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Abstract We consider a neutral and static black brane
background with a probe power-law Maxwell field. Via the
membrane paradigm, an expression for the holographic DC
conductivity of the dual conserved current is obtained. We
also discuss the dependence of the DC conductivity on the
temperature, charge density and spatial components of the
external field strength in the boundary theory. Our results
show that there might be more than one phase in the boundary
theory. Phase transitions could occur where the DC conduc-
tivity or its derivatives are not continuous. Specifically, we
find that one phase possesses a charge-conjugation symmet-
ric contribution, negative magneto-resistance and Mott-like
behavior.
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1 Introduction

The idea of the membrane paradigm was started by Damour
[1] and then developed further by Thorne et al. [2,3]. Later,
the membrane paradigm has been applied to various field
theories by following a more systematic action-based deriva-
tion proposed by Parikh and Wilczek in [4]. In the membrane
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paradigm, the observer at infinity sees that the black hole is
equivalent with a thin fluid membrane living just outside the
black hole’s event horizon, and hence the black hole can be
replaced by the fluid membrane. The membrane paradigm
was originally proposed to study astrophysical black holes
[5-7]. Realizing the membrane fluid could provide the long
wavelength description of the strongly coupled quantum field
theory at a finite temperature, researchers take a new interest
in the membrane paradigm in the context of gauge/gravity
duality [8—11]. In [10], the low frequency limit of the bound-
ary theory transport coefficients could be expressed in terms
of geometric quantities evaluated at the horizon by identify-
ing the currents in the boundary theory with radially indepen-
dent quantities in bulk. In the presence of momentum dissipa-
tion, the DC conductivity can also be calculated in a similar
way [12-15] since there appeared to exist the radially inde-
pendent zero mode of some current in bulk. Recently, Donos
and Gauntlett obtained the DC thermoelectric conductivity in
Einstein-Maxwell theory [16] by solving a system of Stokes
equations on the black hole horizon for a charged fluid.

The nonlinear electrodynamics (NLED) is an effective
model of electromagnetic fields and reduces to Maxwell
electrodynamics at the weak field limit. NLED is interest-
ing per se, for example some models give finite self-energy
of charged particles and can remove singularity at the clas-
sical level. Two famous NLED are Heisenberg—Euler effec-
tive Lagrangian [17] and Born—Infeld electrodynamics [18].
On the other hand, it is well-known that the Maxwell action
enjoys the conformal invariance in four dimensions. A natu-
ral extension of the Maxwell action in (d + 1)-dimensional
spacetime that is the conformally invariant is the action of a
power-law Maxwell field [19]:

S = /d‘”lxa/—gsp = /dd+1x¢fgc (s), (1)

where we define a nontrivial scalar

1
s == F"Fa; )
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Fap = 0,Ap — 0p A, 1s the electromagnetic field tensor, and
A, is the electromagnetic potential. The action (1) is confor-
mally invariant provided p = (d + 1) /4. When d = 3, the
action (1) recovers the standard Maxwell action. However,
we don’t confine ourselves to p = (d + 1) /4 in our paper.
Instead, we shall consider a more general case from now
on, in which p is an arbitrary positive integer. Coupling the
power-law Maxwell field to gravity, various charged black
holes were derived in a number of papers [19-25] . In the
framework of gauge/gravity duality, holographic supercon-
ductors [26,27], action/complexity conjecture [28], and the
DC conductivity in the massive gravity [29] were studied in
presence of a power-law Maxwell field.

This paper is a follow-up paper of our previous paper [30].
In [30], we used the method of [10] to compute the DC con-
ductivities of an conserved current dual to a probe nonlinear
electrodynamics field in a general neutral and static black
brane background. However, our previous paper dealt, pri-
marily, with a NLED Lagrangian that would reduce to the
Maxwell-Chern-Simons Lagrangian for small fields. Clearly,
the power-law Maxwell field with p # 1 does not belong to
this class of NLED models and would have some different
predictions for the DC conductivities in the boundary theory.
For example, when the charge density and magnetic field in
the boundary theory vanish, the DC conductivities are zero
for p # 1 in this paper while they are not in [30].

In this paper, we will consider a neutral and static black
brane background with a probe power-law Maxwell field and
the dual theory. The aim of this paper is to find an expression
for the holographic DC conductivity of the dual conserved
current and investigate the properties of the boundary theory,
e.g the possible phases and the magnetotransport. Note that
in the probe limit, the properties of magnetotransport have
been investigated in holographic Dirac—Born—Infeld models
[31]. Later in [32], the backreaction effects of matter fields
on the Dirac-Born-Infeld models was considered.

The remainder of our paper is organized as follows: In
Sect. 2, we briefly review the membrane paradigm for a
power-law Maxwell field. The holographic DC conductiv-
ity of the dual conserved current is studied in Sect. 3. In
Sect. 4, we conclude with a brief discussion of our results.
We use convention that the Minkowski metric has signature
of the metric (— + ++) in this paper.

2 Membrane paradigm

In [30], the electromagnetic membrane properties have been
examined for a general NLED model via the method of [4].
In this section, we first give a quick review of the membrane
paradigm in the framework of a power-law Maxwell field. In
membrane paradigm, a time-like hypersurface, namely the
stretched horizon, is put just outside the black hole horizon.

@ Springer

The stretched horizon is composed of a family of fiducial
observers with world lines U¢ and possesses a spacelike out-
ward pointing normal vector n,. The stretched horizon is
denoted by S. To derive the Euler—Lagrange equations from
the action restricted to the spacetime outside the stretched
horizon Sqyy, it is necessary to add a surface term Syt to Sout
to exactly cancel all the boundary terms. As a result, we can
rewrite the total action Siy as

Stot = (Sout + Ssurf) + (Sin - Ssurf) . (3)

Outside S, the action is just Sy + Ssurf, Whose variation
8 Sout+93Ssurf = 0 would give the correct equations of motion.

For a power-law Maxwell field A,, the external action in
a (d + 1)-dimensional spacetime is given by the action (1) .
To cancel the boundary contribution on the stretched horizon
from the action (1) , we add a surface term Sqyf

Seurt = / &x/Thl % A, @)

S

where hup = gap — ngnp is the induced metric on S; we
define

Jj& =Gy, )
and
oL
Gab — _aT(sb) — psp—lFab. (6)
a

Note that j¢ can be interpreted as the membrane current
on the stretched horizon since n,j¢ = 0. From j¢, we can
define the surface electric charge density p = —jéU, and
the current density j¢ = j¢ — oU?, respectively.

To be generic, we consider a (d + 1)-dimensional black
brane with the metric of the form

ds? = gubdxadxb =g (1) dr? + g (1) dxPdx’

= —gu (r)dt* + grr (1) dr* + go; (r) Sapdxdx®,
©)

where indices {a, b} run over the (d + 1)-dimensional bulk
space, {11, v} over d-dimensional constant-r slice,and {A, B}
over spatial coordinates. Moreover, g;; (r) and g'" (r) are
assumed to have a simple zero at the event horizon r =
r4. Therefore, it can show that the corresponding Hawking
temperature is given by

v g1y () &' (rn) .

4

®)

If the stretched horizon is located at r = rog withro—ry, < rp,
the vector fields n, and U, on the stretched horizon become

Na = +/ &rr (r0)8ar and U, = —V 81t (r0)dar - 9)
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Via Eq. (5) , we find that the membrane current reduces to

J& =& (r))G"". (10)

It showed in [30] that, on the stretched horizon, the NLED
field strength has

FrA (rg) = — | 8100 pua (11)
8rr (rO)

We then use Eqgs. (6), (10) and (11) to rewrite jSA as
J& = ps?~ ro) EA, (12)

where the electric field measured by the fiducial observers
on the stretched horizon is

E® = F" (r0) v/ gu (ro), 13)

and s on the stretched horizon becomes

FAB (rg) Fap (ro):|
5 .

From Eq. (12) , we can read that the diagonal components of
the conductivities of the stretched horizon are

s (rg) = % |:ErEr — (14)

(TSAA =0, = psp_l (rg) , (15)
and the Hall components are zero. These fields also increase
the black hole’s entropy S in accord with the Joule-heating
relation [3]:

5 a0 - fase (e

S B S B

where o = +/g;: (ro) is the renormalized factor [3].

3 DC conductivity from gauge/gravity duality

In this section, we calculate the holographic DC conductivity
of a power-law Maxwell field in the probe limit. For simplic-
ity, we assume that the background is a (d + 1)-dimensional
black brane with the metric (7) , which is uncharged with triv-
ial background configuration of the power-law Maxwell field.
From the AdS/CFT duality, the U(1) gauge symmetry of the
power-law Maxwell field corresponds to a global symmetry
in the corresponding boundary theory, which means that the
power-law Maxwell field is dual to a conserved current J*
in the boundary theory. We can define AC conductivities for

JH:
<jA (ku)> = 0B (k) Fp (r — o0), (17)

in the boundary theory, which lives at r — oo. In the long
wavelength and low frequency limit, the AC conductivities
just become the DC conductivities:

op? = lim lim o8 (k,). (18)
0—>0%_0

We can compute the expectation value of the current J* for
the boundary theory by [30]
L (s)

(jﬂ> =Nt = T lrso0 =

=G, 500, (19

where I1# is the conjugate momentum of the field A, with
respect to r-foliation. When p = ¢, one hence has

P = <\7[> = _\/__gGrt|r—>oo’ (2’0)

where p can be interpreted as the charge density in the dual
field theory.

Identifying the currents in the boundary theory with radi-
ally independent quantities in the bulk, authors of [10]
showed that the membrane paradigm fluid on the stretched
horizon determined the low frequency limit of conductivi-
ties of a conserved current in the boundary theory, which
was dual to a Maxwell field in bulk. Later, the method of
[10] was extended to the NLED case in [30]. In particular, it
showed there that, in the long wavelength and low frequency
limit, i.e. w — 0 and k — 0 with Fyo and T1" fixed, the
following quantities did not evolve in the radial direction:

9,T1* = 0 and 9, F,,,, = 0. 1)

On the horizon, we have

43
= gzzz (rn) L (s) lr=r, Fats

LA
M4 () = V=g —=2

vV 8rr (rp)

(22)
where we take the limit ro — rj. Here, s on the horizon
becomes

(rn) 1[F”( ) B ] (23)
s(rp)==1|n )" — ,
2 g2 (rp)
where we define
1
0= grr () gur () and B? = - g Fig. (24)

For d = 2 and 3, the magnetic field is a scalar and a vector,
respectively, and B can be treated as the magnitude of the
magnetic field in the boundary theory. To express F'! () in
terms of quantities in the boundary theory, we can use the
following formula

I (rp) = 1" (r — 00) = p. (25)
On the boundary, we have that, in the zero momentum limit,

(74) =% ¢ = o)
d-3

=" (r) = g2 () £ (5) lr=r, Far- (26)

@ Springer
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From Eq. (26) , we can read that the diagonal components of
the DC conductivities in the boundary theory:

o4 = v (5.5)

d-3
T ~ éZp—l
_ (r?)Psz 2 P/ ~ ’ 27)
2r X ( 5/ BZp—l)
where, for later convenience, we define
~ 2r=1p - B
=g and B = o >0, (28)
gzz2 (rn) p 8z
and x (y) is the inverse of the function y (x) = —x

(x2 = 1)" ~! Note that the Hall components vanish. The
value of op in the limit of B — 0 depends on the value
of p:

op = 1,for p =1, and op (p, 0) = 0, otherwise. (29)

Whend = 3 and p = 1, Eq. (27) reproduces the well-known
result in the Maxwell case [3]

op = 1. (30)

For p # 1, the DC conductivity op is zero in the absence of
the magnetic field and charge density in the boundary theory,
which is consistent with Eq. (44) with ¢ = 0 in [29].

In the long wavelength and low frequency limit with v —
0and k — 0, we keep F,, and IT* fixed and neglect higher
p-derivatives. This means that F,, and p are constant and
homogeneous on the boundary. In this limit, one can relate
the DC conductivity op in the boundary theory to o of the
stretched horizon as

=3
o5 = gz

(rn) op, €1y

which is also constant and homogeneous on the stretched
horizon. Therefore in the long wavelength and low frequency
limit, the rate of the black hole’s entropy S becomes

ds
Tz—ng (rn) op f Z (32)

The second law of black hole mechanics implies that the DC
conductivity op in the boundary theory is non-negative and
real.

It is interesting to note that the function x (y) is usually a
multivalued function, which indicates that there might exist
more than one phase and possible phase transitions. For later
convenience, we define
- 2° _IUD
op=—(75— (33)

Pg % (r h)

@ Springer

3.1 Even positive integer p

Weploty (x) = —x (x2 — l)p_1 for p = 2inFig. 1a. Infact,
y (x) and hence op in all the cases of p being even positive
integer show very similar behavior as in that of p = 2. So for
concreteness, we shall focus on the case of p = 2. Bearing in
mind that op is non-negative and real, Eq. (27) shows that the
green segment of y (x) in Fig. la is unphysical. Therefore,
we only need to consider the blue and red segments to find
the inverse function of y (x), which is plotted in Fig. 1b.
As shown in Fig. 1b, there is a discontinuity at y = 0 for
x (y), which, as will be shown later, indicates possible phase
transitions at y = 0. Using x (y) in Fig. 1b, we plot 6p versus
5 and B in Fig. 2. It shows in Fig. 2 that &p is continuos
everywhere but the derivative ;6 p changes the sign at p =
0. These observations imply that there might exist two phases
for p > 0 and p < O, respectively, and a continuous phase
transition could occur at p = 0.

Since x (0) = 1, Eq. (27) shows that the DC conduc-
tivity op vanishes at zero charge density, which implies
that the main contribution to op is from momentum relax-
ation for the charge carriers in the system. As shown in
Fig. 2, op increases with increasing |p| at constant B,
which is a feature similar to the Drude metal. For the Drude
metal, a larger charge density provides more available mobile
charge carriers to efficiently transport charge. At constant
p, op decreases with increasing B, which means a positive
magneto-resistance.

3.2 Odd positive integer p

Since all the cases with an odd positive integer p share very
similar behavior, we shall focus on the case of p = 3 here.
The function y (x) = —x (x? — 1)”71 for p = 3 is shown in
Fig. 3a. Unlike the p = 2 case, x/y < 0and hence 6p is non-
negative for all points on y (x) in the p = 3 case. So the phys-
ical inverse function of y (x) is plotted in Fig. 3b. As shown
in Fig. 3b, the function x (y) has a single value for y > yc
and three values for y < y.. Here we define y, = > f In
Fig. 3b, x (y) can be divided into 5 single-valued segments:
blue, orange, green, red, and purple ones, and each segment
corresponds to a possible phase in the boundary theory. In
fact, we have five possible phases: the blue phase exists for
,o/B5 > 0; the orange phase exists for y, > ,o/B5 > 0; the
green phase exists for y. > p/ BS > —Yy.; thered phase exists
for 0 > ,o/B5 > —Yy.; the purple phase exists for ,o/B5 <0.
We plot 6 versus 5 and B for the five phases in Fig. 4. One

can see that in the region y. > ‘ o/ B‘Sl > 0, three values of

&p are allowed for fixed values of 5 and B. It means that
&p can jump from one value to another. Since the value of
op changes discontinuously, it is acceptable to consider this
transition as a first order phase transition. On the other hand,



Eur. Phys. J. C (2018) 78:1005

Page 50f9 1005

y(x) X(y)
15 \
1.0
0.5
0.5
X y
-15 -1 -05 0.5 1. 15~ -15 -1.0 -05 0.5 1.0 15
-05
~05
-1.0
-1.0
-15 \

(a) Plot of y (z) = —z (z* — 1). On the green
segment, x/y is positive and hence op becomes

negative.

Fig. 1 Plots of y (x) and x (y) for p =2

Fig. 2 Plot of &p versus § and B for p = 2. A continuous phase
transition could occur at 6 = 0, where d;6p changes the sign

the transitions occurring at p = 0 and ‘,5 / gs) = Yy, can
be regarded as continuous phase transitions. To determine
the stable phases and the transition points, one needs to find
the thermodynamic potential in a specific boundary theory,
which, however, is beyond the scope of this paper.

For the blue, orange, red, and purple phases, the behavior
of the DC conductivity op is similar to that in the p = 2 case,
i.e. op = 0 at zero charge density, op increases with increas-
ing |p| at constant B, and op decreases with increasing B at
constant p. However, the green phase has some interesting
features:

e Charge conjugation symmetric contribution. At zero
charge density, op has a non-zero value, if B # 0,

(b) Plot of x (y), the inverse function of y (z).

Here we require that op is non-negative and real

on z (y).

d-3

2
5\ 8z (rn) p 52p—2
op (o, B) = SR,

(34
which can be interpreted by a incoherent contribution
due to intrinsic current relaxation and independent of the
charge density. This contribution is also known as the
charge conjugation symmetric contribution [33,34].

e Negative magneto-resistance. We plot &p versus B for
0 =0,0.1,0.3, 0.5, and 0.7 in Fig. 5a. Figures 4 and 5a
show that 36 /3 B > 0, which gives a negative magneto-
resistance at given temperature and charge density.

e Mott-like behavior. We plot 6p versus j for B = 0.7,
0.8, 0.9, 0.95, and 1 in Fig. 5b. Therefore we can see
from Figs. 4 and 5b that dop/dp < O for the green
phase. This can be explained by the electronic traffic
jam: strong enough e-e interactions prevent the available
mobile charge carriers to efficiently transport charges
[35]. Note that a class of holographic models for Mott
insulators, whose gravity dual contained NLED, was
studied in [35].

3.3 Temperature dependence of DC conductivity

To discuss the temperature dependence of the DC conduc-
tivity, we can express op in terms of p and B:
po 2p—1p 4p—1—-d

x! (W&z o))
When d = 4p — 1, the power-law Maxwell field action (1)
is conformally invariant. In this case, the DC conductivity

op is independent of the geometric quantities evaluated at
the horizon, especially the Hawking temperature 7' of the

(35)

@ Springer
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(a) Plot of y (z) = —z (22 —

colored segment has a single-valued inverse

function. On y (z), —z/y and op are always
non-negative.

Fig. 3 Plots of y(x) and x(y) for p =3

¢

AN 4

1.0
Fig. 4 Plot of 5 versus j and B for p = 3. Five possible phases are
represented by different colors. In the region y. > ‘ﬁ /B> ‘ > 0, jumping

from one value of 6p to another can be considered as a first order
phase transition. Continuous phase transitions could occur at p = 0

and |5/B| = x.

black brane. So the DC conductivity op does not depend on
the temperature of the boundary theory when the power-law
Maxwell field in bulk is conformally invariant. In fact, the
dual conserved current is also scale invariant. For this scale
invariant current at finite temperature, all nonzero tempera-
tures should be equivalent since there is no other scale with
which to compare the temperature.

@ Springer

(b) Plot of x (y), the inverse function of y (z).
Each colored single-valued segment corresponds

to a possible phase in the boundary theory.

For d # 4p — 1, we can now discuss the temperature
dependence of the DC conductivity by relating r to the
Hawking temperature 7'. To have a simple expression of rj, in
terms of 7', we consider the Schwarzschild AdS black brane

ds? = — <r2 — r,f/r) dt*
dr?
=)

where we take the AdS radius L = 1. The corresponding
Hawking temperature is just given by

+ + r28apdx?dx®, (36)

_ 3ry,

=
Since x (y) behaves differently for small y depending on
whether p is an even or odd integer, it will be convenient to
consider these two cases separately.

When p is even, one has that x2 (y) ~ 1 for y « 1. In
the case with p = 0 and nonzero B, one has op = 0. In the
case with nonzero B and p, one has that, whend > 4p — 1,

(37

2p—2  d+1-4p |p|
op ~ p2~1T 2= forsmall T, and op ~ 3 for large T, (38)
and whend <4p — 1
|pl 2p—2  d+l-4p
op ~ 3 forsmall 7, and op ~ p2-1T 2T for large T. 39)

Figure 1b shows that x (y) is a monotonically decreasing
function of y. From Eq. (35), we find that dop /0T < O for
d <4p —1land dop/dT > O ford > 4p — 1. If we define
a metal and an insulator for dop/dT < 0 and dop /0T > O,
respectively, one has a metal for d < 4p — 1 and an insulator
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(a) Plot of 6p versus B. The green lines, from
left to right, have p =0, 0.1, 0.3, 0.5, and 0.7.
These lines show that 95p/dB > 0 and hence a

negative magneto-resistance.

(b) Plot of 6p versus p. The green lines, from
bottom to top, have B = 0.7, 0.8, 0.9, 0.95, and
1. These lines show that 06p/9p < 0 and hence

Mott-like behavior.

Fig. 5 Plots of &p versus B and 5, respectively, for the green phase in the case of p = 3

Table 1 Sign of dop/dT in all cases

Even p Purple, green and blue phases for odd p Orange and red phases for odd p
d<dp—1 Metal (3op /3T < 0) Metal (30 /3T < 0) Insulator (dop /3T > 0)
d>4p—1 Insulator (dop /0T > 0) Insulator (dop /0T > 0) Metal (dop /0T < 0)
d=4p—1 dop/dT =0 dop/dT =0 dop/dT =0
op pB2p—2
on =
d=10 P 21
4T \4—4 ! _
= in the green phase, and op =0 otherwise.
(40)
From the monotonicity of x(y), we can also determine
whether each phase is a metal or an insulator. The results
are summarized in Table 1. In Fig. 7, we plot op versus T
for d = 4 and 12 in the case of p = 3. In Fig. 7, we fix the
d= . .
! values of p and B with p/ B3 > 0, for which only the blue,
T orange and green phases exist. When d = 4, Fig. 7a shows

Fig. 6 Plot of op versus T for d = 4 and 10 in the case of p = 2.
Here the values of p and B are fixed with p/B> > 0, which means the
blue phase

ford > 4p — 1. The results are summarized in Table 1. For
fixed values of p and B with p/B> > 0, we plot o versus
T for d = 4 and 10 in the case of p = 2 in Fig. 6.

When p is odd, one has for y <« 1 that x (y) ~ 1 in the
purple and red phases; x (y) ~ —1 in the blue and orange
phases; x (y) ~ —y in the green phase. In the case with
p = 0 and nonzero B, we find that

that there are three values for op for T < T, and jumping
from one value to another could represent a first order phase
transition. Specially, if the system jumps from the blue phase
to the orange one or vice versa, one would have a first order
metal-insulator transition. A similar behavior applies to op
for T > T, in Fig. 7b, where d = 12.

@ Springer
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9D

T,

oD

— T
< T

(a) Plot of op (T) in the the blue, orange and
green phases for d = 4. For T' < T, jumping
from one value of op to another represents a

first order phase transition.

(b) Plot of op (T) in the the blue, orange and
green phases for d = 12. For T' > T, jumping
from one value of op to another represents a

first order phase transition.

Fig. 7 Plot of o versus T for d = 4 and 12 in the case of p = 3. Here the values of p and B are fixed with p/B> > 0, for which the blue, orange

and green phases could exist

4 Discussion and conclusion

In this paper, we extended the method of [10] to study the
electrical transport behavior of some boundary field theory
in the presence of a power-law Maxwell gauge field. In par-
ticular, we first calculated the conductivities of the stretched
horizon of some general static and neutral black brane in
the framework of the membrane paradigm. Since the con-
jugate momentum of the power-law Maxwell field encoded
the information about the conductivities both on the stretched
horizon and in the boundary theory and, in the zero momen-
tum limit, did not evolve in the radial direction, we obtained
the DC conductivity of the dual conserved current in the
boundary theory. We also found that the DC conductivity
could be expressed in terms of the electromagnetic quanti-
ties and the temperature of the boundary theory.

In the context of the membrane paradigm, we found that
the second law of black-hole mechanics required that the
DC conductivities of the stretched horizon and in the bound-
ary theory are real and non-negative. Imposing op > 0, we
showed that, when p was an even integer, there might be two
phases in the boundary theory, and a continuous phase transi-
tion could occur at p = 0. When p was an odd integer, there
might be five phases in the boundary theory, and the transi-
tions among them could be considered as first order phase
transitions. Specifically, it showed that the green phase pos-
sessed a charge conjugation symmetric contribution, a nega-
tive magneto-resistance and Mott-like behavior. We also dis-
cussed the temperature dependence of the DC conductivity.
We found that the DC conductivity op was independent of

@ Springer

the temperature of the boundary theory when d = 4p — 1.
Note that the power-law Maxwell field action is conformally
invariant ford = 4p — 1.

Finally, we discuss the assumption and limitation of our
calculations. First, we assumed that the black brane back-
ground was neutral, and hence there was no background
charge density in the boundary theory. Since the low fre-
quency behavior of the conductivities depends crucially on
whether there is a background charge density [12], investigat-
ing the behavior of the DC conductivity in a boundary theory
dual to a charged power-law Maxwell field black hole is cer-
tainly interesting. Second, we assumed that the power-law
Maxwell field was a probe field and neglected the backreac-
tion on the bulk spacetime metric. One would like to study
the effects of backreaction on the bulk spacetime metric and
DC conductivity in the boundary theory. Third, we carried
out our calculations in the zero momentum limit, in which the
conjugate momentum did not evolve along the radial direc-
tion in bulk, and the electromagnetic quantities p and B were
time independent and homogeneous in the boundary theory.
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