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Abstract We present here some arguments to support our
suggestion that data on the helicity structure for the hard
exclusive electroproduction of ρ mesons at HERA (and in
possible future high-energy electron-proton colliders) pro-
vide useful information to constrain the κ-shape of the unin-
tegrated gluon distribution in the proton.

1 Introduction

Our ability to find new Physics and understand the dynamics
of strong interactions at the LHC strongly relies on getting
a more and more precise knowledge of the structure of the
proton. In general, the latter is encoded in different types of
partonic distribution functions that enter the factorization for-
malism for the description of the hard processes. Collinear
factorization is the most developed approach to calculate
cross sections of inclusive reactions as a power expansion
over the hard-scale parameter. A prominent example here is
the deep inelastic scattering (DIS) of an electron off a proton.
Its cross section, at the leading order in the power expan-
sion over the virtuality Q2 of the exchanged photon γ ∗, is
factorized as a convolution of a hard cross sections (calcula-
ble in perturbation theory) with parton distribution functions
(PDFs) of quarks and gluons, qi (ζ, μF ) and g(ζ, μF ), that
depend on the longitudinal momentum fraction of the proton
carried by the parton, ζ , and on the factorization scale μF ,
and obey DGLAP evolution equations [1–3]. At the lead-
ing order (LO) of perturbation theory the variable ζ coin-
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cides with the Bjorken variable x = Q2/(W 2 + Q2), where
W 2 is the squared center-of-mass energy of the γ ∗ p system.
The collinear factorization scheme can be also applied to the
amplitudes of hard exclusive processes, where the nonper-
turbative part is factorized in generalized parton distributions
[4,5].

At high energy, W � Q � �QCD, the application of
collinear factorization is limited because the perturbative
expansion includes in this kinematics large logarithms of the
energy that have to be resummed. Such a resummation is
incorporated in the κ-factorization.1 The scattering ampli-
tudes are basically written as a convolution of the uninte-
grated gluon distribution (UGD) in the proton with the impact
factor (IF) that depends on the considered process. In the DIS
case the γ ∗ → γ ∗ IF is calculated fully in perturbation the-
ory. The UGD is a nonperturbative quantity, function of x and
κ , where the latter represents the gluon momentum transverse
to the direction of the proton and is the Fourier-conjugate
variable of the transverse separation rd of the color dipole
into which the virtual photon splits. Therefore small values
of rd mean large values of κ and vice versa. The UGD, in its
original definition, obeys the BFKL [6–9] evolution equation
in the x variable. Differently from collinear PDFs, the UGD
is not well known and several types of models for it do exist,
which lead to very different shapes in the (x, κ)-plane (see,
for instance, Refs. [10–13]).

The aim of this paper is to present our arguments that
HERA data on polarization observables in vector meson
(VM) electroproduction can be used to constrain the κ-
dependence of the UGD in the HERA energy range. In par-
ticular, we will focus our attention on the ratio of the two
dominant amplitudes for the polarized electroproduction of

1 In this paper we use the expression “κ-factorization” to mean what
elsewhere is known also as “kT -factorization”.
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ρ mesons, i.e. the longitudinal VM production from longi-
tudinally polarized virtual photons and the transverse VM
production from transversely polarized virtual photons.

The H1 and ZEUS collaborations performed a complete
analysis [14,15] of the spin density matrix elements describ-
ing the hard exclusive light vector meson production, which
can be expressed in terms of helicity amplitudes for this pro-
cess. The HERA data show distinctive features for both lon-
gitudinal and transverse VM production: the same W - and
t-dependence, that are different from those seen in soft exclu-
sive reactions (like VM photoproduction). This supports the
idea that the same physical mechanism, involving the scatter-
ing of a small transverse size color dipole on the proton target,
is at work for both helicity amplitudes. Contrary to DIS case,
the IFs for γ ∗ → VM transitions are not fully perturbative,
since they include information about the VM bound state.
However, assuming the small size dipole dominance, one
can calculate the γ ∗ → VM IFs unambiguously in collinear
factorization, as a convolution of the amplitudes of pertur-
bative subprocesses with VM distribution amplitudes (DAs)
of twist-2 and twist-3 [16]. Such approach to helicity ampli-
tudes of VM electroproduction was used earlier in Ref. [17],
where a rather simple model for UGD was adopted.

Note that the κ-dependence of the IFs is different in the
cases of longitudinal and transverse polarizations and this
poses a strong constraint on the κ-dependence of the UGD
in the HERA energy range. The main point of our work will
be to demonstrate, considering different models for UGD,
that the uncertainties of the theoretical description do not
prevent us from some, at least qualitative, conclusions about
the κ-shape of the UGD.

In this paper we concentrate on the κ-factorization
method. The dipole approach is based on similar physical
ideas, but formulated not in κ- but in the transverse coordi-
nate space; this scheme is especially suitable to account for
nonlinear evolution and gluon saturation effects. Interesting
developments are the results of the papers [18,19], where the
helicity amplitudes of VM production were considered in the
dipole approach.

The paper is organized as follows: in Sect. 2 we will
present the expressions for the amplitudes of interest here,
discuss the sources of theoretical uncertainties and sketch the
main properties of a few models for the UGD; in Sect. 3 we
compare theoretical predictions from the different models of
UGD with HERA data; in Sect. 4 we draw our conclusions
and give some outlook.

2 Theoretical setup

The H1 and ZEUS collaborations have provided extended
analyses of the helicity structure in the hard exclusive produc-
tion of the ρ meson in ep collisions through the subprocess

γ ∗(λγ )p → ρ(λρ)p. (1)

Here λρ and λγ represent the meson and photon helici-
ties, respectively, and can take the values 0 (longitudinal
polarization) and ±1 (transverse polarizations). The helic-
ity amplitudes Tλρλγ extracted at HERA [14] exhibit the
following hierarchy, that follows from the dominance of a
small-size dipole scattering mechanism, as discussed first in
Ref. [20]:

T00 � T11 � T10 � T01 � T−11. (2)

The H1 and ZEUS collaborations have analyzed data in dif-
ferent ranges of Q2 and W . In what follows we will refer
only to the H1 ranges,

2.5 GeV2 < Q2 < 60 GeV2,

35 GeV < W < 180 GeV,
(3)

and will concentrate only on the dominant helicity ratio,
T11/T00.

2.1 Electroproduction of polarized ρ mesons in the
κ-factorization

In the high-energy regime, s ≡ W 2 � Q2 � �2
QCD,

which implies small x = Q2/W 2, the forward helicity
amplitude for the ρ-meson electroproduction can be writ-
ten, in κ-factorization, as the convolution of the γ ∗ → ρ IF,
�γ ∗(λγ )→ρ(λρ)(κ2, Q2), with the UGD,F(x, κ2). Its expres-
sion reads

Tλρλγ (s, Q2)

= is

(2π)2

∫
d2κ

(κ2)2 �γ ∗(λγ )→ρ(λρ)(κ2, Q2)F(x, κ2),

x = Q2

s
. (4)

Defining α = κ2

Q2 and B = 2παs
e√
2
fρ , the expression

for the IFs takes the following forms (see Ref. [16] for the
derivation):

• longitudinal case

�γL→ρL (κ, Q;μ2)

= 2B

√
N 2
c − 1

Q Nc

∫ 1

0
dy ϕ1(y;μ2)

(
α

α + y ȳ

)
, (5)
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where Nc denotes the number of colors and ϕ1(y;μ2) is
the twist-2 distribution amplitude (DA) which, up to the
second order in the expansion in Gegenbauer polynomi-
als, reads [21]

ϕ1(y;μ2) = 6y ȳ

(
1 + a2(μ

2)
3

2

(
5(y − ȳ)2 − 1

))
;
(6)

• transverse case

�γT →ρT (α, Q; μ2)

= (εγ · ε∗
ρ) 2Bmρ

√
N 2
c − 1

2NcQ2

×
{
−

∫ 1

0
dy

α(α + 2y ȳ)

y ȳ(α + y ȳ)2

[
(y − ȳ)ϕT

1 (y; μ2)

+ϕT
A (y; μ2)

]

+
∫ 1

0
dy2

∫ y2

0
dy1

y1 ȳ1α

α + y1 ȳ1

[
2 − Nc/CF

α(y1 + ȳ2) + y1 ȳ2

− Nc

CF

1

y2α + y1(y2 − y1)

]
M(y1, y2; μ2)

−
∫ 1

0
dy2

∫ y2

0
dy1

[
2 + Nc/CF

ȳ1

+ y1

α + y1 ȳ1

(
(2 − Nc/CF )y1α

α(y1 + ȳ2) + y1 ȳ2
− 2

)

− Nc

CF

(y2 − y1)ȳ2

ȳ1

1

α ȳ1 + (y2 − y1)ȳ2

]
S(y1, y2; μ2)

}
,

(7)

where CF = N2
c −1

2Nc
, while the functions M(y1, y2;μ2)

and S(y1, y2;μ2) are defined in Eqs. (12)–(13) of
Ref. [17] and are combinations of the twist-3 DAs
B(y1, y2;μ2) and D(y1, y2;μ2) (see Ref. [21]), given
by

B(y1, y2;μ2) = − 5040y1 ȳ2(y1 − ȳ2)(y2 − y1)

D(y1, y2;μ2) = − 360y1 ȳ2(y2 − y1)

×
(

1 + ωA{1,0}(μ2)

2
(7 (y2−y1) − 3)

)
.

(8)

In Eqs. (6) and (8) the functional dependence of a2, ωA{1,0},
ζ A

3ρ , and ζ V
3ρ on the factorization scale μ2 can be deter-

mined from the corresponding known evolution equations
[21], using some suitable initial condition at a scale μ0.

The DAs ϕT
1 (y;μ2) and ϕT

A (y;μ2) in Eq. (7) encompass
both genuine twist-3 and Wandzura-Wilczek (WW) contri-
butions [17,21]. The former are related to B(y1, y2;μ2) and
D(y1, y2;μ2); the latter are those obtained in the approxi-

mation in which B(y1, y2;μ2) = D(y1, y2;μ2) = 0, and in
this case read2

ϕT WW
A (y;μ2) = 1

2

[
−ȳ

∫ y

0
dv

ϕ1(v;μ2)

v̄

−y
∫ 1

y
dv

ϕ1(v;μ2)

v

]
,

ϕT WW
1 (y;μ2) = 1

2

[
−ȳ

∫ y

0
dv

ϕ1(v;μ2)

v̄

+y
∫ 1

y
dv

ϕ1(v;μ2)

v

]
. (9)

2.2 Theoretical uncertainties and approximations

There are four sources of uncertainty and/or approximation
in our analysis, as based on the above expressions for the
helicity amplitudes.

(i) The γ ∗ → V IF is a function of Q2 and κ which is
not fully perturbative and includes also physics of large dis-
tances. Here we use collinear factorization to express the IF
as a convolution – integration over longitudinal momentum
fraction – of the nonperturbative twist-2 and -3 DAs and a
perturbative hard part.

In the region of large κ , κ ∼ Q, which corresponds to
the range of small dipole sizes, the IFs for the production
of both the longitudinally and transversely polarized meson
are well described in our collinear factorization scheme. The
neglected contributions are relatively suppressed as powers
of �QCD/Q and are therefore neglected.

The region of small κ , κ � Q, is also present in our κ-
factorization formulas and corresponds to the range of larger
dipole sizes rd . Can we calculate also in this case our IFs
as convolution of the perturbative hard part with the meson
DAs?

The situation here is different in the cases of longitudi-
nal and transverse polarizations. In the longitudinal case, we
have, in fact, small rd dominance in the region of all κ . Note
that, as calculated in our scheme, the longitudinal IF divided
by κ2 is finite for κ → 0, and, therefore, the neglected con-
tributions for our longitudinal IF are suppressed by powers
of �QCD/Q in the region of all κ . In relation with that, we
note here that the longitudinal VM electroproduction can be
described not only in κ-, but also fully in QCD collinear
factorization (in terms of generalized parton distributions).

For the transverse polarization the situation is differ-
ent, since the transverse IF divided by κ2 behaves like
log(κ2/Q2), which means that the collinear limit, κ → 0,
is not safe and one cannot describe the transverse VM elec-
troproduction fully in QCD collinear factorization. One can

2 For asymptotic form of the twist-2 DA, ϕ1(y) = ϕas
1 (y) = 6y ȳ,

these equations give ϕ
T WW, as
A (y) = −3/2y ȳ and ϕ

T WW, as
1 (y) =

−3/2y ȳ(2y − 1).
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easily trace that this behavior ∼ log(κ2/Q2) for κ → 0
of the transverse IF appears due to the integration over the
longitudinal fraction z and its logarithmic divergence near
the end points z → 0, 1. The light-cone wave function of
the virtual photon, that controls the hard part of the IF, has
a scale Q2r2

d z(1 − z). This means that, at κ → 0, when
the endpoint region of the z-integration is important, large
values of Q do not mean automatically that the small-rd
region is dominant, but instead both large and small rd con-
tribute. Therefore we do not control the accuracy of our
IF calculation for κ → 0 in the transverse polarization
case.

However, in κ-factorization the small-κ region is only a
corner of the κ integration domain and the importance of
this corner is a matter of investigation. On the experimental
side we do not see indications that large rd ’s, and therefore
small κ’s, are dominant; indeed, HERA data show similar
t- and W -dependence for the both longitudinal and trans-
verse helicity amplitudes. In our phenomenological analysis
we will check the importance of the region of small κ’s by
studying the dependence of our predictions on the κ lower
cut value.

(ii) Another source of uncertainty comes from the adopted
form of the light-cone DAs.

We considered, for the sake of simplicity, the so called
asymptotic choice for the twist-2 DA given in Eq. (6), corre-
sponding to fixing a2(μ

2) = 0. The impact of this approxi-
mation was estimated by letting a2(μ

2
0) take a non-zero value

as large as 0.6 at μ2
0 = 1 GeV2 in the analysis with one spe-

cific model for UGD.
We used typically twist-3 DAs in the Wandzura-Wilczek

approximation, but considered in one case the effect of the
inclusion of the genuine twist-3 contribution to check the
validity of this approximation.

(iii) We calculate the forward amplitudes for both longitu-
dinal and transverse case. The experimental analysis showed
that the t-dependence is similar for the two helicity ampli-
tudes, the measured values of the slope parameter have,
within errors, the same values for the both polarizations cases.
Therefore in T11/T00 ratio considered here the t-dependence
drops.

(iv) The expression in Eq. (4) represents, as a mat-
ter of fact, the imaginary part of the amplitude and not
the full amplitude. The real parts of the amplitudes at
high energy are smaller: they are suppressed in compari-
son to the imaginary parts by the factor ∼ 1/ log s, and
they are related to the latter by dispersion relations. Here
again we appeal to the results of the experimental anal-
ysis, that showed similar W -dependence for both helicity
amplitudes, that means the effective cancellation of the con-
tribution from the real parts of the amplitudes in the ratio
T11/T00.

2.3 Models of Unintegrated Gluon Distribution

In this work we have considered a selection of six mod-
els of UGD, without pretension to exhaustive coverage, but
with the aim of comparing (sometimes radically) different
approaches. We refer the reader to the original papers for
details on the derivation of each model and limit ourselves
to presenting here just the functional form F(x, κ2) of the
UGD as we implemented it in the numerical analysis.

2.3.1 An x-independent model (ABIPSW)

The simplest UGD model is x-independent and merely coin-
cides with the proton impact factor [17]:

F(x, κ2) = A

(2π)2 M2

[
κ2

M2 + κ2

]
, (10)

where M corresponds to the non-perturbative hadronic scale.
The constant A is unessential since we are going to consider
the ratio T11/T00.

2.3.2 Gluon momentum derivative

This UGD is given by

F(x, κ2) = dxg(x, κ2)

d ln κ2 (11)

and encompasses the collinear gluon density g(x, μ2
F ), taken

at μ2
F = κ2. It is based on the obvious requirement that,

when integrated over κ2 up to some factorization scale,
the UGD must give the collinear gluon density. We have
employed the CT14 parametrization [22], using the appropri-
ate cutoff κmin = 0.3 GeV (see Sect. 3.1 for further details).

2.3.3 Ivanov–Nikolaev’ (IN) UGD: a soft-hard model

The UGD proposed in Ref. [23] is developed with the purpose
of probing different regions of the transverse momentum.
In the large-κ region, DGLAP parametrizations for g(x, κ2)

are employed. Moreover, for the extrapolation of the hard
gluon densities to small κ2, an Ansatz is made [24,25], which
describes the color gauge invariance constraints on the radia-
tion of soft gluons by color singlet targets. The gluon density
at small κ2 is supplemented by a non-perturbative soft com-
ponent, according to the color-dipole phenomenology.

This model of UGD has the following form:

F(x, κ2) = F (B)
soft (x, κ

2)
κ2
s

κ2 + κ2
s

+ Fhard(x, κ
2)

κ2

κ2 + κ2
h

,

(12)
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where κ2
s = 3 GeV2 and κ2

h = [1 + 0.047 log2(1/x)]1/2.
The soft term reads

F (B)
soft (x, κ

2) = asoftCF Nc
αs(κ

2)

π

(
κ2

κ2 + μ2
soft

)2

VN(κ),

(13)

where CF = N 2
c − 1

2Nc
and μsoft = 0.1 GeV. The parame-

ter asoft = 2 gives a measure of how important is the soft
part compared to the hard one. On the other hand, the hard
component reads

Fhard(x, κ
2) = F (B)

pt (κ2)
Fpt(x, Q2

c)

F (B)
pt (Q2

c)
θ(Q2

c − κ2)

+Fpt(x, κ
2)θ(κ2 − Q2

c), (14)

where Fpt(x, κ2) is related to the standard gluon parton
distribution as in Eq. (11) and Q2

c = 3.26 GeV2 is the
soft-hard interface (see Sect. 3.1 for further details). We
refer to Ref. [23] for the expressions of the vertex func-
tion VN(κ) and of F (B)

pt (κ2). Another relevant feature of
this model is given by the choice of the coupling constant.
In this regard, the infrared freezing of strong coupling at
leading order (LO) is imposed by fixing �QCD = 200
MeV:

αs(μ
2) = min

⎧⎪⎪⎨
⎪⎪⎩

0.82,
4π

β0 log

(
μ2

�2
QCD

)
⎫⎪⎪⎬
⎪⎪⎭

. (15)

We stress that this model was successfully tested on the
unpolarized electroproduction of VMs at HERA.

2.3.4 Hentschinski–Sabio Vera–Salas’ (HSS) model

This model, originally used in the study of DIS structure
functions [26], takes the form of a convolution between
the BFKL gluon Green’s function and a LO proton impact
factor. It has been employed in the description of single-
bottom quark production at LHC in Ref. [27] and to inves-
tigate the photoproduction of J/� and ϒ in Ref. [28].
We implemented the formula given in Ref. [27] (up to a
κ2 overall factor needed to match our definition), which
reads

F(x, κ2, Mh)

=
∫ ∞
−∞

dν

2π2 C �(δ − iν − 1
2 )

�(δ)

(
1

x

)χ
(

1
2 +iν

) (
κ2

Q2
0

) 1
2 +iν

×
⎧⎨
⎩1 +

ᾱ2
s β0χ0

(
1
2 + iν

)

8Nc
log

(
1

x

)

[
−ψ

(
δ − 1

2
− iν

)
− log

κ2

M2
h

]}
, (16)

where β0 = 11Nc−2N f
3 , with N f the number of active quarks

(put equal to four in the following), ᾱs = αs
(
μ2

)
Nc

π
, with

μ2 = Q0Mh , and χ0(
1
2 + iν) ≡ χ0(γ ) = 2ψ(1) − ψ(γ ) −

ψ(1 − γ ) is (up to the factor ᾱs) the LO eigenvalue of the
BFKL kernel, with ψ(γ ) the logarithmic derivative of Euler
Gamma function. Here, Mh plays the role of the hard scale
which can be identified with the photon virtuality,

√
Q2. In

Eq. (16), χ(γ ) (with γ = 1
2 + iν) is the NLO eigenvalue of

the BFKL kernel, collinearly improved and BLM optimized;
it reads

χ(γ ) = ᾱsχ0(γ ) + ᾱ2
s χ1(γ )

−1

2
ᾱ2
s χ

′
0(γ ) χ0(γ ) + χRG(ᾱs, γ ), (17)

with χ1(γ ) and χRG(ᾱs, γ ) given in Sect. 2 of Ref. [27].
This UGD model is characterized by a peculiar

parametrization for the proton impact factor, whose expres-
sion is

�p(q, Q2
0) = C

2π�(δ)

(
q2

Q2
0

)δ

e
− q2

Q2
0 , (18)

which depends on three parameters Q0, δ and C which were
fitted to the combined HERA data for the F2(x) proton struc-
ture function. We adopted here the so called kinematically
improved values (see Sect. 3.1 for further details) and given
by

Q0 = 0.28 GeV, δ = 6.5, C = 2.35 . (19)

2.3.5 Golec–Biernat–Wüsthoff’ (GBW) UGD

This UGD parametrization derives from the effective dipole
cross section σ̂ (x, r) for the scattering of a qq̄ pair off a
nucleon [29],

σ̂ (x, r2) = σ0

{
1 − exp

(
− r2

4R2
0(x)

)}
, (20)

through a reverse Fourier transform of the expression

σ0

{
1 − exp

(
− r2

4R2
0(x)

)}

=
∫

d2κ

κ4 F(x, κ2) (1 − exp(iκ · r)) (1 − exp(−iκ · r)) ,
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(21)

F(x, κ2) = κ4σ0
R2

0(x)

2π
e−κ2R2

0(x), (22)

with

R2
0(x) = 1

GeV2

(
x

x0

)λp

(23)

and the following values

σ0 = 23.03 mb, λp = 0.288, x0 = 3.04 ·10−4. (24)

The normalization σ0 and the parameters x0 and λp > 0 of
R2

0(x) have been determined by a global fit to F2(x) in the
region x < 0.01.

2.3.6 Watt–Martin–Ryskin’ (WMR) model

The UGD introduced in Ref. [30] reads

F(x, κ2, μ2)

= Tg(κ
2, μ2)

αs(κ
2)

2π

∫ 1

x
dz

[∑
q

Pgq(z)
x

z
q

(
x

z
, κ2

)

+Pgg(z)
x

z
g

(
x

z
, κ2

)
�

(
μ

μ + κ
− z

)]
, (25)

where the term

Tg(κ
2, μ2)

= exp

(
−

∫ μ2

κ2
dκ2

t
αs(κ

2
t )

2π

(∫ z′max

z′min

dz′ z′ Pgg(z′)

+N f

∫ 1

0
dz′ Pqg(z′)

))
, (26)

gives the probability of evolving from the scale κ to the
scale μ without parton emission. Here z′max ≡ 1 − z′min =
μ/(μ + κt ); N f is the number of active quarks. This UGD
model depends on an extra-scale μ, which we fixed at Q.
The splitting functions Pqg(z) and Pgg(z) are given by

Pqg(z) = TR [z2 + (1 − z)2],
Pgg(z) = 2CA

[
1

(1 − z)+
+ 1

z
− 2 + z(1 − z)

]

+
(

11

6
CA − N f

3

)
δ(1 − z),

with the plus-prescription defined as

∫ 1

a
dz

F(z)

(1 − z)+
=

∫ 1

a
dz

F(z) − F(1)

(1 − z)
−

∫ a

0
dz

F(1)

(1 − z)
.

(27)

3 Numerical analysis

In this section we present our results for the helicity-
amplitude ratio T11/T00, as obtained with the six UGD mod-
els presented above, and compare them with HERA data.

We preliminarily present a plot, Fig. 1, with the κ2-
dependence of all the considered UGD models, for two dif-
ferent values of x . The plot clearly exhibits the marked dif-
ference in the κ2-shape of the six UGDs.

In Fig. 2 we compare the Q2-dependence ofT11/T00 for all
six models at W = 100 GeV, together with the experimental
result. We used here the asymptotic twist-2 DA (a2(μ

2) = 0)
and the WW approximation for twist-3 contributions. Theo-
retical results are spread over a large interval, thus supporting
our claim that the observable T11/T00 is potentially able to
strongly constrain the κ-dependence of the UGD. None of the
models is able to reproduce data over the entire Q2 range; the
x-independent ABIPSW model and the GBW model seem
to better catch the intermediate-Q2 behavior of data.

To gauge the impact of the approximation made in the
DAs, we calculated the T11/T00 ratio with the GBW model,
at W = 35 and 180 GeV, by varying a2(μ0 = 1 GeV) in the
range 0. to 0.6 and properly taking into account its evolution.
Moreover, for the same UGD model, we relaxed the WW
approximation in T11 and considered also the genuine twist-3
contribution. All that is summarized in Fig. 3, which indicates
that the approximations made are quite reliable.

The stability of T11/T00 under the lower cut-off for κ , in
the range 0 < κmin < 1 GeV, has been investigated. This
is a fundamental test since, if passed, it underpins the main
underlying assumption of this work, namely that both the
helicity amplitudes considered here are dominated by the
large κ region. In Fig. 4 we show the result of this test for the
GBW model at W = 100 GeV; similar plots can be obtained
with the other UGD models, with the only exception of the
IN model. There is a clear indication that the small-κ region
gives only a marginal contribution.

3.1 Tools and systematics

All numerical calculations we done in Fortran, making
use of specific CERNLIB routines [31] to perform numeri-
cal integrations and the computation of (poly-)gamma func-
tions. In order to deal with all the considered UGD models,
we found advantageous to create a modular library which
allowed us to bind and call all sets via a unique and simple
interface, serving at the same time as a working environment
for the creation of new, user-customized UGD parametriza-
tions.

The uncertainty coming from the numerical 2-dimensional
over κ and y in Eqs. (4), (5) and (7) was directly estimated by
the Dadmul integrator [31] and it was constantly kept below
0.5%. In the case of the HSS and WMR models, one should
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Fig. 1 κ2-dependence of all
UGD models for x = 10−3 and
10−4

take into account of an extra-source of systematic uncertain-
ties coming from the integration on ν (Eq. (16)) and on z and
κ2
t (Eqs. (25) and (26)), respectively. Even in this case, we

managed to keep the numerical error very small.
Furthermore, it is worth to note that for all the UGD mod-

els involving the use of standard PDF parametrizations, it
was needed to put a lower cut-off in κ , in order to respect the
kinematical regime where each set has been extracted. We
gauged the effect of using different PDF parametrizations by
making tests with the most popular sets extracted from global
fits, namely MMHT14 [32], CT14 [22] and NNPDF3.0 [33],
as provided by the LHAPDF Interface 6.2.1 [34], after impos-

ing a provisional cut-off of κ
(test)
min = 1 GeV. We checked that

the discrepancy among the various cases is small or negligi-
ble. Then, we did the final calculations by using the CT14
parametrization, which allowed us to integrate over κ down
to κmin = 0.3 GeV. Results with the gluon momentum deriva-
tive and the WMR model were obtained by imposing such a
cut-off, while we adopted a dynamic strategy as for the IN
one: we cut the contribution coming from the IN hard com-
ponent (Eq. (14)), at κmin, while no cut-off was imposed for
the soft component (Eq. (13)). With respect to this model, we
made further tests by considering the effect of using different
DGLAP inputs (see Table I of Ref. [23]) for the parameters
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Fig. 2 Q2-dependence of the
helicity-amplitude ratio T11/T00
for all the considered UGD
models at W = 100 GeV. In the
twist-2 DA we have put
a2(μ0 = 1 GeV) = 0 and the
T11 amplitude has been
calculated in the WW
approximation
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Qc, κh and μsoft entering Eqs. (13) and (14). No significant
discrepancy among them was found, so we gave our results
for the IN model by using the so-called CTEQ4L DGLAP
input.

Following the definition of IN and WMR models, the PDF
set was taken at LO, while the NLO one was employed in
the gluon momentum derivative parametrization. Moreover,
as for the HSS UGD parametrization, we checked that the
discrepancy between the so-called improved setup given in
Eq. (19) and the standard one (see, e.g. Ref. [27]) is negligible
when considering the helicity-amplitude ratio T11/T00.

4 Discussion

In this paper we have proposed an observable that is well
measured in the experiments at HERA (and could be studied
in possible future electron-proton colliders) – the dominant
helicity amplitudes ratio for the electroproduction of vector
mesons – as a nontrivial testfield to discriminate the models
for the unintegrated gluon distribution in the proton.

The main motivation of our study are the features,
observed at HERA, of polarization observables for exclusive
vector meson electroproduction. In the cases of both longi-
tudinal and transverse polarizations, the measured cross sec-
tions demonstrate similar dependencies on kinematic vari-
ables: specific Q2 scaling, t- and W -dependencies that are
distinct from the ones seen in soft diffractive exclusive pro-
cesses. This indicates that the dominant physical mechanism
in both cases is the scattering of a small transverse-size,
∼ 1/Q, dipole on a proton.

On the theoretical side we have a description in κ-
factorization, where the nonperturbative physics is encoded
in the unintegrated gluon distribution, F(x, κ2), and in the
vector meson twist-2 and twist-3 DAs (which includes both
WW and genuine twist-3 contributions), that parameterize
the probability amplitudes for the transition of 2- and 3- par-
ton small-transverse-size colorless states to the vector meson.

In our analysis we have considered six models for
F(x, κ2), which exhibit rather different shape of κ-
dependence in the region, κ2 ∼ few GeV2, relevant for the
kinematic of the ρ-meson electroproduction at HERA, as
shown in Fig. 1.

In our numerical study we have found rather weak sensi-
tivity of our predictions for the helicity-amplitude ratio to the
physics encoded in the meson DAs (though values of longitu-
dinal and transverse amplitudes separately depend strongly
on the model for DAs). As an example, in Fig. 3 we have
presented results for the GBW model of F(x, κ2). Here the
dominance of the WW contribution over the genuine twist-3
one is clearly seen. Besides, we have found rather moderate
dependence of our observable on the shape of twist-2 DA.
Indeed, varying the value of a2 in a wide range in comparison
to the value a2(μ0) = 0.18 ± 0.10 obtained from the QCD
sum rules [21], and the one calculated recently on the lattice
in Ref. [35], a2(μ = 2 GeV) = 0.132 ± 0.027, we have
found small variation of the amplitude ratio, on the level of
the experimental errors.

Another important issue is the small-size color dipole
dominance that allows us to use results for the γ ∗ → ρ

IF calculated unambiguously in terms of the meson DAs.
To clarify this question we have introduced a cut-off in the
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Fig. 3 Q2-dependence of the
helicity-amplitude ratio T11/T00
for the GBW UGD model at
W = 35 (top) and 180 GeV
(bottom). The full, WW and
genuine contributions are
shown. The shaded bands give
the effect of varying
a2(μ0 = 1 GeV) between 0. and
0.6
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κ-integration and studied the stability of our predictions on
the excluded region of small gluon transverse momenta. In
Fig. 4, considering again GBW model as an example, we have
shown that the sensitivity of our predictions to the region of
small κ is indeed not strong, the variation of our results is
lower than or comparable to the data errors.

In this way we have seen that the dominance of the small-
size dipole production mechanism is supported both by the
qualitative features of the data and by the theoretical calcu-
lations in κ-factorization. This gives evidence to our main
statement that, having precise HERA data on the helicity-

amplitude ratio, one can obtain important information about
the κ-shape of the UGD. To demonstrate this in Fig. 2 we
have confronted HERA data with the predictions calculated
with six different UGD models. We have seen that none of the
models is able to reproduce data over the entire Q2 range and
that HERA data on the transverse to longitudinal amplitudes
ratio are really precise enough to discriminate predictions of
different UGD models.

Our work is closely related to the study of Ref. [19],
where the same process was investigated in much detail in the
dipole approach. In this case the process helicity amplitudes
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Fig. 4 Q2-dependence of the
helicity-amplitude ratio T11/T00
for the GBW UGD model at
W = 100 GeV. The band is the
effect of a lower cutoff in the
κ-integration, ranging from 0. to
1 GeV. In the twist-2 DA we
have put a2(μ0 = 1 GeV) = 0
and the T11 amplitude has been
calculated in the WW
approximation

0 5 10 15 20 25

Q
2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

T
11

/T
00

WW
HERA dataW = 100 GeV

GBW UGD parametrization

0 < kmin< 1 GeV
a2(µ0) = 0

are factorized in terms of the dipole cross section σ̂ (x, r).
The κ-factorization and the dipole approach are mathemat-
ically related through a Fourier transformation, but the lat-
ter approach represents the most natural language to discuss
saturation effects, due to a distinct picture of saturation for
the σ̂ (x, r) dependence on r for the dipole sizes that exceed
the reverse saturation scale, r ≥ 1/QS(x). Besides, nonlin-
ear evolution equations that determine the x-dependence of
σ̂ (x, r) and include saturation effects are formulated in the
transverse coordinate space.

In Ref. [19] several models for σ̂ (x, r) (including the
GBW model adopted by us here) that include saturation
effects, and whose parameters were fitted to describe inclu-
sive DIS data, were considered. They were used to make
predictions for vector meson exclusive production at HERA
kinematics. It was found in Ref. [19] that the predictions of
GBW and of other more elaborated dipole models are close to
each other and give rather good, but not excellent, description
of HERA data at virtualities bigger than Q2 ≈ 5 GeV2.

Another interesting issue studied in Ref. [19] is the radial
distribution of the dipoles, that contributes to the longitudi-
nal and the transverse helicity amplitudes for ρ-production.
It was shown that for large Q2 both helicity amplitudes are
dominated by the contributions of small size dipoles, which is
another source of evidence in favour of the small-size dipole
mechanism for the hard vector meson electroproduction at
HERA. Besides, as it is shown in Ref. [19], in the case of
large Q2, see the right panels of Fig. 17 in Ref. [19] for
Q2 = 10 GeV2, the relevant values of r are considerably
lower than those where the dipole cross section σ̂ (x, r) starts
to saturate. This is perhaps not surprising, since the estimated

value of the saturation scale at HERA energies is not big,
Q2

S ∼ 1 GeV2. Therefore one can anticipate that saturation
effects for hard vector meson electroproduction at HERA
do not play a crucial role. The region of large values of r ,
where the dipole cross section saturates, represents only a
corner of r -integration region for both helicity amplitudes
in the dipole approach.3 In the language of κ-factorization,
that we use in this work, the saturation region is related to
the κ-integration region of small κ . Our calculations for the
GBW model with κ cutoff, see Fig. 4, show that, indeed, the
helicity-amplitude ratio for hard meson electroproduction at
HERA is not very sensitive to this saturation region. There-
fore we believe that HERA data allow to obtain nontrivial
information on the UGD shape (or equivalently, about the
r shape of the dipole cross section) in the kinematic range
where the linear evolution regime is still dominant.

Finally, as our closing statement, we recommend that fur-
ther tests of models for the unintegrated gluon distribution, as
well as possible new model proposals, take into due account
our suggestion to utilize the important information encoded
in the HERA data on the helicity structure in the light vector
meson electroproduction.

3 The situation is different in the region of smaller Q2, where the satu-
ration region constitutes an essential part of r -integration range, see the
left panels of Fig. 17 in Ref. [19]. But in that case one cannot rely on the
twist expansion in the calculation of the γ ∗ → ρ transition, which is
expressed in terms of the lowest twist-2 and twist-3 DAs only. It would
be very interesting to consider the same process at smaller values of x ,
where the saturation scale is bigger and saturation effects are expected
to be more pronounced, but this would require experiments at larger
energies.
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