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Abstract The ability to describe strongly interacting mat-
ter at finite temperature and baryon density provides the
means to determine, for instance, the equation of state of
QCD at non-zero baryon chemical potential. From a theo-
retical point of view, direct lattice simulations are hindered
by the numerical sign problem, which prevents the use of
traditional methods based on importance sampling. Despite
recent successes, simulations using the complex Langevin
method have been shown to exhibit instabilities, which cause
convergence to wrong results. We introduce and discuss the
method of dynamic stabilisation (DS), a modification of the
complex Langevin process aimed at solving these instabil-
ities. We present results of DS being applied to the heavy-
dense approximation of QCD, as well as QCD with stag-
gered fermions at zero chemical potential and finite chemi-
cal potential at high temperature. Our findings show that DS
can successfully deal with the aforementioned instabilities,
opening the way for further progress.

1 Introduction

Strongly interacting matter at finite baryon number density
and temperature has been, and remains, an active research
subject to understand QCD under extreme conditions. Fea-
tures of QCD are typically studied in thermodynamic equilib-
rium, where the theory has two external parameters: the tem-
perature 7" and and baryon chemical potential pp. Varying
those allows the exploration of the QCD phase diagram in the
T—up plane. Known phases include ordinary nuclear matter
and the quark-gluon plasma (QGP), with a colour supercon-
ducting phase expected at large up. Of great appeal are also
the boundaries that mark the transition between these phases.
This phase diagram has a fascinating structure, which is of
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significance for the study of hot and/or dense systems, such
as the early universe and heavy-ion collisions.

Heavy-ion collisions have been successfully used to inves-
tigate the high temperature behaviour of QCD at the relativis-
tic heavy ion collider (RHIC) and the large hadron collider
(LHC). These facilities, together with future ones, namely
the Facility for Antiproton and Ion Research (FAIR) and
the nuclotron-based ion collider facility (NICA), will fur-
ther explore the phase diagram of QCD. They will allow
the study of hadronic interactions under extreme conditions,
such as higher baryonic density or very high temperatures.

From a theoretical perspective, some insight, at high tem-
perature or density, can be gained from perturbation the-
ory. A full picture of the phase diagram, however, requires
non-perturbative methods. Recent lattice results at non-zero
temperature include [1,2]. Typically, lattice QCD simula-
tions at finite baryon/quark density are carried out using the
grand canonical ensemble, with the chemical potential intro-
duced as conjugate variable to the appropriate number den-
sity (quark, baryon, etc). At finite quark chemical potential,
the simulations have to overcome the infamous sign prob-
lem—a complex weight in the Euclidean path integral. This
imposes severe limitations on the applicability of standard
numerical methods [3,4]. Many approaches to deal with the
sign problem have been proposed, including the complex
Langevin method [5-8], strong coupling expansions [9-11],
Lefschetz thimbles [12—16], holomorphic gradient flow [17],
density of states [18—21] and sign-optimized manifolds [22].

The complex Langevin (CL) method is an extension of the
stochastic quantisation technique [23] to a complexified con-
figuration space, without requiring a positive weight [5,7,8].
The complex nature of the method allows the circumvention
of the sign problem, even when it is severe [24-26]. How-
ever, convergence to wrong limits has been observed both at
Euclidean time [27-31], and real time [32,33]. These cases
of incorrect convergence can be identified a posteriori, based
on the theoretical justification of the method [34-37]. Further
discussions on the criteria for correct convergence of com-
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plex Langevin can be found in Ref. [38,39]. Moreover, gauge
cooling (GC) [40] has improved the convergence of com-
plex Langevin simulations for gauge theories. The effects of
gauge cooling on the complex Langevin method have been
studied analytically in [41]. Investigations of gauge cooling
in random matrix theories has been performed in [42,43].

Complex Langevin simulations, combined with gauge
cooling, have successfully been used in QCD with a hop-
ping expansion to all orders [44], with fully dynamical stag-
gered fermions [45] and to map the phase diagram of QCD
in the heavy-dense limit (HDQCD) [46]. In that work, we
noticed that, despite the use of gauge cooling, instabilities
might appear during the simulations. Here, we introduce and
elaborate on our method of dynamic stabilisation (DS), which
has been constructed to deal with these instabilities.

This paper is organised as follows: in Sect. 2 we review
the complex Langevin method. Section 3 motivates and intro-
duces the method of DS. Tests of this procedure, applied to
QCD in the limit of heavy-dense quarks (HDQCD) [47,48]
are discussed in Sects. 4 and 5. Section 6 shows the outcome
of applying dynamic stabilisation to simulations with stag-
gered quarks at zero chemical potential and at finite chemical
potential and high temperatures. We summarise our findings
in Sect. 7. Appendices A and B review the HDQCD approxi-
mation and the staggered formulation of lattice quarks, which
have been used in our investigations.

Preliminary results on DS have already appeared in
Refs. [49-51].

2 Complex Langevin

We study QCD by employing the method of stochastic quan-
tisation [23], with which quantum expectation values can be
computed using Langevin dynamics. These expectation val-
ues are evaluated as averages over a stochastic process, in
which dynamical variables are evolved over a fictitious time
0. Notably, importance sampling does not enter in this for-
mulation. The partition function for lattice QCD in the grand
canonical ensemble, where the (quark) chemical potential ©
couples to the quark number, is

Z:fDUDwDEe—SF—SYM E/DUe‘S, (1

where, for the second equality, the bilinear quark fields have
been integrated out. U represents the gauge links, Syy is
the Yang-Mills action, Sp = [ d*xy My is the fermion
action with M being the fermion matrix, which depends on
the gauge links and the chemical potential, and S = Sym —
Indet M.

We consider a SU(3) gauge theory with links Uy, defined
on a lattice of spatial volume N7 and temporal extent N;. A
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Langevin update, using a first-order discretisation scheme in
the Langevin time 6 = ne, is given by [52]:

U (0 + &) = exp [ir® (K2, + Ven? )] U (@), (2)

where A¢ are the Gell-Mann matrices, with Tr[A9A%] = 289?,
and n¢ ,, are Gaussian white noise fields satisfying

M) =0, ¢, 0. =288, 3)

The Langevin drift, K¢

Yo is obtained from the action S,

K{,=-D%,8=-D;,Sym +Tr [M’lej’,,M] . @

where DY , is the gauge group derivative

DL SW) = o= f (60, )

a=0

The trace in the fermionic contribution to the drift is usu-
ally evaluated stochastically, see Sect. 6 for more details and
alternative methods.

Poles may appear in the drift in the presence of quarks,
when det M = 0 and M ~! does not exist. In some situations
this has a negative impact on the results [30,53,54], but, as
far as understood, this is not the case in HDQCD [44,55].
For further reference, we refer the reader to the extended
discussion on the issues arising from the branch cuts of the
logarithm of the determinant [53-56]. In [57] it was clarified
that it is the drift’s behaviour around the poles, rather than
the branch cuts, that affects the reliability of the complex
Langevin method. It is also necessary to employ adaptive
algorithms to change the Langevin step size ¢, in order to
avoid runaways due to large values of the drift [58].

When the sign problem is present, the Langevin drift is
complex. This results in the exploration of a larger config-
uration space. The sign problem is circumvented by allow-
ing the gauge links to take values in enlarged manifolds [5—
8,24,34,48]. In the case of QCD, the gauge group extends
from SU(3) to SL(3, C). The “distance” from the unitary
manifold can be used to identify these trajectories. A pos-
sible measurement of this distance is given by the unitarity
norm:

1 2
d=5 ;Tr [UMU;v _ 11] >0, (6)

where @ = NN, is the four dimensional lattice volume.
This norm is invariant under SU(3) gauge transformations
and vanishes only if all links U, , are unitary.

It has been shown that simulations in which the uni-
tarity norm is kept under control lead to reliable results,
matching exact ones or results from different methods, when
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available [40,46]. One procedure to reduce the distance to
the unitary manifold is known as gauge cooling [40]. It
consists of a sequence of SL(3, C) gauge transformations,
designed to decrease the unitarity norm in a steepest descent
style:

_ a ra a fa
Ux,v — e sart fy Ux,u eaaA I3 s @)

fE=23"T [xa (UX,UU;’U - ULU’UUX_U,,)] . ®
%

The transformation parameters, f{, are obtained by requiring
that the first variation of d with respect to a gauge transfor-
mation is negative semi-definite. The coefficient « can be
changed adaptively to optimise the cooling procedure [59].
A variable number of gauge cooling steps, depending on the
rate of change of the unitarity norm, can be applied between
successive Langevin steps [60].

In our studies involving the heavy-dense limit of QCD
(HDQCD) [47,48], we have considered the expectation value
of the traced (inverse) Polyakov loops,

1

1
(P) =+ ;<Px>, Pe = TPy, )
—1\ _ l —1 -1 _ l -1
(Pl = dYupch, pl= TP (10)

where V is the spatial volume. The average Polyakov loop
is an order parameter for Yang-Mills theories, as it is related
to the free energy of a single quark by (P) ~ e ¢/ In
the presence of dynamical quarks, it is no longer an order
parameter. However, it still provides information on whether
quarks are free or confined within hadrons. Another useful
observable is the average phase of the quark determinant,
measured in a phase quenched ensemble,

<e2i¢):< det M (1) > . (11
det M(—0) [pg

When the sign problem is mild, the phase is not expected to
vary much, leading to an average close to unity. On the other
hand, in situations with severe sign problems, €% can aver-
age out to zero. When dealing with fully dynamical quarks,
we have studied the chiral condensate:

(Yy)=--—InZ. 12)

This is an order parameter only for massless quarks, but like
the Polyakov loop, still provides information on quark con-
finement in general.
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Fig. 1 The average Polyakov loop (red) and unitarity norm (green)
as functions of the Langevin time for HDQCD on a 103 x 4 lattice,
with k = 0.04, 8 = 5.8 and = 0.7. Agreement with reweighting is
found when the unitarity norm is lower than O (0.1). The data was first
presented in Ref. [46]

3 Dynamic stabilisation

We found that even with a large number of gauge cool-
ing steps, instabilities still may appear [46] in simula-
tions of HDQCD, which we briefly review in Appendix A.
These change the distribution of the observables during the
Langevin process and lead to wrong results.

Figure 1 shows the Langevin time evolution of the
Polyakov loop and of the unitarity norm. This situation has
a very mild sign problem, with average phase (¢*?) =
0.9978(2) — 0.0003(57)i, and thus results from reweighting
are reliable. We observe two distinct regions: one is charac-
terised by a sufficiently small unitarity norm and agreement
between gauge cooling and reweighting results. At a larger
Langevin time, i.e. 0 2 50, the agreement disappears as the
unitarity norm becomes too large. It has been concluded in
Ref. [46] that a large unitarity norm is an indicator of these
instabilities, with 0.03 being a conservative threshold, after
which results become unreliable.

To keep the unitarity norm under control we have devel-
oped a new technique—DS—which consists of adding a
SU(3) gauge invariant force to the Langevin drift. This force
is designed to grow rapidly with the unitarity norm d and to
be directed towards the SU(3) manifold. One possible imple-
mentation is given by the substitution:

K¢, — K¢, +iapsM?, (13)

with the new term

3
M = ib® (Z b;b;) , (14)
C
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and
bE="Tr |2 UL UL, | (15)
v

‘We remark that our choice for the additional force, which acts
equally in all four directions, is not unique. The parameter
aps allows us to control the strength of the this force. A
similar strategy has been used successfully for nonrelativistic
fermions in one dimension [61,62].

We point out that M¢{ is not invariant under general
SL(3, C) gauge transformations, but it is with respect to
SU(3) transformations. Moreover, it is not holomorphic,
since it is constructed to be a function of only the non-unitary
part of the gauge links, i.e., of the combination UU . This
is necessary to make MY scale with the unitarity norm, such
that explorations of the non-unitary directions can be con-
trolled. Therefore, it cannot be obtained from a derivative of
the action. This invalidates the standard justification for the
validity of complex Langevin [34,35], which require a holo-
morphic Langevin drift. Nevertheless, numerical evidence of
the convergence to the correct limit of CL simulations with
dynamic stabilisation will be shown in Sects. 5 and 6.

A naive expansion of M{ in powers of the lattice spacing
is possible if one writes the SL(3, C) gauge links as Uy, =
exp [iard (A2, + iB;’,v)]. Then, formally,

3
M ~d’ <ZE§E§;) Bl 4+ 0(d®), (16)
C

By=> BY,. (17)
v

The continuum behaviour will be discussed in Sect. 5, where
we show results for different gauge couplings. By construc-
tion, the DS drift is purely imaginary and thus acts only on
the imaginary parts of the Langevin drift. Checks of how the
Langevin and DS drifts behave in a situation with a severe
sign problem are shown in Sect. 4.

An initial result of complex Langevin simulations using
one step of gauge cooling! and DS is shown in Fig. 2, where a
comparison of results from DS, gauge cooling? and reweight-
ing is shown. We have used the same parameters of Fig. 1 and
found agreement with reweighting for the entire length of the
simulation. Figure 2 also demonstrates that it is possible to
stabilise complex Langevin simulations in a way that gauge

1 'We have checked that multiple gauge cooling steps lead to a negli-
gible improvement. At least one gauge cooling step is required, since
DS does not affect the real part of the drift, which can develop large
fluctuations [59].

2 We have verified that HDQCD simulations, using gauge cooling, with
different initial conditions exhibit the same qualitative behaviour.

@ Springer

o
IS

Galfge coo|ing e
DS (aps = 10%) x |
Reweighting ———

o
w
o

o
w

o
)
o
X i

X

o
IN)

Polyakov loop
o
=
[S3]
+
X
s

o
-

X £
A

—0.05 " L i
+ o ¥

o
=}
G

o

—0.1 1 1 i
50 100 150 200 250 300 350 400 450 500

0

Fig. 2 The average Polyakov loop as function of the Langevin time
for HDQCD on a 10% x 4 lattice, with ¥ = 0.04, B =58, u=0.7and
aps = 100

cooling alone is not able to, allowing for longer simulation
times and thus smaller statistical errors.

4 Dependence of observables on apg

The complexity of gauge theories makes it difficult to pre-
dict the effect of the control parameter aps on the Langevin
dynamics. However, two limiting cases can be expected: for
small apg the DS drift becomes very small, essentially not
affecting the dynamics. For large values of aps, the DS force
heavily suppresses excursions into the non-unitary directions
of SL(3, C), which can be interpreted as a gradual reunitari-
sation of the gauge links. We illustrate the effect of differ-
ent apg on complex Langevin simulations of HDQCD, see
appendix A, in two cases. The first scenario corresponds to
an average phase of the quark determinant close to unity,
i.e., when the sign problem is mild and comparisons with
reweighting are possible. In the second case, the average
phase is very small, indicating a severe sign problem. Both
scenarios have been simulated with inverse coupling § = 5.8
and hopping parameter x = 0.04. Additionally, one gauge
cooling step has been applied between consecutive Langevin
updates.

Results for the first scenario are shown in Fig. 3. These
simulations use a volume of Q = 103 x4 and chemical poten-
tial u = 0.7. Complex Langevin results have been extrapo-
lated to zero step size. For sufficiently large apg our results
are compatible with both reweighting and phase quenched
results. With our resolution, it is not possible to discrimi-
nate between these two cases. Figure 3 seems to indicate
that one could choose an arbitrarily large aps. However, it
is necessary to keep in mind that, for these parameters, these
simulations have the average phase of the fermion determi-
nant close to unity, and a very mild sign problem.
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Fig. 3 The average Polyakov loop as a function of aps compared with
the result generated with reweighting for HDQCD in a 103 x 4 lattice,
with k = 0.04, 8 = 5.8 and u = 0.7. Agreement is found once aps is
sufficiently large

When the sign problem is severe, indicated by a highly
oscillating phase of the fermion determinant, reweighting
cannot be applied reliably. In principle, complex Langevin
combined with gauge cooling is a viable option to simu-
late these regions of the phase diagram. However, as seen
in Fig. 1, we have observed disagreement with reweighting,
when the unitarity norm becomes too large. Figure 4 shows
the Polyakov loop as function of the Langevin time for a
scenario with severe sign problem, without and with DS.
These simulations were carried out a volume of Q = 8% x 20
and ;1 = 2.45. In this case the average phase is (¢'?) =
—0.0042(35) —0.0047(35)i, indicating a very small overlap
between the full and phase quenched models. The Polyakov
loop in the simulation without DS changes to a different value
for 6 2 20 when the unitarity norm exceeds O(0.1). We
use the region before the unitarity norm rises as a reference
point to test dynamic stabilisation. Due to this small sampling
region, the statistical uncertainties of the gauge cooling sim-
ulations are comparatively large. The results are compatible
for a wide region of aps, as shown in Fig. 53, where the
results from gauge cooling are indicated by green bands. We
find disagreement when apg is outside a certain window.
This can be understood as follows: for aps very small the
DS drift is too small to be effective; on the other hand, large
values of the control parameter cause a heavy suppression of
the exploration of the non-unitary directions.

Figure 5 shows the existence of a region in apg, which
agrees with GC. Our data suggests that

a0

—0, 18
dons (18)

3 The similarity between the average Polyakov loops of Figs. 3 and 5 is
accidental. The former case is in a high 7" and low u phase with density
of ©(1073), while the latter has (n) ~ 0.55.
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Fig. 4 The Langevin time evolution of the Polyakov loop using gauge
cooling (top) and dynamic stabilisation (bottom) for HDQCD on a 83 x
20 lattice, withk = 0.04, 8 = 5.8 and . = 2.45. After a short Langevin
time (6 ~ 20) the Polyakov loop changes its behaviour when DS is not
used

0.216
= 0213 |-#
| 0.210 %
& a0 L
T 020 LI B S
=~ ]
A 0201
% 0198 .
0.195
= 0.0 |8€0.520
|
A, 0.045 .
0050 by
P 4
g 0.055
=%, -0.060 " .
. [}
-0.065 e et - =
10[] 105 101[] 1015
aps

Fig. 5 The average Polyakov loop as function of apg at N; = 20 and
= 2.45. Also shown, in green bands, are results from simulations
with gauge cooling. The vertical red lines indicate the region where
there is agreement between GC and DS runs

for a given observable O, is a criterion for determining the
region where DS gives the correct values*. In other words,
the region of least sensitivity to aps seems to provide the
best estimate. However, a cross-check with another method
is necessary to verify that these values provide the correct
result.

Figure 6 shows the average unitarity norm as a function
of apg for both previously studied scenarions, with average
phases close to unity and close to zero (parameters shown in
the figure). It is visible that DS is able to restrict the explo-
ration of SL(3, C) to submanifolds whose distance to SU(3)
decrease with apg. When the sign problem is severe, a plateau
in the unitarity norm seems to emerge for large aps; while

4 We thank Gert Aarts for suggesting this.
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Fig. 6 The average unitarity norm as a function of apg for HDQCD,
with « = 0.04, B = 5.8, and volume and chemical potential indicated
on the figure. A power-law line was added to the data with average

phase close to unity to guide the eye
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Fig. 7 Histogram of the drift added by DS for different values of the
control parameter aps

for milder sign problems, the results follow a power-law indi-
cated by the line in the figure.

For the remainder of this section we study histograms of
the drift of Eq. (13), as they are relevant in the context of the
criteria for correctness [34-37]: a heavy-tailed distribution
leads to incorrect results. In Fig. 7 we show the histograms
of the DS drift for four choices for the control parameter aps.
These simulations correspond to the scenario with a severe
sign problem, i.e. Q = 8% x 20 and p = 2.45. Larger drifts
are less frequent than smaller ones. For large enough values
of apgs the histograms become more localised distributions.

For aps = 10° we observe larger values of the product
apseM{, due to the larger unitarity norm. We remind the
reader that M¢ is a function of the combination UU" (see
Eq. 14), similar to the unitarity norm. As apg increases, the
unitarity norm decreases and then plateaus (seen in Fig. 6),
and so does M¢. Intuitively, for very large aps the DS drift
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Fig. 8 Histogram of the imaginary part of the Langevin drift, i.e.
Eq. (20), multiplied by the Langevin step size, for different values of
the DS control parameter apg
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Fig. 9 Histogram of the real part of the Langevin drift, i.e. Eq. (19),
multiplied by the Langevin step size, for different values of the DS
control parameter ops

overshadows the Langevin drift coming from the physical
action.

The Langevin drift from Eq. (13) has real and imaginary
components given by

Re[K¢ ] = Re[-D¢ 8],
Im[K¢ ] = Im[—D¢ ,S]+ ioapsM{ .

19)
(20)

The suppression of the imaginary part of the Langevin drift
can be seen in the histogram of Fig. 8. The real part of the
drift is plotted in Fig.9 and essentially remains unchanged
by DS, once aps is sufficiently large, as evident in the inset.
For too small values of apg, the system can explore a large
region of SL(3, C), which causes a different behaviour and
lead to convergence to a wrong limit.
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Fig. 10 Ratio of the DS and total drifts as a function of apg

Figures 7 and 8 show histograms with compact distribu-
tions, with no skirts or “tails”. This indicates an absence
of boundary terms, which would spoil the proof of conver-
gence [63]. A more in-depth analysis, however, is necessary
to verify whether the lack of exponential fall-off in this situ-
ation breaks the proof of convergence.

In fig. 10 we study the influence of DS in the Langevin
drift, using the same simulation parameters as in the previous
plots. We show the ratio of the added DS drift over the total
drift,i.e. |[M|/(|K |+ |M]). As the drifts are complex without
a definite sign, we use the absolute values. The figure shows
that even for very large values of apg the ratio never exceeds
7%. For typical values this ratio is smaller than 1%. This is
a good indication that DS accounts for a small change of the
overall drift.

5 Continuum behaviour of dynamic stabilisation

To check the continuum limit of the DS, we have performed
three simulations at different gauge couplings, specifically
B =5.4,5.8and 6.2, in alattice of volume 83 %20,k = 0.04,
u =245andaps = 103. Asinthe previous section, we have
applied one gauge cooling step between subsequent Langevin
updates. The resulting histograms for the DS drift are shown
in Fig. 11. As in the previous section, the histogram for the
DS drift does not fall off exponentially, but this figure also
indicates an absence of boundary terms. At finer lattices,
larger values of the dynamic stabilisation drift M{ occur less
frequently. Furthermore, the change in gauge coupling has a
small effect on the real part of the Langevin drift.

The deconfinement transition of the heavy dense approx-
imation of QCD was studied in Refs. [40,59]. The gauge
coupling was varied in the interval 5.4 < § < 6.2. These
simulations have a lattice of volume 6° x 6, chemical poten-
tial of u = 0.85 and hopping parameter of k = 0.12. It was
found that the average plaquette from complex Langevin with
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(3111)36]\4;”1

Fig. 11 Histogram of the drift added by DS for different values of the
gauge coupling S

0.62
"3
0.6 et
B
0.58 o d
& »
% v
g 0.56 3
3 v
2, 0.54
= v
T 052 bt
2 b4
n v
0.5 -
H RW +—a—
0.48 DS, aps = 10° —e— |
e GC, d < 0.03 —e—
GC —v—
0.46 L L
5.4 5.6 5.8 6.0 6.2
B

Fig. 12 The average spatial plaquette as function of 8. Our simulations
use a volume 6° x 6, n = 0.85 and x = 0.12. The data points have
been slightly shifted for better readability

just gauge cooling disagrees with reweighting for 8 < 5.5.
We have investigated whether DS can remedy this discrep-
ancy. As in our previous studies, we added one step of gauge
cooling between consecutive Langevin updates.

Figure 12 shows the spatial plaquette as function of
the inverse coupling. We present results generated using
reweighting (RW), DS with aps = 103, and gauge cool-
ing (GC). For comparison we add simulations with just
gauge cooling with and without a cut to small unitarity
norm (d < 0.03). We find good agreement between com-
plex Langevin simulations using DS and the reweighting
results from refs. [40,59,64] in both confined and deconfined
phases. In Table 1 we further list the average spatial plaque-
tte between simulations that used reweighting, dynamic sta-
bilisation and just gauge cooling. The discrepancy between
reweighting and gauge cooling results is clearly visible. On
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Table 1 The average value for the spatial plaquette, from HDQCD
simulations at 63 x 6, k = 0.12 and i = 0.85, using reweighting,
dynamic stabilisation and gauge cooling. Reweighting data have been
taken from [40,59,64]

B RW DS GC
5.4 0.47164 (33) 0.472007 (86) 0.504292 (75)
5.5 0.49687 (38) 0.49708 (11) 0.516607 (56)
5.6 0.52461 (47) 0.52441 (12) 0.530817 (72)
5.7 0.55086 (63) 0.55064 (19) 0.547050 (97)
5.8 0.57097 (58) 0.570849 (69) 0.56547 (22)

5.9 0.58417 (47) 0.584086 (37) 0.58220 (16)

6.0 0.59533 (42) 0.595220 (28) 0.594490 (67)
6.1 0.60533 (38) 0.605332 (24) 0.604713 (50)
6.2 0.61460 (36) 0.614567 (22) 0.614275 (33)

the other hand, agreement between DS and reweighting can
be seen for all values of 8 used in the simulations.

6 Staggered quarks
6.1 Staggered quarks at u =0

In order to evaluate the fermionic contribution to the
Langevin drift of Eq. (4) we employ a bilinear noise scheme
and the conjugate gradient method to calculate the trace and
inverse, respectively. The fermion matrix we use is that of
staggered quarks, reviewed in Appendix B. One character-
istic of the bilinear noise scheme is that, at u = 0, the drift
is real only on average [45]. Therefore, a non-zero unitarity
norm is expected even for vanishing chemical potential. This
can cause simulations to diverge, and has been addressed in
Ref. [31] where the necessary elements of the inverse were
calculated exactly. It has been pointed out that solutions in
the confined phase are wrong, showing that stability does not
imply correctness.

We have investigated whether DS is able to successfully
keep the unitarity norm under control, by comparing complex
Langevin and hybrid Monte-Carlo (HMC) simulations®. We
have used four different lattice volumes, 6%, 84, 10% and 12%.

First, we have identified a suitable value for the control
parameter apg following the procedure in Sect. 4, i.e. using
Eq. (18). After finding the optimal values for apg for each
lattice size, we extrapolated the results to zero Langevin step
size. We have performed studies with four degenerate quark
flavours of mass m = 0.025 and inverse coupling 8 = 5.6.
We have analysed the average values of the plaquette and
(unrenormalised) chiral condensate. For these parameters,
the chiral symmetry is broken, as indicated by (Y1) # 0.

> We thank Philippe de Forcrand for providing the results from hybrid
Monte-Carlo simulations.
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Fig. 13 The chiral condensate at zero chemical potential as a function
of aps. The green band represents the value obtained from a HMC
simulation. The simulations were carried out in a volume of 6> x 6,
four quark flavours of mass m = 0.025, and gauge coupling 8 = 5.6
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Fig. 14 The plaquette at zero chemical potential as a function of
the average Langevin step size. The green band represents the value
obtained from a HMC simulation and the blue region depicts the error
band from the linear fit to the Langevin data

The results for the chiral condensate at zero chemical
potential for Q@ = 6* are shown in Fig. 13, where the green
band indicates the result from the HMC run. The Langevin
simulations had an average step size of ~ 4 x 107>, which
leads to approximately 3000-5000 independent configura-
tions, including an auto-correlation analysis as proposed
in [65]. We find very good agreement between hybrid Monte-
Carlo and complex Langevin simulations. The two leftmost
points have a unitarity norm larger than 0.03 and are thus not
taken into account. We note here that in none of our simu-
lations of staggered quarks the unitarity norm was zero. A
behaviour similar to the points with © = 2.45 of Fig. 6
is, in fact, observed. We used our empirical criterion of
d < 0.03 [46] as threshold for reliability of the results.

Figure 14 displays a comparison of the plaquette between
complex Langevin and HMC for the lattice volume of 12*.
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Table 2 Average values for the plaquette and chiral condensate from
simulations of four flavours of naive staggered fermions at § = 5.6,
m = 0.025 and n = 0. The Langevin results have been obtained after
extrapolation to zero step size

Volume  Plaquette vy

HMC Langevin HMC Langevin
6* 0.58246(8)  0.582452(4)  0.1203(3)  0.1204(2)
84 0.58219(4)  0.582196(1)  0.1316(3)  0.1319(2)
104 0.58200(5)  0.58201 (4) 0.1372(3)  0.1370(6)
124 0.58196 (6)  0.58195 (2) 0.1414(4)  0.1409 (3)

A straight line has been fitted to the points generated by
the Langevin simulations to extrapolate to zero step size, as
the integration scheme is of first order [52]. We find clear
agreement within the quoted uncertainties. Results for the
average plaquette and chiral condensate after extrapolation
to zero step size can be found in Table 2. The table shows
excellent agreement between HMC and CL simulations for
both observables in all four volumes considered.

Recent works on complex Langevin and gauge cooling
applied to staggered fermions include [66,67]. There, a dis-
crepancy between the CLE and exact results is reported for
V = 12* at the same inverse coupling and quark mass used
here, but with two flavours of staggered fermions. This ten-
sion could be removed by using dynamic stabilization and
careful extrapolation to zero step size.

6.2 Staggered quarks at i # 0

We have carried out a qualitative simulation of staggered
quarks at high temperatures spanning a wide range of w.
The chemical potentials vary from p© = 0 until saturation,
where the entire lattice is filled with quarks. We use lat-
tices with a spatial volume of V = 123 for two different
temperatures, N; = 2 and 4, with two degenerate quark
flavours of mass m = 0.025. The inverse coupling is fixed to
B = 5.6. With these input parameters, the pion and nucleon
masses are m; ~ 0.42 and my ~ 0.93 in lattice units [68].
At high temperatures, the inversion of the fermion matrix is
numerically cheap and converges quickly even for large .
At lower temperatures, however, we have seen that the inver-
sion becomes more expensive, as the number of iterations
easily exceed 10*. Further work using more state-of-the-art
inverters and algorithms are under way and will enable simu-
lations at lower temperatures. As before, we employ one step
of gauge cooling and add a DS force with a control parame-
ter of aps = 103. The chiral condensate, shown in Fig. 15,
is not extrapolated to zero step size, but serves a proof of
principle. Also shown in the plot are vertical lines indicating
the regions of pion (4 = my /2) and baryon condensation

(b =mp/3).
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Fig. 15 The chiral condensate as a function of the chemical potential,
in units of the nucleon mass, for different temperatures. Also indicated
are the lines of pion (left) and baryon (right) condensation

7 Summary and outlook

Dynamic stabilisation was introduced to deal with instabili-
ties found in complex Langevin simulations, especially when
the inverse coupling is small (typically 8 < 5.5) or the uni-
tarity norm rises steadily. The method is based on adding a
non-holomorphic drift to the complex Langevin dynamics to
keep simulations in the vicinity of the SU(3) manifold. We
have studied the dependence of the observables on the con-
trol parameter aps and have presented a criterion to tune it
appropriately. We also found numerical evidence that the DS
drift decreases when the lattice spacing is reduced and has a
localised distribution. DS improved results on the deconfine-
ment transition for HDQCD, previously shown in [40], where
a discrepancy between reweighting and complex Langevin
was observed. We find good agreement with reweighting for
all gauge couplings in both confined and deconfined phases.

We presented a study of complex Langevin simulations
of QCD with naive staggered fermions at vanishing chem-
ical potential. After extrapolating the Langevin results to
zero step size, we found excellent agreement between com-
plex Langevin and hybrid Monte-Carlo simulations for the
plaquette and chiral condensate for four different lattice
volumes, despite DS adding a non-holomorphic drift. Our
findings rectify the discrepancy found in earlier studies
in [66,67]. For u > 0, we were able to observe changes
in the chiral condensate as the chemical potential increases
at high temperatures. In those cases, DS kept the unitarity
norm under control and allowed for long simulations. How-
ever, the extent of these studies were limited, as simulations
at lower temperatures showed a numerical difficulty arising
from the inversion of the fermion matrix.

More analytical work on the justification of DS is desir-
able, as DS formally violates the proof of convergence of
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CL. Nevertheless, numerical evidence clearly shows no dif-
ference between HMC and CL, even at a sub-permille level.
This needs to be confirmed at non-zero u, by comparing with
other approaches, such as those mentioned in Sect. 1.
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Appendix A: Heavy-dense QCD

A useful testing ground for methods to deal with the sign
problem is the heavy-dense limit of QCD (HDQCD) [47,48].
In this model, quarks can only evolve in the (Euclidean) tem-
poral direction, with the spatial hoppings neglected. The glu-
onic action is the standard Wilson gauge action. The tempo-
ral hoppings are kept, so that all dependence on the chemical
potential is retained. This model shares interesting features
with QCD, such as the sign and overlap problems as well as a
phase transition at zero temperature and finite x, and is there-
fore ideal for testing the effects of DS. The QCD effective
action reads

S = Sym — Indet M(U, ), 1)

with Sym being the Wilson gauge action, at inverse coupling
B. The HDQCD fermion determinant simplifies to

2 2
detM =] {det [1+he" TP |1+ e TP ] } ’
X
(22)
where T = 1/N; is the temperature, u is the chemical poten-

tial, h = (2«)™* and « is the hopping parameter. Lattice units
are implied. The Polyakov loop and its inverse read

N:—1 0
_ R -1 _ -1
Pe=[] Usni P'= ]I Ul (23)
=0 7=N;—1

@ Springer

The term with e #/T which is irrelevant in the heavy-dense
limit (¢« — 0 and u — oo, with ke* kept constant), is
required for the symmetry [det M (u)]* = det M (—u*). Itis
worth noting that, as far as is understood, HDQCD does not
suffer from issues related to poles [44,55]. Moreover, this
approximation does not require stochastic evaluation of the
fermionic contribution, since det M is given exactly in terms
of the Polyakov loop.

Appendix B: Staggered quarks

We have used the unimproved staggered fermion action for
Np fermion flavours, whose matrix elements read

1y (x)
MU, M)x,y = m(sx,y + E _u2 I:e'u(sM Ux,v3x+av,y
v

_ e—uav,ztU;_lng,awy] , (24)

with x and y being spacetime coordinates, 1, (x) the Smit-
Kawamoto phase and a, is a unit vector in the v-direction.
The staggered fermion matrix has the symmetry,

exMU, M)x,yey = M*(U, _IJL*)y,x s (25)

where €, = (—1)¥T¥2T¥+% jq the staggered equivalent
of ys. This implies that det M (U, u) = det M (U, —p*),
leading to a complex effective action and a sign problem for
real chemical potentials.

The Langevin drift originating from the effective action
using Eq. (24) is given by

Kr = D;‘,MlndetM(U, In)

N
TFTr [M—l(U, WD MU, u)] . (26)

We have used the bilinear noise scheme and the conjugate
gradient method to evaluate the trace and inversion, respec-
tively, in the fermionic drift [45]. At u = O the drift is real.
However, in the bilinear noise scheme this is true only on
average. Therefore, a non-zero unitarity norm is expected.

References

1. S. Borsanyi, Z. Fodor, C. Hoelbling, S.D. Katz, S. Krieg, K.K.
Szabo, Phys. Lett. B 730, 99-104 (2014). arXiv:1309.5258

2. HotQCD Collaboration, A. Bazavov et al., Phys. Rev. D90,
094503 (2014). arXiv:1407.6387

. P. de Forcrand, PoS LAT2009, 010 (2009). arXiv:1005.0539

G. Aarts, J. Phys. Conf. Ser. 706,022004 (2016). arXiv:1512.05145

. G. Parisi, Phys. Lett. 131B, 393-395 (1983)

. J.R. Klauder, Acta Phys. Austriaca Suppl. 25, 251-281 (1983)

. J.R. Klauder, J. Phys. A 16, L317 (1983)

N0 v AW


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1309.5258
http://arxiv.org/abs/1407.6387
http://arxiv.org/abs/1005.0539
http://arxiv.org/abs/1512.05145

Eur. Phys. J. C (2019) 79:16

Page 11 of 11 16

o

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.
24.
25.
26.
217.
28.

29.
30.

31

32.

33.

34.

35.

36.

37.

38.

J.R. Klauder, Phys. Rev. A29, 20362047 (1984)

P. de Forcrand, J. Langelage, O. Philipsen, W. Unger, Phys. Rev.
Lett. 113, 152002 (2014). arXiv:1406.4397

J. Glesaaen, M. Neuman, O. Philipsen, JHEP 03, 100 (2016).
arXiv:1512.05195

P. de Forcrand, W. Unger, H. Vairinhos, Phys. Rev. D97, 034512
(2018). arXiv:1710.00611

E. Witten, AMS/IP Stud. Adv. Math. 50, 347-446 (2011).
arXiv:1001.2933

AURORASCIENCE Collaboration, M. Cristoforetti, F. Di Renzo,
L. Scorzato, Phys. Rev. D86, 074506 (2012). arXiv:1205.3996

A. Alexandru, G. Basar, PF. Bedaque, G.W. Ridgway, N.C. War-
rington, JHEP 05, 053 (2016). arXiv:1512.08764

H. Fujii, D. Honda, M. Kato, Y. Kikukawa, S. Komatsu, T. Sano,
JHEP 10, 147 (2013). arXiv:1309.4371

J.  Nishimura, S. Shimasaki, JHEP 06,
arXiv:1703.09409

A. Alexandru, G. Basar, P.F. Bedaque, S. Vartak, N.C. Warrington,
Phys. Rev. Lett. 117, 081602 (2016). arXiv:1605.08040

K. Langfeld, B. Lucini, A. Rago, Phys. Rev. Lett. 109, 111601
(2012). arXiv:1204.3243

C. Gattringer, K. Langfeld, Int. J. Mod. Phys. A31, 1643007 (2016).
arXiv:1603.09517

N. Garron, K. Langfeld, Eur. Phys. J. C 76, 569 (2016).
arXiv:1605.02709

G. Endrodi, Z. Fodor, S.D. Katz, D. Sexty, (2018) Applying con-
strained simulations for low temperature lattice QCD at finite
baryon chemical potential. Phys. Rev. D 98(7), 074508. https://
doi.org/10.1103/PhysRevD.98.074508

A. Alexandru, P.F. Bedaque, H. Lamm, S. Lawrence, Phys. Rev.
D97, 094510 (2018). arXiv:1804.00697

G. Parisi, Y.-S. Wu, Sci. Sin. 24, 483 (1981)

G. Aarts, Phys. Rev. Lett. 102, 131601 (2009). arXiv:0810.2089
G. Aarts, K. Splittorff, JHEP 08, 017 (2010). [arXiv:1006.0332]
G. Aarts, FA. James, JHEP 01, 118 (2012). arXiv:1112.4655

J. Ambjorn, S.K. Yang, Phys. Lett. 165B, 140 (1985)

J. Ambjorn, M. Flensburg, C. Peterson, Nucl. Phys. B 275,375-397
(1986)

G. Aarts, FA. James, JHEP 08, 020 (2010). arXiv:1005.3468

J. Bloch, J. Mahr, S. Schmalzbauer, PoS LATTICE2015, 158
(2016). arXiv:1508.05252

J. Bloch, O. Schenk, EPJ Web Conf. 175, 07003 (2018).
arXiv:1707.08874

J. Berges, S. Borsanyi, D. Sexty, [.O. Stamatescu, Phys. Rev. D75,
045007 (2007). arXiv:hep-1at/0609058

J. Berges, D. Sexty, Nucl. Phys. B799, 306-329 (2008).
arXiv:0708.0779

G. Aarts, E. Seiler, 1.-O. Stamatescu, Phys. Rev. D81, 054508
(2010). arXiv:0912.3360

G. Aarts, F.A. James, E. Seiler, I.-O. Stamatescu, Eur. Phys. J. C71,
1756 (2011). arXiv:1101.3270

G. Aarts, FA. James, J.M. Pawlowski, E. Seiler, D. Sexty, 1.-O.
Stamatescu, JHEP 03, 073 (2013). arXiv:1212.5231

G. Aarts, P. Giudice, E. Seiler, Ann. Phys. 337, 238-260 (2013).
arXiv:1306.3075

K. Nagata, J. Nishimura, S. Shimasaki, Phys. Rev. D94, 114515
(2016). arXiv:1606.07627

023 (2017).

39.
40.
41.
4.
43.
44.

45.
46.

47.

48.
49.

50.
51.

52.
. A. Mollgaard, K. Splittorff, Phys. Rev. D88, 116007 (2013).

54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.

67.

68.

K. Nagata, J. Nishimura, S. Shimasaki, JHEP 05, 004 (2018).
arXiv:1802.01876

E. Seiler, D. Sexty, 1.-O. Stamatescu, Phys. Lett. B 723, 213-216
(2013). arXiv:1211.3709

K. Nagata, J. Nishimura, S. Shimasaki, PTEP 2016, 013B01
(2016). arXiv:1508.02377

K. Nagata, J. Nishimura, S. Shimasaki, JHEP 07, 073 (2016).
arXiv:1604.07717

J. Bloch, J. Glesaaen, J.J.M. Verbaarschot, S. Zafeiropoulos, JHEP
03, 015 (2018). arXiv:1712.07514

G. Aarts, E. Seiler, D. Sexty, 1.-O. Stamatescu, Phys. Rev. D 90,
114505 (2014). arXiv:1408.3770

D. Sexty, Phys. Lett. B 729, 108-111 (2014). arXiv:1307.7748
G. Aarts, F. Attanasio, B. Jdger, D. Sexty, JHEP 09, 087 (2016).
arXiv:1606.05561

1. Bender, T. Hashimoto, F. Karsch, V. Linke, A. Nakamura, M.
Plewnia et al., Nucl. Phys. Proc. Suppl. 26, 323-325 (1992)

G. Aarts, 1.-O. Stamatescu, JHEP 09, 018 (2008). arXiv:0807.1597
G. Aarts, F. Attanasio, B. Jdger, D. Sexty, Acta Phys. Pol. Suppl.
9, 621 (2016). arXiv:1607.05642

F. Attanasio, B. Jiger, PoS LATTICE2016, 053 (2016).
arXiv:1610.09298

F. Attanasio, B. Jdger, EPJ] Web Conf. 175, 07039 (2018).
arXiv:1710.06165

P.H. Damgaard, H. Huffel, Phys. Rep. 152, 227 (1987)

arXiv:1309.4335

J. Nishimura, S. Shimasaki, Phys. Rev. D92, 011501 (2015).
arXiv:1504.08359

K. Splittorff, Phys. Rev. D91, 034507 (2015). arXiv:1412.0502

J. Greensite, Phys. Rev. D90, 114507 (2014). arXiv:1406.4558
G. Aarts, E. Seiler, D. Sexty, 1.-O. Stamatescu, JHEP 05, 044
(2017). arXiv:1701.02322

G. Aarts, FA. James, E. Seiler, I.-O. Stamatescu, Phys. Lett. B687,
154-159 (2010). arXiv:0912.0617

G. Aarts, L. Bongiovanni, E. Seiler, D. Sexty, I.-O. Stamatescu,
Eur. Phys. J. A49, 89 (2013). arXiv:1303.6425

G. Aarts, F. Attanasio, B. Jdger, E. Seiler, D. Sexty, [.-O. Sta-
matescu, PoS LATTICE2015, 154 (2016). arXiv:1510.09098
A.C. Loheac, J.E. Drut, Phys. Rev. D95, 094502 (2017).
arXiv:1702.04666

L. Rammelmiiller, W.J. Porter, J.E. Drut, J. Braun, Phys. Rev. D96,
094506 (2017). arXiv:1708.03149

M. Scherzer, E. Seiler, D. Sexty, 1.-O. Stamatescu, Complex
Langevin and boundary terms (2018). https://arxiv.org/abs/1808.
05187

1.-O. Stamatescu, Private communication (2016)

ALPHA Collaboration, U. Wolff, Comput. Phys. Commun. 156,
143-153 (2004). arXiv:hep-1at/0306017

D.K. Sinclair, J.B. Kogut, PoS LATTICE2015, 153 (2016).
arXiv:1510.06367

D.K. Sinclair, J.B. Kogut, PoS LATTICE2016, 026 (2016).
arXiv:1611.02312
K.M. Bitar et al.,
arXiv:hep-1at/9311027

Phys. Rev. D49, 6026-6038 (1994).

@ Springer


http://arxiv.org/abs/1406.4397
http://arxiv.org/abs/1512.05195
http://arxiv.org/abs/1710.00611
http://arxiv.org/abs/1001.2933
http://arxiv.org/abs/1205.3996
http://arxiv.org/abs/1512.08764
http://arxiv.org/abs/1309.4371
http://arxiv.org/abs/1703.09409
http://arxiv.org/abs/1605.08040
http://arxiv.org/abs/1204.3243
http://arxiv.org/abs/1603.09517
http://arxiv.org/abs/1605.02709
https://doi.org/10.1103/PhysRevD.98.074508
https://doi.org/10.1103/PhysRevD.98.074508
http://arxiv.org/abs/1804.00697
http://arxiv.org/abs/0810.2089
http://arxiv.org/abs/1006.0332
http://arxiv.org/abs/1112.4655
http://arxiv.org/abs/1005.3468
http://arxiv.org/abs/1508.05252
http://arxiv.org/abs/1707.08874
http://arxiv.org/abs/hep-lat/0609058
http://arxiv.org/abs/0708.0779
http://arxiv.org/abs/0912.3360
http://arxiv.org/abs/1101.3270
http://arxiv.org/abs/1212.5231
http://arxiv.org/abs/1306.3075
http://arxiv.org/abs/1606.07627
http://arxiv.org/abs/1802.01876
http://arxiv.org/abs/1211.3709
http://arxiv.org/abs/1508.02377
http://arxiv.org/abs/1604.07717
http://arxiv.org/abs/1712.07514
http://arxiv.org/abs/1408.3770
http://arxiv.org/abs/1307.7748
http://arxiv.org/abs/1606.05561
http://arxiv.org/abs/0807.1597
http://arxiv.org/abs/1607.05642
http://arxiv.org/abs/1610.09298
http://arxiv.org/abs/1710.06165
http://arxiv.org/abs/1309.4335
http://arxiv.org/abs/1504.08359
http://arxiv.org/abs/1412.0502
http://arxiv.org/abs/1406.4558
http://arxiv.org/abs/1701.02322
http://arxiv.org/abs/0912.0617
http://arxiv.org/abs/1303.6425
http://arxiv.org/abs/1510.09098
http://arxiv.org/abs/1702.04666
http://arxiv.org/abs/1708.03149
https://arxiv.org/abs/1808.05187
https://arxiv.org/abs/1808.05187
http://arxiv.org/abs/hep-lat/0306017
http://arxiv.org/abs/1510.06367
http://arxiv.org/abs/1611.02312
http://arxiv.org/abs/hep-lat/9311027

	Dynamical stabilisation of complex Langevin simulations of QCD
	Abstract 
	1 Introduction
	2 Complex Langevin
	3 Dynamic stabilisation
	4 Dependence of observables on  
	5 Continuum behaviour of dynamic stabilisation
	6 Staggered quarks
	6.1 Staggered quarks at 
	6.2 Staggered quarks at  

	7 Summary and outlook
	Acknowledgements
	Appendix A: Heavy-dense QCD
	Appendix B: Staggered quarks
	References




