same frame [44,49,53]. “Appendix C”
contains details on the derivation of the recoupling coeffi-
cients from the rotational matrices in Eq. (13). The helicity
angles and the CMF angle between particles j and k, θ	

k j , are
functions of the invariants (cf. “Appendix A”).

The second term contains two integrals over the Dalitz
region of the three-particles in the intermediate state, where
the physical region is bounded by σ

(th)
n ≤ σ ′′

n ≤ (
√
s−mn)

2

and σ
(−)
r ≤ σ ′′

r ≤ σ
(+)
r , where σ

(±)
r is a function of σ ′′

n and
gives the physical boundary cos χ ′′

n = ±1, e.g. for n = 1 and
r = 3,

σ
(±)
3 (σ ′′

1 ) = m2
1 + m2

2 − 1

2σ ′′
1

(σ ′′
1 − s + m2

1)(σ
′′
1 + m2

2 − m2
3)

± 1

2σ ′′
1

λ1/2(s, σ ′′
1 ,m2

1)λ
1/2(σ ′′

1 ,m2
2,m

2
3).

(22)

Equation (20) is illustrated in Fig. 7. “Appendix C” contains
a sketch of the derivation of the amputated PWIS unitar-
ity relations. The first term of Eq. (20) involves the direct
propagation of an isobar in the intermediate state, whereas
the second, third, and fourth term involve the exchange of a
particle between isobars. The rescattering between isobars
modifies the line shape of the isobar amplitudes [54,55].
The final term is the contribution from the OPE process,

which gives and additional imaginary part to the ampli-
tude in the physical region. At this stage we have not fac-
tored out the threshold factors from partial waves. This is
straightforward to implement, however we do not do it here
as we consider angular momenta in S-wave in further sec-
tions.

4 The B-matrix parameterization

Motivated by S-matrix theory, we present a parameteriza-
tion for the PWIS amplitudes that satisfies real axis unitar-
ity given by Eq. (20). In the 2 → 2 case, the K -matrix,
f −1 = K−1 − iρ2, is an example of a parameterization
satisfying unitarity. For the 3 → 3 case, we present the B-
matrix parameterization for the PWIS amplitudes. The B-
matrix parameterization is a linear integral equation for the
amputated PWIS amplitudes that satisfy the unitarity rela-
tions Eq. (20):

ÃJ
�′
k s

′
k ;� j s j

(σ ′
k, s, σ j ) = B̃ J

�′
k s

′
k ;� j s j

(σ ′
k, s, σ j )

+
∑

n

∑

�′′
n ,s

′′
n

∫ (
√
s−mn)

2

σ
(th)
n

dσ ′′
n B̃ J

�′
k s

′
k ;�′′

ns
′′
n
(σ ′

k, s, σ
′′
n )

× τn(s, σ
′′
n )ÃJ

�′′
ns

′′
n ;� j s j

(σ ′′
n , s, σ j ),

(23)

where the B-matrix B̃ J
�′
k s

′
k ;� j s j

contains two terms,

B̃ J
�′
k s

′
k ;� j s j

= R̃J
�′
k s

′
k ;� j s j

+ Ẽ J
�′
k s

′
k ;� j s j

. (24)

The function Ẽ J
�′
k s

′
k ;� j s j

is the amputated partial wave OPE

amplitude, R̃J
�′
k s

′
k ;� j s j

is a real function that represents the

Fig. 7 Diagrammatic representation for the amputated PWIS unitarity relation in Eq. (20). The black disks in the internal legs represent the isobars,
which are amputated from the external legs, see Eq. (19). The cuts across the OPE in the intermediate states yield recoupling coefficients

123



Eur. Phys. J. C (2019) 79 :56 Page 9 of 27 56

short-distance three-body interactions unconstrained by uni-
tarity, and τn is the product of the isobar–spectator phase
space between and of the isobar amplitude

τn(s, σn) = ρ3(s, σn) fsn (σn), (25)

with

ρ3(s, σn) = 1

64π3

2|p	
n|√
s

. (26)

The parameterization is diagrammatically represented in
Fig. 8. The OPE amplitude is defined as

Ek j (p′;p) = Fk(p′;p)
1

μ2
jk − u jk − iε

F j (p′;p), (27)

where we note that the OPE only contributes to off-diagonal
amplitudes, i.e. j �= k. In principle, the OPE could contain
a regular function of the energy in addition to the pole term,
however unitarity only constrains the pole, and we assume
all other real functions to be absorbed by R. The ampu-
tated partial wave projected OPE amplitude Ẽ J

�′
k s

′
k ;� j s j

can

be constructed using Eqs. (16) and (19). By construction,
R is defined to have no threshold singularities in the three-
particle physical region. The R represents the freedom of
short-distance physics for the scattering of three particles,
and can be any real function. The function R contains infor-
mation on three body resonances, and can be modeled with
pole terms similar to the K -matrix in the 2 → 2 case, so
long as there are no singularities in the physical region of the
amplitude. In an effective field theory approach, it represents
a low order polynomial of contact interactions. For simplic-
ity, in the following we assume the latter forR. “Appendix D”
illustrates how the B-matrix parameterizations satisfies the
amputated PWIS unitarity relations. Aspects of its analytical
properties are examined in Sect. 5.

The B-matrix parameterization in Eq. (23) differs from
Mai et al. [45] in the lower limit of the integral: the latter

(a)

(b)

Fig. 8 a Diagrammatic representation of the B-matrix parameteriza-
tion in Eq. (23). The gray disk represent the amputated PWIS, and the
gray box the B-matrix. b The B-matrix is composed of a short-range
real R amplitude, and the OPE E , see Eq. (24)

is derived using Lippman-Schwinger equations with a rela-
tivistic potential model, and includes contributions from the
unphysical subthreshold region, σn < σ

(th)
n . Obviously, both

parameterization have the same imaginary part in the physi-
cal region, since both satisfy unitarity.

For notational simplicity, let Ãk j (s) ≡ ÃJ
�′
k ,s

′
k ;� j ,s j

(σ ′
k, s,

σ j ), so that the amplitudes are matrices in the isobar sub-
energies and angular momenta, which are indicated by the
spectator indices. Equation (23) is then a matrix relation
with the integrations over intermediate isobars formally rep-
resented as matrix multiplications. Recalling that we work
with the convention that isobars exists only in the (12) and
(32) channels, we write the B-matrix parameterization as the
set of coupled equations

Ã13(s) = B̃13(s) + B̃13(s)τ3(s)Ã33(s), (28a)

Ã33(s) = B̃31(s)τ1(s)Ã13(s), (28b)

with the other two amplitudes given by a similar set of equa-
tions,

Ã31(s) = B̃31(s) + B̃31(s)τ1(s)Ã11(s), (29a)

Ã11(s) = B̃13(s)τ3(s)Ã31(s). (29b)

The Eq. (28) can be combined into one integral equation for
Ã13,

Ã13(s) = B̃13(s) + K11(s)τ1(s)Ã13(s), (30)

where the kernel K11 is

K11(s) = B̃13(s)τ3(s)B̃31(s). (31)

Similarly, Eq. (29) give

Ã31(s) = B̃31(s) + K33(s)τ3(s)Ã31(s), (32)

where the kernel K33 is given by exchanging the 1 ↔ 3
indices in Eq. (31). Eqs. (30) and (32) can be formally
inverted to yield the solutions,

Ã13(s) = [1 − K11(s)τ1(s)]
−1 B̃13(s), (33a)

Ã33(s) = [1 − K33(s)τ3(s)]
−1 K33(s), (33b)

Ã31(s) = [1 − K33(s)τ3(s)]
−1 B̃31(s), (33c)

Ã11(s) = [1 − K11(s)τ1(s)]
−1 K11(s), (33d)

Several terms can be identified in the kernels, Kk j (s) =
Gk j (s) + Hk j (s) + T (1)

k j (s) + T (2)
k j (s), where G is a bubble

diagram, H is a box diagram, and the T ’s are triangle dia-
grams, generated by integrals over OPE and contact terms in
Eq. (24). Explicitly,
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(a) (b) (c) (d)

Fig. 9 The denominator of the B-matrix parameterization contains four primitive diagrams associated with the rescattering of the B-matrix: a
bubble diagram, b and c triangle diagrams, and d box diagram

Gk j (s) =
∑

n

R̃kn(s)τn(s)R̃nj (s), (34a)

T (1)
k j (s) =

∑

n

Ẽkn(s)τn(s)R̃nj (s), (34b)

T (2)
k j (s) =

∑

n

R̃kn(s)τn(s)Ẽnj (s), (34c)

Hk j (s) =
∑

n

Ẽkn(s)τn(s)Ẽnj (s). (34d)

These diagrams occur in the denominators of the amplitudes
in Eqs. (33), cf. Fig. 9. They differ to the Feynman diagrams
obtained in a perturbative QFT since the integrations are
only over the physical region, changing the analytic struc-
ture below threshold (see Sect. 5).

The solutions can be interpreted as an infinite series of
exchange and bubble diagrams. For example, expanding the
solution for Ã13,

Ã13(s) = B̃13(s) + K11(s)τ1(s)B̃13(s)

+ K11(s)τ1(s)K11(s)τ1(s)B̃13(s) + · · · .
(35)

The first term is the OPE and contact interaction, the second
term is a ladder diagram with three exchanges, and various
combinations of bubbles and OPE, and so on. The unitariza-
tion of bubble diagrams has been considered in quasi-two-
body models [56–59]. In these models it is easy to show how
additional cuts appear in the unphysical sheets due to the
isobar decay.

Three-body resonances manifest as poles in the complex
s-plane of the scattering amplitude. Rearranging the con-
stituents of the kernel relates the two denominators

B̃13(s)τ3(s) [1 − K33(s)τ3(s)]
−1

= [1 − K11(s)τ1(s)]
−1 B̃13(s)τ3(s).

(36)

Thus, we can write the full 3 → 3 amplitude in terms of
a single Fredholm determinant. The determinants are inde-
pendent of the external isobar energies, and the intermediate
integrations will modify the phase space factors to incorpo-
rate rescattering effects. Resonance poles can be determined
by solving

det [1 − K11(s)τ1(s)] = 0. (37)

The B-matrix solutions are real-boundary values of analytic
functions in the complex s-plane. The physical amplitudes
are defined by s → s + iε, σ j → σ j + iε, and σ ′

k →
σ ′
k + iε. Aspects of its analytic properties are discussed in

the following section.

Relation to the finite volume formalism

In finite volume studies for lattice QCD, substantial progress
has been made to understand the connection between discrete
energy levels and properties of hadron scattering amplitudes
[29–39]. In the case of 2 → 2 scattering the two-particle
finite volume spectrum constrains the values of the infinite
volume partial wave amplitudes via the Lüscher quantiza-
tion condition [60]. The multi-variable nature of 3 → 3
scattering amplitudes makes the derivation of the finite vol-
ume quantization condition much more complicated and dif-
ferent groups have approached the problem from a differ-
ent angle. For example, in Refs. [29–33] the authors intro-
duce amplitudes labeled by subchannel spins and the specta-
tor 3-momenta. Furthermore, ladder diagrams generated by
OPE are considered independently from other interactions.
This implies that partial wave projection to total spin, which
is necessary if one is interested in extracting properties of
three-body resonances, would be performed after resumma-
tion of the OPE ladder. On the other hand, in Refs. [34,35],
the quantization conditions are derived starting from a set
of amplitudes projected onto the total and subchannel spins
from the start, i.e. before OPE resummation, in a spirit close
to our work. In Refs. [36–38] the quantization conditions are
derived in a nonrelativistic EFT framework, and the direct
comparison with our S-matrix approach is more compli-
cated. It is more interesting to discuss the differences with
Refs. [29–32]. Since we do not aim to address the subtleties of
the finite volume here, we compare with the infinite volume
equations derived in there on the basis of the finite volume
formalism. For simplicity we ignore coupling to the 2-body
channel. In Refs. [29–32], the 3 → 3 connected amplitude
is denoted by M33(�k, �k′) (see Eq. (112) in Ref. [32]). It con-
tains the resummed OPE ladder and the amputated ampli-
tude T33(�k, �k′) that is generated by the kernel Kdf,33(�k, �k′),
which is analogous to our driving term R̃J

�′
k s

′
k ;� j s j

(σ ′
k, s, σ j ).

Both the OPE ladder and the amplitude T33(�k, �k′) are solu-
tions of linear integral equations (see Eqs. (87) and (106) in
Ref. [32]), which are analogous to our Eq. (23).
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To further illustrate the connection between our ampli-
tudes and those of Refs. [29,32] we shall consider the case
of three identical particles in S-waves. The phase space ρ2

(Eq. (7)) of the two particle subsystem gains a factor 1/2! to
account for their identical nature. The resulting unitarity rela-
tions have a similar form as in Eq. (20). In matrix notation,
one finds

Im Ã = Im Ẽ + Im Ẽρ3 f Ã + Ã∗ f ∗ρ3 Im Ẽ
+ Ã∗ρ3 Im f Ã + Ã∗ f ∗ρ3 Im Ẽρ3 f Ã,

(38)

where the matrices are in the σ ′, σ space with f and ρ3 diag-
onal matrices. The S-wave projection of the OPE is given by
the symmetric matrix Ẽ , and is found by the inverse rela-
tion of Eq. (16) on the OPE amplitude in Eq. (27). It is
straightforward to show that the B-matrix parameterization
(cf. Eq. (23)), Ã = B̃ + B̃ρ3 f Ã, i.e.

Ã = [1 − (Ẽ + R̃)ρ3 f ]−1(Ẽ + R̃) (39)

satisfies the unitarity relation, Eq. (38). Moreover, after sim-
ple manipulations, Eq. (39) can be rewritten as

A = f Ã f = D + L[1 − R̃ρ3L]−1 R̃L� (40)

where the D amplitude is the ladder sum of OPE, given by

D = f Ẽ f + f Ẽρ3D (41)

and L ≡ f + Dρ3. Finally we introduce the amplitude T
satisfying

T = R̃ + R̃ρ3LT , (42)

and obtain an expression closely resembling that in Refs. [29,
32],

A = D + LT L�. (43)

The difference between Eq. (43) and the corresponding
expression for M(u,u)

33 in Refs. [29,32] is in the definition
of L. In our notation, the L of Refs. [29,32] contains an
additional 1/3 constant, and the f and D matrices contain
an extra factor of ρ2.

Although these analogies should be verified with care, two
main differences appear. One is in the treatment of the OPE
dynamics, which in Ref. [32] is resummed before projection
onto the total spin and in our case the projection is done
first. It is likely that these approaches will ultimately prove
to be equivalent, since in practical applications only a finite
number of partial waves in total spin or spectator momentum
components can be kept. The other difference is in the L
function, which could possibly be related to a discrepancy

in the definitions of R̃ and Kdf,33. It would be interesting
to see if our approach and the corresponding equation of
Refs. [29,32] provide the same result, and to determine the
origin of the difference.

One can also consider our formalism in the finite volume
by relating integrals over the isobar invariant mass to discrete
sums. This approach would lead to a quantization condition,
similarly to what was shown by Ref. [34]. It remains to be
seen if a quantization condition derived in this manner is
identical to that of Ref. [29]. This is an active area of research,
however, outside the scope of this work, and we leave it for
future studies.

5 Aspects of analytic properties

In this section, we examine the singularities of the OPE
amplitude and the triangle diagram from the B-matrix param-
eterization. We numerically evaluate an amplitude where all
external particles have unit mass (m1 = m2 = m3 = 1)
and coupling. In these studies, the units are arbitrary. For
simplicity, we consider S-waves only, i.e. J (�′s′)k(�s) j =
0(00)k(00) j . Generalizing to nonzero angular momenta does
not change the analytic properties.

5.1 One particle exchange

As seen in Eqs. (34), the building block for the B-matrix ker-
nels is the OPE amplitude. Projecting Eq. (27) using Eq. (16)
gives the S-wave OPE amplitude,

Ẽ S
k j (σ

′
k, s, σ j ) = 1

4|p′	
k ||p	

j |
log

(
zk j − 1

zk j + 1

)

. (44)

where zk j is given as

zk j = 2s(σ j + m2
k − μ2

jk) − (s + σ j − m2
j )(s + m2

k − σ ′
k)

λ1/2(s, σ j ,m2
j )λ

1/2(s, σ ′
k,m

2
k)

,

(45)

where λ(a, b, c) = a2 + b2 + c2 − 2(ab + bc + ca) is the
Källén triangle function. Eq. (45). We investigate the OPE as
a function of s for fixed real σ j and σ ′

k . The imaginary part
of the OPE is

Im Ẽ S
k j (σ

′
k, s, σ j ) = π

4|p	
j ||p′	

k |
(1 − |zk j |2), (46)

which is given by the unitarity relations in Eq. (20). The OPE
has four branch points in s, one at zero, one at infinity, and
two which we label s(±)

k j ,
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s(±)
k j = 1

2μ2
jk

[

(m2
k − σ j )(m

2
j − σ ′

k) − μ4
jk

+ μ2
jk(m

2
k + m2

j + σ j + σ ′
k)

± λ1/2(μ2
jk,m

2
k, σ j )λ

1/2(μ2
jk,m

2
j , σ

′
k)

]

,

(47)

which depend on the isobar invariant masses. The momenta in
the denominator do not contribute additional branch points,
because the logarithm vanishes and cancel the singularity,
as expected from the S–wave threshold behavior. The s(±)

k j
branch points are in general complex. There are then two
branch cuts: one where s ∈ (−∞, 0], called the virtual par-
ticle exchange (VPE) cut, and one connecting s(−)

k j to s(+)
k j ,

called the real particle exchange (RPE) cut. The VPE cut is
associated with the exchange of a virtual particle, generat-
ing long-range forces. Historically, the RPE cut is associ-
ated with the exchange of a real particle between isobars,
i.e. when it is kinematically allowed for an isobar to decay.
This corresponds to when the RPE branch points lie on the
real axis above the isobar–spectator threshold. If the iso-
bar invariant masses are below the decay threshold, then
the RPE branch points move in the complex plane below
the isobar–spectator threshold. For convenience, however,
we will always call this the RPE cut, and emphasize that
a real particle exchange occurs only if it is kinematically
accessible. Note that although the value of the isobar mass
dictates the physics of the OPE, the OPE is blind to the
decay products of the isobar and the physical threshold in

s is max{(√σ j + m j )
2, (

√
σ ′
k + mk)

2}.
We can understand the analytic structure of the OPE by

writing a dispersive representation in s. Equation (46) is
nonzero in two regions, leading to the relation

Ẽ S
k j (σ

′
k, s, σ j ) =

∫

�V

ds′ 1

s′ − s − iε

1

4|p′	
k ||p	

j |
+

∫

�R

ds′ 1

s′ − s − iε

1

4|p′	
k ||p	

j |
,

(48)

where �V is the contour over the VPE cut and �R is the
contour over the RPE cut. The integrand has four branch
points associated with the thresholds and pseudo-thresholds
of the initial and final momenta. We choose to orient the
branch cuts such that the lowest branch point (min{(

√
σ ′
k −

mk)
2, (

√
σ j − m j )

2}) has a cut running to −∞, the highest

branch point (max{(
√

σ ′
k + mk)

2, (
√

σ j + m j )
2}) has a cut

running to+∞, and the other two branch points have a branch
cut joining them. The contour �V is always taken above the
real axis, whereas the contour �R depends on the external
masses. The physical amplitude is defined as the boundary
value when s → s + iε , below the RPE cut.

For fixed σ j > σ
(th)
j , the RPE cut can be categorized

by different regions in σ ′
k . In Fig. 10, we illustrate how the

analytic structure of the integrand and the integration con-
tours change in these regions. Assuming a small imaginary
part μ2

jk → μ2
jk − iε, the RPE branch points have a finite

imaginary part for σ ′
k < σ

(th)
k , with opposite signs. When

σ ′
k > σ

(th)
k , the branch points are infinitesimally close to the

real axis. In the physical region, s(−)
k j has inflection points at

two locations of σ ′
k :

σ
(a)
k = m2

j + μ2
jk + m j (σ j + μ2

jk − m2
k)√

σ j
, (49a)

σ
(b)
k = − 1

2m2
k

[

2m2
k(σ j − m2

j ) − m4
k

− (σ j − μ2
jk)

2 + (m2
k + μ2

jk − σ j )

×
√

4m2
jm

2
k + λ(σ j , μ

2
jk,m

2
k)

]

, (49b)

which follow from ds(−)
k j /dσ ′

k = 0 corresponding to

Im s(−)
k j = 0. Both σ

(a)
k and σ

(b)
k correspond to when s(−)

k j

crosses the real s-axis. The s(+)
k j branch point always lies in

the upper-half plane.
We can therefore classify the regions according to when

the RPE branch points are both in the upper-half plane or
when they approach the real axis.

(a) σ ′
k ≥ σ

(b)
k , see region (a) in Fig. 11. Here s(−)

k j is below

the real axis, and s(+)
k j is above the real axis. The RPE cut

connects these two points by crossing the real axis below

the threshold (

√
σ ′
k + mk)

2. Real particle exchange in
this case has consequences when considering the OPE
processes embedded in the triangle diagram, which is
discussed in the next section. For k = 1 and j = 3,
Fig. 10a shows the RPE and VPE contours, �R and �V ,
respectively. Note that in the logarithmic representation,
the RPE cut is circular, whereas in the dispersive repre-
sentation, one can define the cut in any chosen manner
as long as singularities are not crossed.

(b) σ
(a)
k ≤ σ ′

k ≤ σ
(b)
k , see region (b) in Fig. 11. When σ ′

k

decreases below the inversion point σ
(b)
k , s(−)

k j wanders

above the real axis. The RPE cut directly connects s(−)
k j

to s(+)
k j without crossing the real axis. This is the typi-

cal case when considering the exchange of a real parti-
cle, illustrated in Fig. 10b. Note that when σ ′

k = σ j for
equal massesm j = mk , then the integrand branch points
merge into pole singularities.

(c) σ
(th)
k ≤ σ ′

k ≤ σ
(a)
k , see region (c) in Fig. 11. The

RPE branch points again wrap around the real axis, cf.
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(a) (b)

(c) (d)

Fig. 10 Cut structure of the OPE integrand Eq. (46) in the s′-plane,
and the OPE integration paths for the RPE contour (�R in red) and the
VPE contour (�V in blue) for the dispersive integral Eq. (48). The four
cases as a function of σ ′

1 are: a σ ′
1 ≥ σ

(b)
1 , b σ

(a)
1 ≤ σ ′

1 ≤ σ
(b)
1 , c

σ
(th)
1 ≤ σ ′

1 ≤ σ
(a)
1 , and d σ ′

1 ≤ σ
(th)
1 . Real particle exchange cannot

occur in case (d). In the logarithmic representation Eq. (44), the RPE
cut is circular

Fig. 11 Motion of s(±)
13 in the s-plane as a function of σ ′

1 for fixed
σ3 = 4.41, and unit external masses, m1 = m2 = m3 = 1. Shown in
red is s(+)

13 and in blue s(−)
13 . The points indicate various σ ′

1 values. Note
that the physical region begins at σ ′

1 = 4. The inset shows the infinitesi-

mal region where s(−)
13 curve crosses the real axis at the points σ

(a)
1 = 4.1

and σ
(b)
1 = 5.81. The labels a–d indicate the regions described in the

text and depicted in Fig. 10

Fig. 10c, with the cut crossing the real axis below the
threshold (

√
σ j + m j )

2.

(d) σ ′
k ≤ σ

(th)
k , see region (d) in Fig. 11. The branch points

s(±)
k j move deep into the complex plane, as shown in

Fig. 10d. In this region, the isobar cannot decay, and
therefore it is unphysical for the 3 → 3 elastic scattering.
Real particle exchange cannot occur, leaving only the
virtual contributions.

If we evaluate the OPE along the real s-axis in regions (a)
or (c), we find that the real part of the OPE has a jump due to

crossing the RPE cut. In the logarithmic representation, this
crossing occurs when zk j = 0, that is, when

s(0)
k j = 1

2

[

m2
j + m2

k − 2μ2
jk + σ j + σ ′

k

+
(

4(m2
j − σ j )(m

2
k − σ ′

k)

+ (m2
j + m2

k − 2μ2
jk + σ j + σ ′

k)
2
)1/2]

.

(50)
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(a) (b) (c)

(d)

(e) (f)

Fig. 12 OPE amplitudes Eq. (44) for external masses m1 = m2 =
m3 = 1 at fixed σ3 = 4.41 for the four regions depicted in Fig. 10: a
σ ′

1 = 3.24 representing the unphysical region, b 4.04, where the RPE
cut wraps around the real axis, c 4.41, where the RPE branch points
are above the real axis, and d 7.29 where the RPE cut wraps around
the real axis. The insets show the contribution from the VPE cut. For

these values, the inflection points are σ
(a)
1 = 4.1 and σ

(b)
1 = 5.81.

The real and imaginary parts of the OPE Eq. (44) at σ ′
1 = 7.29 in the

complex s-plane are shown in e and f, respectively. The discontinuity
at s = s(0)

13 = 13.31 occurs when evaluating the OPE across the RPE
cut

When choosing a different contour for �R in the dispersive
representation, the location of this crossing depends on where
real axis crosses the chosen contour.

These cases are illustrated in Fig. 10 for spectators k = 1
and j = 3. We plot the OPE amplitudes, Eq. (44), as a func-
tion of s for fixed σ3 and σ ′

1 in Fig. 12. Figure 12a shows the

OPE computed at σ ′
1 in region (a). At this energy, the s(−)

k j is
below the real axis, and the RPE cut wraps around the real

axis, passing below the threshold (

√
σ ′

1 + m1)
2. The jump

in the real part at s(0)
13 is due to crossing the RPE cut. Fig-

ure 12b, is evaluated at σ ′
1 in region (b), where both branch

points are above the real axis. Here, we illustrate that as σ ′
1

decreases, the width of the imaginary part decreases and the
peak increases. The narrowing imaginary region physically
represents that less phase space is available for real particle
propagation in the intermediate state. Figure 12c is computed
for σ ′

1 in region (c), right above the two-particle threshold.

There is a jump in the real part at s(0)
13 from crossing the RPE

cut. The final case is illustrated in Fig. 12d, where the OPE
computed in the unphysical region (d). There is an imaginary
part due to the VPE cut only, as it is kinematically inacces-
sible for the exchange of a real particle. The jump in the real
part at s(0)

13 comes from crossing the RPE cut. Figure 12e, f
shows a 3-dimensional plot of the real and imaginary part of

the logarithmic representation of the OPE, Eq. (44). The cir-
cular cut is clearly visible connecting the RPE branch points.
The physical region is taken as the region approaching the
real axis, below the RPE cut.

To summarize, the analytic structure of the OPE is given
by two branch cuts, the VPE and RPE cuts. The VPE cut is
present for −∞ < s ≤ 0, and is associated with the exchange
of an off-shell particle. For physical isobars, the RPE cut is
in the physical region. We have shown different scenarios,
identified by the isobar masses, in which the RPE branch
points can approach the physical region, which impact the
structure of the B-matrix kernels.

5.2 Triangle diagrams

To understand resonance poles of 3 → 3 systems, the ana-
lytic structure of the B-matrix parameterization, Eq. (33)
must be understood in the complex s-plane. This means
understanding the properties of the B-matrix kernels. Here,
we investigate the triangle diagram, and leave the box dia-
gram for future studies. Let us work with the triangle TB ≡
T (2)

11 introduced in Eq. (34c), where all angular momenta are
in S-wave. For convenience, let R̃ = 1, thus the amplitudes
are independent of σ ′

1, and given by
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TB(s) =
∫ (

√
s−m3)

2

σ
(th)
3

dσ ′′
3 τ3(s, σ

′′
3 )Ẽ S

31(σ
′′
3 , s, σ1), (51)

where τ3(s, σ ′′
3 ) = ρ3(s, σ ′′

3 )D−1
3 (σ ′′

3 ) , and the dependence
of TB on σ1 has been understood. To ensure the correct ana-
lytic properties of the isobar amplitude, we introduce its dis-
persive representation

f3(σ
′′
3 ) = 1

π

∫ ∞

σ
(th)
3

dσ̂
Im f3(̂σ )

σ̂ − σ ′′
3 − iε

, (52)

giving the form for TB

TB(s) = 1

π

∫ ∞

σ
(th)
3

dσ̂ Im f3(̂σ )

×
∫ (

√
s−m3)

2

σ
(th)
3

dσ ′′
3

ρ3(s, σ ′′
3 )Ẽ S

31(σ
′′
3 , s, σ1)

σ̂ − σ ′′
3 − iε

.

(53)

We see the σ ′′
3 -integral does not depend on f3(̂σ ), so for sim-

plicity we take the narrow width limit Im f3(̂σ ) = πδ(̂σ −
M2) , where M is the mass of the isobar. The narrow width
limit shifts the unitarity cut in the triangle diagram to begin
at the threshold s = (M + m3)

2. However, for a general
isobar shape, Eq. (53) can be used to sum over its distribu-
tion, recovering the correct unitarity branch cut starting at
sth. Therefore, the triangle diagram has the form

TB(s) =
∫ (

√
s−m3)

2

σ
(th)
3

dσ ′′
3

ρ3(s, σ ′′
3 )Ẽ S

31(σ
′′
3 , s, σ1)

M2 − σ ′′
3 − iε

. (54)

Figure 13 shows the triangle diagram in consideration. The
B-matrix triangle contains singularities on the physical sheet.
These are due to the s-singularities in ρ3 and Ẽ S

13, and to end-
point singularities when the integration limits hit the σ ′′

3 -
singularities of the integrand. The upper integration limit
gives a branch cut for s < 0. Since ρ3(s, σ ′′

3 ) ∝ {[σ ′′
3 −

(
√
s + m3)

2][σ ′′
3 − (

√
s − m3)

2]}1/2/s, there is a pole at
s = 0. When the integration variable hits the lower limit
σ ′′

3 = σ
(th)
3 , there are two branch point singularities at

s = (

√

σ
(th)
3 ±m3)

2 = (m1+m2±m3)
2. In the narrow width

Fig. 13 The triangle diagram TB contribution to the kernel K11. We
take the isobar to have a narrow width with mass M . For numerical
evaluations, m1 = m3 = μ31 = 1

limit, the unitarity cut opens when the upper limit of the inte-
gral hits the pole in the isobar propagator, for s = (M+m3)

2.
On the real s-axis, the OPE has a discontinuity in the real
part when z31 = 0, i.e. at σ ′′

3 = σ
(th)
3 . This discontinuity

from crossing the RPE cut is present in TB . Two more sin-
gularities occur when σ ′′

3 hits the two inflection points σ
(a)
3

and σ
(b)
3 , which are defined in Eq. (49). The OPE pinches

the real axis at σ ′′
3 = σ

(a)
3 , and generates a singularity in TB

at the initial state threshold s = (
√

σ1 + m1)
2. This can be

understood by realizing that the OPE branch points, Eq. (47),
can alternatively be written in terms of σ ′′

3 as a function of s

for fixed σ1. The branch points are then σ
′′(±)
3 , where

σ
′′(±)
3 = 1

2σ1

[

σ1(s + m2
1 + m2

3 + μ2
13)

+ (m2
1 − s)(m2

3 − μ2
13) − σ 2

1

± λ1/2(s, σ1,m
2
1)λ

1/2(σ1, μ
2
13,m

2
3)

]

,

(55)

and σ
′′(−)
3 lies infinitesimally below the real axis in the phys-

ical region. Figure 14 shows the motion of σ
′′(±)
3 in the

complex σ ′′
3 -plane as a function of s for fixed σ1. At the

three particle threshold, s = (m1 + m2 + m3)
2, the branch

points have finite imaginary part and are on opposite sides
in the σ ′′

3 -plane. As s approaches the initial state threshold

s = (
√

σ1 + m1)
2, the σ

′′(±)
3 branch points pinch the real

axis at σ ′′
3 = σ

(a)
3 . Since the TB integration is on the real axis

starting from σ
(th)
3 , the integration path is pinched, causing

a singularity in TB at s = (
√

σ1 + m1). At σ ′′
3 = σ

(b)
3 ,

the branch point migrates back below the real axis at a

Fig. 14 Motion of the σ
′′(±)
3 in the σ ′′

3 -plane as a function of s for fixed

σ1. Shown in red is σ
′′(+)
3 and in blue σ

′′(−)
3 . The points indicate various s

values starting from the three particle threshold, s = (m1+m2+m3)
2 =

9. The inset shows that the branch points pinch the real σ ′
1 axis at

s = (
√

σ1 +m1)
2 = 16, which is responsible for a pinch singularity in

TB
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Fig. 15 Real (left) and imaginary (right) parts of the Feynman trian-
gle diagram, Eq. (56) (gray), the B-matrix triangle, Eq. (54) (blue),
and the Mai et al. triangle, Eq. (57) (red). The external masses are set
to unity, and the external isobar masses are σ ′

1 = 9 and M2 = 25.
The dashed vertical lines indicate the locations of singularities in the
B-matrix as described in the text: (from left to right) the s = 0 sin-
gularity (where the explicit 1/s pole in ρ3(s, σ ′′

3 ) makes TB and TM

diverge), s = (

√

σ
(th)
3 − m3)

2 = 1 (TB is singular and TM is reg-

ular), s = (

√

σ
(th)
3 + m3)

2 = 9, the crossing of the RPE cut at

s = s(0)
31 = 14.64, the initial state threshold s = (

√
σ1 + m1) = 16,

and the normal threshold singularity at s = (M + m3)
2 = 36. The red

dashed line indicates the pinch singularity at s = (
√

σ1 − m1)
2 = 4

that occurs only in TM

value greater than the threshold σ
(th)
3 close to the real axis.

When M2 > σ
(b)
3 , this effect generates the triangle singu-

larity [50,61,62]. The triangle singularity has been studied
as a possible mechanism to explain anomalous structures
observed in heavy flavor experiments [19,63–65]. The peak
of the triangle singularity coincides with the s(−)

31 branch

point, i.e. str = s(−)
31 .

Aside for the unitarity branch cut starting at s = (M +
m3)

2 and the triangle singularity, these additional singulari-
ties in the physical s-plane are not allowed by analyticity. The
extra singularities are moved to the second sheet when we
consider the integration over the isobar shape, cf. Eq. (53),
leaving only the unitarity cut starting at s = (m1+m2+m3)

2

and the triangle singularity.
We compare the structure of Eq. (54) with that of a Feyn-

man diagram triangle in a QFT (see “Appendix E” for a
review of the Feynman triangle), which can be written as

TF (s) =
∫

�T

ds′ ρ3(s′, M2)Ẽ S
13(M

2, s′, σ1)

s′ − s − iε
, (56)

where �T is the path from the threshold (M+m3)
2 to ∞, and

the S-wave amplitudes are normalized according to Eq. (16).
Figure 15 shows the real and imaginary parts, respectively,
of the two triangle diagrams TF and TB , below the region
of the triangle singularity. Notice that the Feynman triangle
has only a normal threshold singularity at s = (M + m3)

2,
and is smooth everywhere else. The imaginary parts of both
triangles are identical above threshold, as required by uni-

tarity. The B-matrix triangle has noticeable kinks in both
the real and imaginary parts below threshold, corresponding
to the singularities discussed above. The black dashed lines
indicate the location of the singularities. Starting from low
energy, the first additional singularity is the s = 0 singular-
ity from the phase space. The next two singularities occur at

s = (

√

σ
(th)
3 −m3)

2 and (

√

σ
(th)
3 +m3)

2, which are from the
phase space evaluated at the lower integration limit. The real
part contains a singularity from evaluating the OPE across
the RPE cut. Note that the imaginary part does not contain
this jump, consistent with the OPE description in the previ-
ous section. The next singularity occurs at the initial state
threshold s = (

√
σ1 +m1)

2, which is due to the pinching of
the σ ′′

3 contours by the OPE branch points. Finally the nor-
mal threshold at s = (M + m3)

2. Figure 16 shows TB and
the OPE in the region where the triangle singularity develops.
The line shape shows the production threshold at (M+m3)

2,
and the peak at s = str. The OPE branch point s(−)

31 clearly
coincides with the triangle peak.

Figure 17 shows the TB and TF as a function of s at fixed
σ1 and varying M2 in the region below and above M2 =
σ

(b)
3 . Figure 17a shows the real parts, and Fig. 17b shows

the imaginary parts. At M2 = σ
(b)
3 , the triangle singularity

develops, corresponding to when s = s(−)
31 = str . One can

see a second threshold in the line shape above threshold (M+
m3)

2. Figure 17c shows the RPE cut of the OPE in the s-plane
at the corresponding values for the triangle amplitude.
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Fig. 16 The B-matrix triangle Eq. (54) in with the triangle singular-
ity. Shown in black are the real (solid) and imaginary (dashed) parts
evaluated at σ1 = 4.41 and M2 = 4.41. Shown in red are the real
(solid) and imaginary (dashed) parts of the OPE piece of the trian-
gle, Eq. (44), where σ ′′

3 = M2. The blue dashed lines indicate the
threshold (M + m3)

2 = 13.7641 and the lower RPE branch point at
s(−)

31 = str = 13.8619. The normal threshold accounts for the first peak
in the triangle diagram, while the second peak is caused by the triangle
singularity. Note we scaled the triangle diagram to account for the phase
space normalization of the triangle

We also compare the B-matrix triangle with the analogous
one from Mai et al. [45], that we denote as TM ,

TM (s) =
∫ (

√
s−m3)

2

−∞
dσ ′′

3
ρ3(s, σ ′′

3 )Ẽ S
31(σ

′′
3 , s, σ1)

M2 − σ ′′
3 − iε

, (57)

where we take their contact term equal to unity, and the lower
integration limit in their model accounts for the physics in
the unphysical region. As σ ′′

3 → −∞, the OPE amplitude
goes like 1/σ ′′

3 , while the phase space grows as σ ′′
3 , thus the

integrand goes like 1/σ ′′
3 and the function is logarithmically

divergent. Numerically, we choose to cut off the integral at
some large value, e.g. −200 to investigate the behavior. For
TM , all lower limit endpoint singularities in s from the phase
space and OPE are moved toward −∞. The s = 0 pole from
the phase space persist, and the normal threshold singularity
at s = (M +m3)

2 is present since it is from the upper limit.
The pinch singularity at s = (

√
σ1 +m1)

2 is also present, as
well as the pinch singularity at s = (

√
σ1 −m1)

2, cf. Fig. 14.
The second pinch singularity occurs when the integration
over σ ′′

3 hits σ ′′
3 = σ

(c)
3 , where

σ
(c)
3 = m2

1 + μ2
31 − m1(σ1 + μ2

31 − m2
3)√

σ1
, (58)

is a third inflection point in the unphysical region, occurring
at s is at the threshold s = (

√
σ1 −m1)

2 (when Im s(−)
k j = 0).

This pinch singularity is absent in the B-matrix triangle, as

the integral is only over the physical region. Figure 15 com-
pares the line shapes of all three triangles, TB , TF , and TM .
Although TM has a logarithmic divergence, we fix the lower
integration limit to −200. We see how the line shape below
threshold smooths out except at the remaining singularities,
shown with the black dashed lines. The red dashed line indi-
cates the second pinch singularity in TM .

The Feynman triangle can be recovered from TM with
the method discussed by Aitchison and Pasquier [42], where
the isobar approximation for 1 → 3 decays was studied.
Using their inversion technique, it was found that the Feyn-
man triangle can be written as a dispersive integral over the
isobar invariant mass as in Ref. [45], plus additional terms.
The latter are real in the physical region, but cure the below
threshold singularities shown in the B-matrix. The additional
terms also cancel the logarithmic divergence, leaving a finite
amplitude. The addition of terms which cancel the unphysi-
cal singularities can be traced to what is chosen for R. The
R-matrix has the freedom to absorb these differences as they
modify the structure below threshold, leaving the physical
region unchanged.

5.3 Removal of unphysical singularities

As shown, the B-matrix parameterization contains additional
singularities which do not match the expected analytic behav-
ior of the amplitudes. This happens in both our formulation
and Mai et al. [45]. The formalism only considers unitar-
ity, which constrains the singularities in the physical region.
Imposing additional constraints from analyticity would in
principle remove these extraneous singularities, as in the
2 → 2 case. One possible venue for improving that is to
substitute the B-matrix kernels, Eq. (34), with the Feynman
one. This is in the same spirit of the Chew–Mandelstam phase
space in the 2 → 2 parameterizations, which removes the
unphysical singularities of the phase space. Although the ker-
nels will now have the proper analytic structure (no physical
sheet singularities except for the unitarity cut), the resulting
amplitude will still contain singularities from iterating the
kernel. Consider the solution for Ã33 in Eq. (33b), where the
kernel is replaced by the Feynman one, K33 → KF

33, where

KF
33(s) =

∫ ∞

th
ds′ B̃31(s′)ρ3(s′)B̃13(s′)

s′ − s − iε
. (59)

Now expand the solution Eq. (33b) in an infinite series,

Ã33 = KF
33(s) + KF

33(s)τ3(s)KF
33(s) + · · · . (60)

The first term is the kernel, composed of Feynman diagrams
which have the correct analytic properties. Let the kernel con-
sist only of the triangle diagram, then the second term is two
Feynman triangles joined with a τ -function. The equivalent
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(a)

(b)

(c)

Fig. 17 The Feynman triangle Eq. (56) and the B-matrix triangle
Eq. (54) in the vicinity of the triangle singularity for fixed σ1 = 4.41
and varying M2 in the range 5.33 ≤ M2 ≤ 7.34. TB is shown with
solid lines, TF is shown with dashed lines. Real parts are shown in a
and imaginary parts in b. The imaginary parts for TF and TB coincide

in this region. For σ1 = 4.41, the triangle singularity region begins
at M2 = σ

(b)
3 = 5.81, which manifest as a second threshold in the

line shape beginning at s = s(−)
31 = str = 11.63. The corresponding

orientation of the OPE branch points are illustrated in c

Feynman diagram would have two exchanges integrated over
the four-momenta, which is not equivalent to what is shown
in Eq. (60) due to the τ -function. This diagram, as well as the
higher-order ones, contain non-analyticities in a similar man-
ner to what was shown for the triangle diagram. The uninte-
grated singularities from the phase space are always present.
Therefore the simple kernel substitution does not produce
the correct analytic behavior in the B-matrix solution. How-
ever, it can still be advantageous, as it corrects some of the
unphysical singularities in the present B-matrix solution.

The remaining singularities should disappear if one was to
solve the proper Bethe–Salpeter equations of the underlying
QFT. The B-matrix parameterization is indeed reminiscent
of that for 2 → 2 scattering. We examine some differences
between these formalisms. The B-matrix parameterization is
a covariant integral equation for the on-shell isobar–spectator
amplitudes. It satisfies unitarity relations and does not have

additional imposed constraints from analyticity. Thus, for
complex energies on the physical Riemann sheet, the B-
matrix parameterization contains the unitarity cut, and has
additional s-singularities from the τ and OPE.

The Bethe–Salpeter equation is a covariant integral equa-
tions that incorporate an infinite number of exchanges for
any given QFT [48]. Solving it amounts to summation of
exchange diagrams, similarly to the B-matrix. The resulting
amplitudes are analytic functions in the complex s-plane, as
the QFT amplitudes inherently obey analyticity constraints.
The physical sheet thus has only the allowed singularities,
such as the unitarity cut and possible bound state poles.
Lippmann-Scwhinger equations are nonrelativistic equations
for the scattering amplitude in a given potential model. The
B-matrix has similarities to the Lippmann-Schwinger equa-
tions in that both involve in a three-dimensional integral
over the momenta [45]. In this work however, we focus on
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the physical region, and truncate the isobar mass integration
appropriately. Conversely, the Bethe–Salpeter equation con-
tains integrations over four-momenta, which results in inte-
grating over the off-shell behavior of the amplitude. Intro-
ducing dispersive integrations in the B-matrix amounts to
the same procedure, and would remove the unphysical sin-
gularities.

6 Conclusions

In summary, we have discussed the phenomenological
description of 3 → 3 elastic scattering of spinless particles.
The 3 → 3 amplitude was described in the isobar represen-
tation. We constructed the unitarity relations for the isobar–
spectator amplitudes for general partial wave quantum num-
bers. For a practical use, the infinite sums are truncated,
leading to the standard isobar approximation. We parameter-
ize the isobar–spectator partial wave amplitudes with the B-
matrix formalism, which automatically satisfies the unitarity.
The B-matrix parameterization explicitly includes the one
pion exchange as a long-range contribution required by uni-
tarity. The short-range part is not constrained by unitarity, and
it can be incorporated by a specific (model-dependent) choice
of the parameterization. This gives to the framework enough
freedom to incorporate QCD resonances. The approach here
differs from Mai et al. [45] in that the 2 → 2 amplitudes
required as input are only needed to be known in the phys-
ical energy regions. The singularities of the OPE directly
impact the analytic structure of the B-matrix kernels, and are
discussed explicitly for the triangle-like diagram. The singu-
larities in the unphysical region of our solution differ from
the Mai et al. ones, and from the Feynman diagram triangle.
This results in a different value for the real part of the ampli-
tudes in the physical region. Further studies are needed to
understand how to remove unexpected singularities from the
B-matrix. We also compare our formalism to the most recent
ones discussed in the literature to extract three-body scat-
tering amplitudes from lattice QCD. In particular, the main
difference with Refs. [29–33] consists in the order of how the
partial wave expansion and the one particle exchange ladder
summation is performed. It remains to be seen whether the
two operations commute, and whether the resulting ampli-
tudes coincide.

Future studies will investigate the continuation to the
unphysical energy sheets. This venue will allow us to con-
strain the role of one particle exchange in generating resonant
structures, as it is assumed in some molecular models for the
XY Z states.
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Appendix A: Kinematics for 3 → 3 reactions

In this Appendix, we discuss some of the technical details
of the kinematics for 3 → 3 processes. We first consider the
system in the CMF, P	 = P′	 = 0. The momenta in terms of
invariants are

|p	
j | = λ1/2(s,m2

j , σ j )

2
√
s

, |p′	
k | = λ1/2(s,m2

k, σ
′
k)

2
√
s

. (A1)

Considering the particles j and k as spectators, then the
recoiling two particles has a total momentum P	

j = −p	
j

and P	 ′
k = −p′	

k , for the initial and final system, respectively.
The invariants t jk and u jk are related to the CMF scattering
angle between spectators via

t jk = (p j − p′
k)

2

= m2
j + m2

k − 1

2s
(s + m2

j − σ j )(s + m2
k − σ ′

k)

+ 1

2s
λ1/2(s, σ j ,m

2
j )λ

1/2(s, σ ′
k,m

2
k)z

	
jk, (A2a)

u jk = ((P − p j ) − p′
k)

2

= σ j + m2
k − 1

2s
(s + σ j − m2

j )(s + m2
k − σ ′

k)

− 1

2s
λ1/2(s, σ j ,m

2
j )λ

1/2(s, σ ′
k,m

2
k)z

	
jk, (A2b)

where z	jk = cos 
	
jk . The cosine of the CMF angle between

particles j and k is

cos θ	
k j = 2s(σ j + m2

k − μ2
jk) − (s + σ j − m2

j )(s + m2
k − σk)

λ1/2(s, σ j ,m2
j )λ

1/2(s, σk,m2
k)

,

(A3)
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where μ jk is the mass of the particle that is neither j nor k.
The remaining variables needed to completely describe

the 3 → 3 process are found by examining the IRFs. The
initial IRF j and final IRF′

k are defined whenP j = 0 andP′
k =

0, respectively. We use the convention that initial and final
state variables are evaluated in their own respective IRF. The
momentum of the first particle in the initial pair is denoted
as q j in the IRF j . Similarly, the first particle in the final pair
is q′

k in the IRF′
k . For example, for the final spectator 3 in

the IRF′
3, q′

3 is the final momentum of particle 1, and in the
IRF1 of spectator 1, q1 is the initial momentum of particle 3.
In terms of invariants, these momenta are

|q′
3| = λ1/2(σ ′

3,m
2
1,m

2
2)

2
√

σ ′
3

, |q1| = λ1/2(σ1,m2
3,m

2
2)

2
√

σ1
. (A4)

The spectator momenta in these frames are

|p′
3| = λ1/2(s, σ ′

3,m
2
3)

2
√

σ ′
3

, (A5)

for the final state and

|p1| = λ1/2(s, σ1,m2
1)

2
√

σ1
, (A6)

for the initial state. The helicity angles of the first particle
in the IRFs are given by χ j and χ ′

k , for the initial and final
states, respectively. The helicity angles are defined w.r.t. the
opposite line-of-flight of the spectator. The azimuthal angles
for the initial and final state are γ j and γ ′

k , respectively. The
azimuthal angles are defined as the angle between the plane
of the two particles in the CMF, and the IRFs, cf. Fig. 3. Note
that the azimuthal angles γ j and γ ′

k are invariant with respect
to the Lorentz boost between the IRFs and CMF, so γ j = γ 	

j
and γ ′

k = γ ′	
k .

The invariant masses of the other two pairs in their respec-
tive frames are related to the helicity angles. For example, in
the IRF′

3,

σ ′
1 = (P − p′

1)
2

= s + m2
1 − 1

2σ ′
3
(s + σ ′

3 − m2
3)(σ

′
3 + m2

1 − m2
2)

+ 1

2σ ′
3
λ1/2(s, σ ′

3,m
2
3)λ

1/2(σ ′
3,m

2
1,m

2
2) cos χ ′

3,

σ ′
2 = (P − p′

2)
2

= s + m2
2 − 1

2σ ′
3
(s + σ ′

3 − m2
3)(σ

′
3 + m2

2 − m2
1)

− 1

2σ ′
3
λ1/2(s, σ ′

3,m
2
3)λ

1/2(σ ′
3,m

2
1,m

2
2) cos χ ′

3.

(A7)

Appendix B: Derivation of 3 → 3 unitarity relations

In this appendix we derive the general elastic unitarity rela-
tions for the 3 → 3 elastic scattering of distinguishable spin-
less particles [40,41,50]. For convenience, in this section we
adopt the notation that the normalization of a single parti-
cle state is 〈p′

k |p j 〉 = (2π)3 2ω jδ
(3)(p′

k − p j )δ jk ≡ δ̃(p′
k −

p j )δ jk , and the invariant measure is d̃ p j ≡ d3p j/(2π)3 2ω j .
The S-matrix is a unitary operator, S†S = 1, which implies
that T − T † = iT †T , where S = 1 + iT . We consider the
system in an energy range above the three particle threshold,
but below the first inelastic threshold, sth ≤ s < sinel . Tak-
ing matrix elements of this operator between initial and final
states |p〉 and |p′〉, and inserting the completeness relation
1 = ∫

d̃ p′′
1 d̃ p

′′
2 d̃ p

′′
3 |p′′〉 〈p′′|, gives the unitarity relation

〈p′| T |p〉 − 〈p′| T † |p〉
= i

∫

d̃ p′′
1 d̃ p

′′
2 d̃ p

′′
3 〈p′| T † |p′′〉 〈p′′| T |p〉 .

(B1)

Since T = Td + Tc, where Td = ∑
j 1 j ⊗ T ( j), then the

matrix element is

〈p′| T |p〉 = 〈p′| Tc |p〉
+

∑

j

δ̃(p′
j − p j ) 〈p′| T ( j) |p〉 . (B2)

The matrix elements 〈p′| T † |p〉 are equal to 〈p′| T |p〉∗ by
the property of Hermitian analyticity [50,66]. Thus the left
hand side of Eq. (B1) gives the imaginary part of the matrix
element,

LHS = 2i Im 〈p′| Tc |p〉
+

∑

j

δ̃(p′
j − p j )2i Im 〈p′| T ( j) |p〉 . (B3)

The right hand side of Eq. (B1) is evaluated by substituting
Eq. (B2) and expanding the product into four terms,

RHS = i
∫

d̃ p′′
1 d̃ p

′′
2 d̃ p

′′
3

[

〈p′| T †
c |p′′〉 〈p′′| Tc |p〉

+
∑

k

δ̃(p′′
k − p′

k) 〈p′| T (k) † |p′′〉 〈p′′| Tc |p〉

+
∑

j

δ̃(p′′
j − p j ) 〈p′| T †

c |p′′〉 〈p′′| T ( j) |p〉

+
∑

j,k

δ̃(p′′
k − p′

k )̃δ(p
′′
j − p j )

× 〈p′| T (k) † |p′′〉 〈p′′| T ( j) |p〉
]

.

(B4)
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The fourth term contains two cases, one where j = k, and
one where j �= k, so we split the sum into the two distinct
terms

∑

j,k

δ̃(p′′
k − p′

k )̃δ(p
′′
j − p j ) 〈p′| T (k) † |p′′〉 〈p′′| T ( j) |p〉

=
∑

j

δ̃(p′′
j − p′

j )̃δ(p
′′
j − p j ) 〈p′| T ( j) † |p′′〉 〈p′′| T ( j) |p〉

+
∑

j,k
j �=k

δ̃(p′′
k − p′

k )̃δ(p
′′
j − p j ) 〈p′| T (k) † |p′′〉 〈p′′| T ( j) |p〉 .

(B5)

We can write δ̃(p′′
j − p′

j )̃δ(p
′′
j − p j ) = δ̃(p′

j − p j )̃δ(p′′
j −

p j ) in the first term in Eq. (B5), thus we can identify the
disconnected unitarity relation as being proportional to the
spectator singularity δ̃(p′

j − p j ),

2 Im 〈p′| T ( j) |p〉 =
∫

d̃ p′′
j1 d̃ p

′′
j2 〈p′| T ( j) † |p′′〉 〈p′′| T ( j) |p〉 ,

(B6)

and the connected unitarity relation

2 Im 〈p′| Tc |p〉
=

∫

d̃ p′′
1 d̃ p

′′
2 d̃ p

′′
3

[

〈p′| T †
c |p′′〉 〈p′′| Tc |p〉

+
∑

k

δ̃(p′′
k − p′

k) 〈p′| T (k) † |p′′〉 〈p′′| Tc |p〉

+
∑

j

δ̃(p′′
j − p j ) 〈p′| T †

c |p′′〉 〈p′′| T ( j) |p〉

+
∑

j,k
j �=k

δ̃(p′′
k − p′

k )̃δ(p
′′
j − p j ) 〈p′| T (k) † |p′′〉 〈p′′| T ( j) |p〉

]

.

(B7)

The momenta with j1 and j2 in Eq. (B6) identify the first and
second particle in the pair. Substituting Eqs. (2) and (3) into
Eqs. (B6) and (B7), and evaluating the phase space integrals
yield the unitarity relations Eqs. (6) and (8).

Appendix C: Derivation of PWIS unitarity relations

Using the assumption of the isobar model Eq. (15), we derive
a set of unitarity relations for the amputated PWIS ampli-
tudes. Inserting Eq. (15) into the unitarity relations Eq. (8)
leads to a unitarity relation for the Ak j isobar–spectator
amplitude,

Im Ak j (p′; p)

= 1

π(32π2)2

∑

n

∫ (
√
s−mn )

2

σ
(th)
n

dσ ′′
n

|q′′
n ||p′′	

n |
√

σ ′′
n
√
s

∫

dP̂′′	
n

×
∫

dq̂′′
n A∗

nk(p
′′; p′)Anj (p′′; p)
(s − sth)

+ 1

π(32π2)2

∑

n,r
n �=r

∫ (
√
s−mn )

2

σ
(th)
n

dσ ′′
n

|q′′
n ||p′′	

n |
√

σ ′′
n
√
s

∫

dP̂′′	
n

×
∫

dq̂′′
n A∗

rk(p
′′; p′)Anj (p′′; p)
(s − sth)

+ ρ2(σ
′
k)

∫

dq̂′′
k F

∗
k (p′′; p′)Ak j (p′′; p)|p′′

k=p′
k

(σ ′

k − σ
(th)
k )

+ ρ2(σ j )

∫

dq̂′′
j A

∗
k j (p

′′; p′)|p′′
j=p j

F j (p′′; p)
(σ j − σ
(th)
j )

+ ρ2(σ
′
k)

∑

r
k �=r

∫

dq̂′′
k F

∗
k (p′′; p′)Ar j (p′′; p)|p′′

k=p′
k

(σ ′

k − σ
(th)
k )

+ ρ2(σ j )
∑

n
n �= j

∫

dq̂′′
j A

∗
kn(p

′′; p′)|p′′
j=p j

F j (p′′; p)
(σ j − σ
(th)
j )

+ π δ(u jk − μ2
jk)F

∗
k (p′′; p′)|p′′

j=p j
F j (p′′; p)|p′′

k=p′
k
(1 − δ jk),

(C1)

where we wrote the three-body phase space factor in the first
two terms,

1

2(2π)5

∫
d3p′′

1

2ω′′
1

d3p′′
2

2ω′′
2

d3p′′
3

2ω′′
3

δ(4)(P ′′ − P)

= 1

π(32π2)2

∫ (
√
s−mn)

2

σ
(th)
n

dσ ′′
n

|q′′
n ||p′′ 	

n |
√

σ ′′
n
√
s

∫

dP̂′′	
n

∫

dq̂′′
n,

(C2)

where P̂′′	
n is the orientation of the isobar associated with

spectator n in the intermediate state, and q̂′′
n is the orienta-

tion of the first particle in the intermediate isobar in its rest
frame. The terms in the intermediate state have been split
up into two groups, diagonal and off-diagonal. The diagonal
terms in Eq. (C1) (first, third, and fourth line) are terms such
that the isobar propagates in the intermediate state without
breaking up. The off-diagonal terms (second, fifth, and sixth
line in Eq. (C1)) are ones where the isobar breaks up in the
intermediate state, and combines with the spectator to form
a new isobar. Figure 18 shows the diagonal and off-diagonal
topologies in the intermediate state.

The partial wave expansion Eq. (16) can be derived by
considering the expansion in three steps. The first step is to
perform the expansion of the isobars into definite spin and
helicity,

Ak j =
∑

s′k ,λ′
k

∑

s j ,λ j

Y
s′k
λ′
k
(̂q′

k)As′kλ′
k ;s jλ j

Y
s j ∗
λ j

(̂q j ), (C3)
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Fig. 18 Diagrammatic
representation for the
isobar–spectator unitarity
relation in Eq. (C1)

where λ j , λ′
k are defined along the direction of the isobar

in the CMF. The expansion removes the q̂′
k and q̂ j depen-

dence in the helicity amplitude As′kλ′
k ;s jλ j

. Second, the helic-
ity amplitude can be expanded in partial waves,

As′kλ′
k ;s jλ j

=
∑

J

N 2
J AJ

s′kλ′
k ;s jλ j

(σ ′
k, s, σ j )

×
∑

M

D(J ) ∗
Mλ′

k
(P̂′	

k )D(J )
Mλ j

(P̂	
j ),

(C4)

where N 2
J = (2J +1)/4π . Finally, since parity is not a good

quantum number in the helicity basis, we convert the helicity
partial wave amplitudes into LS partial wave amplitudes,

AJ
�′
k s

′
k ;� j s j

=
∑

λ′
k ,λ j

C J
�′
k s

′
kλ

′
k
C J

� j s jλ j
AJ

s′kλ′
k ;s jλ j

, (C5)

where C J
�sλ = √

(2� + 1)/(2J + 1) 〈Jλ|�0sλ〉, and has the
completeness relation

∑

λ

C J
�sλC

J
�′s′λ = δJ J ′δ��′δss′ . (C6)

Combining Eqs. (C3), (C4), and (C5) yields the partial wave
expansion Eq. (16). We apply the expansion to Eq. (C1) to
obtain the PWIS unitarity relations. The diagonal terms are
most directly evaluated using the orthonormality condition,
Eq. (14). Since p′′

k = p′
k in the third term, and p′′

j = p j in the
fourth term, then the intermediate isobar orientation is iden-
tical to that of the final and initial state isobar, respectively.
The integrations over q̂′

k and q̂ j can be performed by writing
Eq. (9) using the spherical harmonic addition theorem.

The off-diagonal terms are more challenging, as they
involve two different angles in the intermediate state, thus
the rotational functions will not directly integrate out. We can

make use of the group properties of rotations to simplify the
intermediate rotational functions to a recoupling coefficient.
The off-diagonal terms on the right-hand side of Eq. (C1)
under the expansion Eq. (16) will contain terms of the form

D(sn) ∗
λn0 (̂qn)D(J ) ∗

Mλn
(P̂	

n)D
(J )
Mλr

(P̂	
r )D

(sr )
λr0 (̂qr )

= d(sn)
λn0 (cos χn)D(J ) ∗

Mλn
(R	

n)D
(J )
Mλr

(R	
r )d

(sr )
λr0 (cos χr ),

(C7)

where n �= r , and we combined the terms with γn and the ori-
entation of the isobar to the set of angles R	

n = (α	
n, β

	
n , γ

	
n ),

where α	
n is the azimuthal angle of the isobar and β	

n is the
polar angle, w.r.t. some fixed coordinate system. Note that
since we boost along the direction of the isobar to go between
CMF and IRFs, γn = γ 	

n . The angles R	 are the Euler angles
describing the orientation of the three particles in their CMF.
Since these two sets of angles describe the same configura-
tion of three particles, with the only difference being which
particle is the spectator, the angles R	

n and R	
r must be related

by a rotation.
Each set of angles can be found by rotating from some

initial standard configuration. We define the standard config-
uration such that the three particle system lies in the xz-plane,
where the spectator momenta is along the negative z-axis, cf.
Fig. 19. Then, the difference in the Euler angles is a rotation
about the y-axis,

R	
r = R	

nr
	
nr , (C8)

where r	
nr is the rotation relating the two standard con-

figurations [44,49]. Here, the rotation is about the y-axis,
r	
nr = Ry(θ

	
nr ), where θ	

nr is given in Eq. (A3). Thus, the
rotation is a function of the invariant masses of the isobars,
θ	
nr = θ	

nr (σn, s, σr ). Note that the inverse rotation is given
by r	

rn = r	−1
nr .
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(a) (b)

Fig. 19 The standard configurations considering a particle 1 as the
spectator and b particle 3 as the spectator

Therefore, we can relate the two WignerD-matrices using
the group addition property

D(J )
Mλr

(R	
r ) =

∑

λn

D(J )
Mλn

(R	
n)D

(J )
λnλr

(r	
nr ). (C9)

The integration over the Euler angles in the intermediate state
can be performed, leaving one rotation that recouples the
isobars,

∫

dR	
n D

(J ) ∗
Mλn

(R	
n)D

(J )
Mλr

(R	
r )

=
∑

λ

∫

dR	
n D

(J ) ∗
Mλn

(R	
n)D

(J )
Mλ(R

	
n)D

(J )
λλr

(r	
nr )

= 8π2

2J + 1
d(J )
λnλr

(cos θ	
nr ).

(C10)

where dR	
n = dα	

nd cos β	
ndγ 	

n .
Since the angle χ can be written in terms of the invariant

masses of the isobars, it is advantageous to write the phase
space in terms of the Dalitz variables,

1

(2π)5

∫
d3p′′

1

2ω′′
1

d3p′′
2

2ω′′
2

d3p′′
3

2ω′′
3

δ(4)(P ′′ − P)

= 1

πs (32π2)2

∫ (
√
s−m2

n)
2

σ
(th)
n

dσ ′′
n

∫ σ
(+)
r

σ
(−)
r

dσ ′′
r

∫

dR′′	
n ,

(C11)

where we used

dσ ′′
r = 2

√
s

√
σ ′′
n

|q′′
n ||p′′	

n | d cos χ ′′
n , (C12)

to rewrite Eq. (C2). The Dalitz region is bounded by σ
(th)
n ≤

σ ′′
n ≤ (

√
s − mn)

2 and σ
(−)
r ≤ σ ′′

r ≤ σ
(+)
r , where σ

(±)
r =

σ
(±)
r (σ ′′

n ) is found by the physical boundary cos χ ′′
n = ±1,

e.g. for n = 1 and r = 3, then

σ
(±)
3 = m2

1 + m2
2 − 1

2σ ′′
1

(σ ′′
1 − s + m2

1)(σ
′′
1 + m2

2 − m2
3)

± 1

2σ ′′
1

λ1/2(s, σ ′′
1 ,m2

1)λ
1/2(σ ′′

1 ,m2
2,m

2
3).

(C13)

The last piece needed is the partial wave projection of the
OPE term. To evaluate the partial wave projection, we write
the delta-function as

δ(u jk − μ2
jk) = 1

2|p′	
k ||p	

j |
δ(z	k j − zk j ), (C14)

where zk j is defined in Eq. (45). Then, the completeness
relation for the delta-function allows us to write Eq. (C14) as

δ(z	k j − zk j ) =
∑

J

(
2J + 1

2

)

d(J )

λ′λ (z	k j )d
(J )

λ′λ (zk j ), (C15)

where λ and λ′ are arbitary, and thus we may choose them to
align with λ j and λ′

k , respectively. Then, d(J )

λ jλ
′
k
(z	k j ) is written

in terms of the angles P̂	
j and P̂′	

k , via the group addition
property,

d(J )

λ′λ (z	k j ) =
∑

M

D(J ) ∗
Mλ′ (P̂′	

k )D(J )
Mλ(P̂

	
j ). (C16)

Finally, the 2 → 2 amplitudes are written using Eq. (9)

F∗
k Fj = f ∗

s′k
(σ ′

k) fs j (σ j )Ps′k (̂q j · q̂′
k)Ps j (̂q j · q̂′

k)

= f ∗
s′k

(σ ′
k) fs j (σ j )

∑

λ′
k

D(s′k ) ∗
λ′
k0 (̂q′

k)D
(s′k )
λ′
k0 (̂q j )

×
∑

λ j

D(s j ) ∗
λ j0

(̂q
′
k)D

(s j )
λ j0

(̂q j ),

(C17)

where q̄ j is the momentum of the first particle in the final
state in the IRF j , and q̄′

k is the momentum of the first particle
in the initial state in the IRF′

k . Since p′′
k = p′

k and p′′
j = p j ,

then the azimuthal angles are identical, γ ′
k = γ j . The helicity

angles of the first particle in the opposite frames are defined
as χ j and χ ′

k , cf. Fig. 20. However, we can easily identify

that χ ′
k = χ ′

k and χ j = χ ′
k since the intermediate spectator

is aligned for the OPE and the IRFs merely differ by the
rotation about z.
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Fig. 20 Relation between the initial and final IRF planes for the OPE
amplitude

Combining all of this together yields the PWIS unitarity
relations,

Im AJ
�′
k s

′
k ;� j s j

(σ ′
k , s, σ j )

= 1

π(32π2)2

∑

n

∑

�′′
n ,s

′′
n

∫ (
√
s−mn)

2

σ
(th)
n

dσ ′′
n

|q′′
n ||p′′	

n |
√

σ ′′
n
√
s

× AJ ∗
�′′
ns

′′
n ;�′

k s
′
k
(σ ′′

n , s, σ ′
k)AJ

�′′
ns

′′
n ;� j s j

(σ ′′
n , s, σ j )
(s − sth)

+ 1

2πs(32π2)2

∑

n,r
n �=r

∑

�′′
n ,s

′′
n

∑

�′′
r ,s′′r

∫ (
√
s−mn)

2

σ
(th)
n

dσ ′′
n

×
∫ σ

(+)
r (σ ′′

n )

σ
(−)
r (σ ′′

n )

dσ ′′
r

× C J
�′′
ns

′′
n ;�′′

r s
′′
r
(σ ′′

n , s, σ ′′
r )AJ ∗

�′′
r s

′′
r ;�′

k s
′
k
(σ ′′

r , s, σ ′
k)

× AJ
�′′
ns

′′
n ;� j s j

(σ ′′
n , s, σ j )
(s − sth)

+ ρ2(σ
′
k) f ∗

s′k
(σ ′

k)AJ
�′
k s

′
k ;� j s j

(σ ′
k , s, σ j )

+ ρ2(σ j )AJ ∗
�′
k s

′
k ;� j s j

(σ ′
k , s, σ j ) fs j (σ j )

+ 1

64π2
√
s

1

|p′ 	
k |

∑

r
r �=k

∑

�′′
r ,s′′r

∫ (
√
s−mr )

2

σ
(th)
r

dσ ′′
r

× C J
�′
k s

′
k ;�′′

r s
′′
r
(σ ′

k , s, σ
′′
r ) f ∗

s′k
(σ ′

k)AJ
�′′
r s

′′
r ;� j s j

(σ ′′
r , s, σ j )

× 
(σ ′
k − σ

(th)
k )

+ 1

64π2
√
s

1

|p	
j |

∑

n
n �= j

∑

�′′
n ,s

′′
n

∫ (
√
s−mn)

2

σ
(th)
n

dσ ′′
n

× C J
�′′
ns

′′
n ;� j s j

(σ ′′
n , s, σ j ) fs j (σ j )AJ ∗

�′
k s

′
k ;�′′

ns
′′
n
(σ ′

k , s, σ
′′
n )

× 
(σ j − σ
(th)
j )

+ π

2|p	
j ||p′	

k | f ∗
s′k

(σ ′
k) fs j (σ j ) C J

�′
k s

′
k ;� j s j

(σ ′
k , s, σ j )

× (1 − δ jk)
(1 − |zk j |2),
(C18)

where the recoupling coefficients are defined in Eq. (21).
Notice that the first, third, and fourth term involve direct
channel exchanges in the intermediate state, while the others
involve rescattering between cross channels.

Finally, we introduce the amputated amplitude ÃJ
�′
k s

′
k ;� j s j

,

defined in Eq. (19). The amputation eliminates the unitarity
cut from the2 → 2 amplitude in the two particle subsystem in
the third and fourth term of Eq. (C18). Taking the imaginary
part of Eq. (19),

Im
[
fs′k (σ

′
k)Ã�′

k s
′
k ;� j s j (σ

′
k, s, σ j ) fs j (σ j )

]

= Im
[
fs′k (σ

′
k)

]
Ã�′

k s
′
k ;� j s j (σ

′
k, s, σ j ) fs j (σ j )

+ f ∗
s′k

(σ ′
k) Im

[
Ã�′

k s
′
k ;� j s j (σ

′
k, s, σ j )

]
fs j (σ j )

+ f ∗
s′k

(σ ′
k)Ã∗

�′
k s

′
k ;� j s j

(σ ′
k, s, σ j ) Im

[
fs j (σ j )

]
.

(C19)

The amputation removes the contribution from the isobar
amplitude unitarity cut using Eq. (10), leaving only rescat-
tering corrections to the isobar shape. We then arrive at the
amputated PWIS unitarity relations Eq. (20).

Appendix D: The B-matrix and unitarity

In this appendix, we demonstrate that the B-matrix parame-
terization satisfies the unitarity relations Eq. (20), specifically
for Ã13. Recall that the B-matrix parameterization for Ã13

is

Ã13(s) = B̃13(s) + B̃13(s)τ3(s)Ã33(s), (D1)

which has an imaginary part

Im Ã13(s) = Im B̃13(s)

+ Im B̃13(s)τ3(s)Ã33(s)

+ B̃∗
13(s) Im τ3(s)Ã33(s)

+ B̃∗
13(s)τ

∗
3 (s) Im Ã33(s).

(D2)

From Eqs. (25) and (10),

Im τn(s, σn) = ρ3(s, σn)ρ2(σn)| fsn (σn)|2, (D3)

and since R̃k j is real, Im B̃k j = Im Ẽk j , which is known from
projecting Eq. (27) into partial waves.

The imaginary part of Ã33 is found by using Eq. (33b),

Im Ã33(s) = Im [1 − K33(s)τ3(s)]
−1K33(s)

+ [
1 − K∗

33(s)τ
∗
3 (s)

]−1 Im K33(s),
(D4)
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where the kernel K33(s) = B̃31(s)τ1(s)B̃13(s) . The imag-
inary part of [1 − K33(s)τ3(s)]−1 is found by the identity
Im

[
A−1A

] = Im A−1A + A∗−1 Im A = 0, giving

Im [1 − K33(s)τ3(s)]
−1 = [

1 − K∗
33(s)τ

∗
3 (s)

]−1

× Im [K33(s)τ3(s)]

× [1 − K33(s)τ3(s)]
−1 ,

(D5)

with Im [K33(s)τ3(s)] = Im K33(s)τ3(s)+K∗
33(s) Im τ3(s).

Combining Eqs. (D2), (D4), and (D5) give

Im Ã13(s) = Im B̃13(s)

+ Im B̃13(s)τ3(s)Ã33(s)

+ B̃∗
13(s) Im τ3(s)Ã33(s)

+ B̃∗
13(s)τ

∗
3 (s)

[
1 − K∗

33(s)τ
∗
3 (s)

]−1

× Im K33(s)τ3(s) [1 − K33(s)τ3(s)]
−1 K33(s)

+ B̃∗
13(s)τ

∗
3 (s)

[
1 − K∗

33(s)τ
∗
3 (s)

]−1 K∗
33(s)

× Im τ3(s) [1 − K33(s)τ3(s)]
−1 K33(s)

+ B̃∗
13(s)τ

∗
3

[
1 − K∗

33(s)τ
∗
3 (s)

]−1 Im K33(s).

(D6)

The imaginary part of the kernel is

Im K33(s) = Im B̃31(s)τ1(s)B̃13(s)

+ B̃∗
31(s) Im τ1(s)B̃13(s)

+ B̃∗
31(s)τ

∗
1 (s) Im B̃13(s).

(D7)

We use Eq. (36) to shift the last three lines of Eq. (D6) in
terms K11 = B̃13(s)τ3(s)B̃31(s),

Im Ã13(s) = Im B̃13(s)

+ Im B̃13(s)τ3(s)Ã33(s)

+ B̃∗
13(s) Im τ3(s)Ã33(s)

+ [
1 − K∗

11(s)τ
∗
1 (s)

]−1 B̃∗
13(s)τ

∗
3 Im B̃31(s)τ1(s)

× B̃13(s)τ3(s) [1 − K33(s)τ3(s)]
−1 K33(s)

+ [
1 − K∗

11(s)τ
∗
1 (s)

]−1 K∗
11(s) Im τ1(s)

× B̃13(s)τ3(s) [1 − K33(s)τ3(s)]
−1 K33(s)

+ [
1 − K∗

11(s)τ
∗
1 (s)

]−1 K∗
11(s)τ

∗
1 (s)

× Im B̃13(s)τ3(s) [1 − K33(s)τ3(s)]
−1 K33(s)

+ B̃∗
13(s)τ

∗
3 (s)

[
1 − K∗

33(s)τ
∗
3 (s)

]−1 K∗
33(s)

× Im τ3(s) [1 − K33(s)τ3(s)]
−1 K33(s)

+ [
1 − K∗

11(s)τ
∗
1 (s)

]−1 B̃∗
13(s)τ

∗
3 (s) Im B̃31(s)τ1(s)B̃13(s)

+ [
1 − K∗

11(s)τ
∗
1 (s)

]−1 K∗
11(s) Im τ1(s)B̃13(s)

+ [
1 − K∗

11(s)τ
∗
1 (s)

]−1 K∗
11(s)τ

∗
1 (s) Im B̃13(s).

(D8)

Grouping common terms in Im τn and Im B̃k j , and identify-
ing the forms of the amplitudes from Sect. 4, yields

Im Ã13(s) = Im B̃13(s)

+ Im B̃13(s)τ3(s)Ã33(s)

+ Ã∗
11(s)τ

∗
1 (s) Im B̃13(s)

+ Ã∗
13(s) Im τ3(s)Ã33(s)

+ Ã∗
11(s) Im τ1(s)Ã13(s)

+ Ã∗
11(s)τ

∗
1 (s) Im B̃13(s)τ3(s)Ã33(s)

+ Ã∗
13(s)τ

∗
3 (s) Im B̃31(s)τ1(s)Ã13(s).

(D9)

Substituting for the imaginary parts of τn and B̃k j gives the
PWIS unitarity relation for Ã13. The unitarity relations for
the other amplitudes can be found in a similar manner.

Appendix E: The Feynman triangle diagram

For reference, we state the basic formulae for computing the
Feynman triangle diagram, cf. Ref. [48]. The perturbative
Feynman diagram has the form

TF (s) = i
∫

d4k

(2π)4

1

D1D2D3
, (E1)

shown in Fig. 21, where the denominator is the product of
internal propagators,

D1D2D3 =
[
k2 − μ2

jk + iε
]

×
[
(k + P1)

2 − m2
3 + iε

]

×
[
(k − p1)

2 − M2 + iε
]
.

(E2)

Using the Feynman parameterization and standard loop
integration techniques, the Feynman diagram has the form

TF (s) = 1

16π2

∫ 1

0
dα1

∫ 1−α1

0
dα2 F(s;α1, α2), (E3)

s

m3, k + P1
σ1, P1

m1, p1

μ, k

M, k − p1

Fig. 21 The triangle diagram with loop momentum labels
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s′
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M2 ≥ σ
(b)
3

σ
(a)
3 ≤ M2 ≤ σ

(b)
3

σ
(th)
3 M2 σ

(a)
3

ΓT

ΓT

ΓT

(M + m3)2

(M + m3)2

(M + m3)2

(M − m3)2

(M − m3)2

(M − m3)2

s
(−)
31

s
(−)
31

s
(−)
31

s
(+)
31

s
(+)
31

s
(+)
31

s

(a)

(b)

(c)

Fig. 22 Contours for dispersive triangle Eq. (56) shown in red, and the
integrand cuts. The three cases are a M2 ≥ σ

(b)
3 , b σ

(a)
3 ≤ M2 ≤ σ

(b)
3 ,

and c σ
(th)
3 ≤ M2 ≤ σ

(a)
3 . Case a corresponds to the usual triangle

singularity, which occurs since the OPE branch points pinch the inte-
gration region. Case c happens when the initial state of the OPE has a
higher threshold then the intermediate state. The blue region indicates
the physical region from the initial threshold. Note that a triangle sin-
gularity does not occur in this case and the integration is not pinched

where

F−1(s;α1, α2) = M2α1 + m2
3α2 + μ2(1 − α1 − α2)

+ m2
1α1(α1 − 1) + σ1α2(α2 − 1)

− (s − σ1 − m2
1)α1α2 − iε.

(E4)

The remaining integrals over the Feynman parameters can be
computed either numerically, or by analytically performing
the integral over α2, then numerically computing the remain-
ing integral over α1.

Alternatively, the Feynman triangle can be written with a
dispersive representation in s using the Cutkosky rules [48],

TF (s) =
∫

�T

ds′ ρ3(s′, M2)Ẽ13(M2, s′, σ1)

s′ − s − iε
, (E5)

where �T is the path from the threshold (M + m3)
2 to ∞,

ρ3(s, M2) is given by Eq. (26), Ẽ13 is given by Eq. (44), and
the S-wave amplitudes are normalized according to Eq. (16).
The phase space contributes branch point singularities from
the threshold and pseudothreshold, (M ± m3)

2, and a pole
at s = 0. The OPE has branch points s = s(±)

31 near the

integration region. Following the discussion in Sect. 5.1, the
OPE branch points give us the following scenarios:

(a) M2 ≥ σ
(b)
3 . The RPE branch points pinch the integra-

tion region which starts at s = (M + m3)
2. Figure 22a

shows the integrand branch cuts and the dispersive con-
tour. The RPE branch point s(−)

31 lie in the unphysical
sheet close to threshold, causing the known as the trian-
gle singularity [50,61,62,65]. The triangle singularity
produces an extra threshold in the physical region above
the threshold s = (M+m3)

2, and is associated with real
particle exchange in the intermediate state. The location
of the triangle singularity occurs at

stri = 1

2m2
2

[

(m2
3 − σ1)(m

2
1 − M2) − m4

2

+ m2
2(m

2
3 + m2

1 + σ1 + M2)

± λ1/2(m2
2,m

2
3, σ1)λ

1/2(m2
2,m

2
1, M

2)

]

.

(E6)

(b) σ
(a)
3 ≤ M2 ≤ σ

′(b)
3 . The RPE branch points are both

above the real axis, and cause no additional singular
behavior. Figure 22b illustrates this case.

(c) σ
(th)
3 ≤ M2 ≤ σ

(a)
3 . The RPE branch points are again

on opposite sides of the real axis. However, the integra-
tion region begins below the location where the RPE cut
crosses the real axis. This is due to the fact that the initial
state has a higher threshold then the intermediate state,
so the physical region is above the RPE crossing loca-
tion. This is illustrated in Fig. 22 where the blue region
indicates the physical region starting at the initial state
threshold, and the integration contour is a path around
the RPE branch point s(−)

31 . No singularity occurs in this
region as the RPE branch points do not pinch the inte-
gration region.

Notice that in contrast to the B-matrix triangle, Eq. (54),
the dispersive triangle moves all the singularities from the
phase space and OPE to the unphysical sheet. Thus, the only
singularity present on the physical sheet is the unitarity cut
starting at s = (M + m3)

2.
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