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Abstract This work presents a generalization of the rotat-
ing black hole in two plus one dimensions, in the light of
scale-dependent gravitational couplings. In particular, the
gravitational coupling κ0 and the cosmological term Λ0 are
not forced to be constants anymore. Instead, κ and Λ are
allowed to change along the radial scale r . The effective Ein-
stein field equations of this problem are solved by assum-
ing static rotational symmetry and by maintaining the usual
structure of the line element. For this generalized solution,
the asymptotic behavior, the horizon structure, and the ther-
modynamic properties are analyzed.

1 Introduction

To formulate a consistent and predictive quantum theory of
gravity (QG) is one of the mayor challenges for the commu-
nity seeking a unified description of the known fundamen-
tal interactions. Currently, at least 16 major approaches to
quantum gravity have been proposed in the literature (see [1]
and references therein), but none of these approaches have
reached the goal in a completely satisfactory way.

In this paper we contribute to the topic of quantum gravity
by studying black hole solutions of effective scale–dependent
gravity in 2+1 dimensions. We thus, combine three different
aspects, namely, scale dependence, gravity in 2 + 1 dimen-
sions and black holes. Each of those aspects hast a motivation
of its own, but all of those aspects have an important moti-
vation from the perspective of quantum gravity:

• Black holes (BHs):
Black Holes are objects of paramount importance in grav-
itational theories [2]. They allow to study gravitational
systems at the transition between a quantum and a classi-
cal regime as for example through the the famously pre-
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dicted Hawking radiation [3,4]. BHs are thus excellent
laboratories to investigate and understand several aspects
of general relativity at the transition between a classical
and quantum regime [5].

• 2 + 1 dimensions: It can be expected that the features of
a successful solution of the problem of quantum gravity
are universal for gravitational theories of different dimen-
sionality. Since gravity in 2+1 dimensions is mathemat-
ically less involved than in 3 + 1 dimensions, this lower
dimensional theory is a good toy model if one aims to
understand the underlying mechanisms of full quantum
gravity in 3 + 1 dimensions. Apart from this motiva-
tion by quantum gravity, the study of gravity in 2 + 1
dimensions is of interest because of its deep connection
to Chern-Simons theory [6,7] and because of its appli-
cations in the context of the AdS/CFT correspondence
[8–12]. Within this lower dimensional gravitation theory
the black hole solution found by Bañados, Teitelboim,
and Zanelli (BTZ) [13,14] plays a crucial role.

• Scale dependence (SD): Before actually attacking the
whole problem of QG with all its different, and up to now
limited, realizations, one can begin with a more modest
approach and concentrate on generic common features,
which are expected from such a theory. One feature which
is shared by most of the candidate theories for quan-
tum gravity (actually by most quantum field theories)
is that they predict a scale dependence of the coupling
constants in the corresponding effective action. Luckily
there is a well defined formalism which allows to deduce
background solutions from a given effective action. We
will follow those techniques which have been previously
probed with a variety of problems [15–30]. In this paper
we aim to study the dominant effects such a scale depen-
dence could have on the BTZ black hole in the Einstein
Hilbert truncation of the effective action of gravity in
2+1 dimensions. By using a well defined method which is
based on the variational principle one can explore leading
local effects of quantum gravity on a rotationally sym-
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Fig. 1 Conceptual flow chart for the interplay of SD, BHs, and 2 + 1
dimensions with QG

metric space-time in a source free region (like BTZ), even
without the knowledge of the exact underlying theory.

The important connection of those three ingredients with
the underlying topic of QG is shown in Fig. 1, showing clearly
that the study of corrections to the classical BTZ solution, as
those derived in this paper, are a key test for any theory of
QG.

This paper is organized as follows: after this introduction,
we present the action and the classical BTZ solution in the
next section. Then, the general framework of this work is
introduced in Sect. 3. The scale dependence for a rotating
BTZ black hole is presented in Sect. 4. The bevaviour of
the Ricci scalar, the asymptotic space-time as well as the
thermodynamics is investigated in Sects. 5 and 6 respectively.
The discussion of this result and remarks are shown in Sect. 7.
The main ideas and results are summarized in the conclusion
Sect. 8. Note that throughout the paper we will use natural
units with (c = h̄ = kB = 1).

2 Classical BTZ solution with J0 �= 0

This section reminds of some key features of the classi-
cal BTZ black hole solution [13,14], such as line element,
event horizons, and thermodynamics. Besides, the contribu-
tion of angular momentum will be considered focussing on
the extremal black hole case. The minimal coupling between
gravity and matter is described by the the Einstein Hilbert
action

I0[gμν] =
∫

d3x
√−g

[
1

2κ0

(
R − 2Λ0

)
+LM

]
, (1)

where gμν is the metric field, R is the Ricci scalar, κ0 ≡
8πG0 is the gravitational coupling, Λ0 is the cosmological
constant, LM is the matter Lagrangian, and g is the determi-

nant of the metric field. The classical Einstein field equations
are obtained from (1) by varying the action with respect to
the metric field

Gμν + Λ0gμν = κ0Tμν, (2)

where Tμν is the energy momentum tensor associated to a
matter source

Tμν ≡ T M
μν = −2

δLM

δgμν
+ LMgμν. (3)

For the case of rotational symmetry without any matter con-
tribution, the metric solution of (2) takes the form

ds2 = − f0(r)dt
2 + f0(r)

−1dr2 + r2
[
N0(r)dt + dφ

]2
. (4)

Here, f0(r) and N0(r) are the lapse function and the shift
function respectively, which are given by

f0(r) = −8M0G0 + r2

�2
0

+ 16G2
0 J

2
0

r2 , (5)

N0(r) = −4G0 J0

r2 , (6)

where �0 is defined by Λ0 ≡ −1/�2
0. The two constants of

integration M0 and J0 are the conserved charges associated to
asymptotic invariance under time shifts (mass) and rotations
(angular momentum) respectively. The horizons

(r±
0 )2 = 4G0M0�

2
0

[
1 ± Δ

]
, (7)

are defined through the condition f (r±
0 ) = 0. Here, the

parameter Δ encodes the impact of the rotational contribu-
tion on the event horizon

Δ =
√√√√1 −

(
J0

M0�0

)2

. (8)

The positive root r+
0 is the black hole’s outer horizon. One

can express the lapse function in terms of the event horizons

f0(r) = 1

�2
0r

2

[(
r2 − (r+

0 )2
)(

r2 − (r−
0 )2

)]
. (9)

It is important to note that, the parameters must satisfy

M0 > 0, ∧ |J0| ≤ M0�0, (10)

in order to get physical solutions. When the classical angular
momentum takes a maximum value given by

J max
0 = M0�0, (11)
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the solution is called an extremal black hole. Regarding black
hole thermodynamics, the Bekenstein-Hawking entropy is
given by

S0(r
+
0 ) = AH (r+

0 )

4G0
. (12)

The corresponding Hawking temperature is

T0(r
+
0 ) = 1

4π

∣∣∣∣16G0M0

r+
0

Δ

∣∣∣∣, (13)

where AH (r0) is the horizon area which is given by

AH (r+
0 ) =

∮
dx

√
h = 2πr+

0 . (14)

3 Scale dependent couplings and scale setting

This section resumes the implementation of scale depen-
dence that was used for the present work. The notation
and procedures follow [15–32]. In this framework the scale
dependence is implemented at the level of an effective action
as a generalization of the classical action. For the case of (1),
the truncated effective action takes the form

Γ [gμν, k] =
∫

d3x
√−g

[
1

2κk

(
R − 2Λk

)
+LM

]
. (15)

As shown in [19], this action is consistent at the classical level
if one sets the arbitrary scale based on a variational principle,
which means that the scale k considered as a non-dynamical
field instead of a global constant. A variation of (15) with
respect to the metric field gμν gives the modified Einstein
equations

Gμν + gμνΛk = κkT
effec
μν . (16)

Here, the effective stress energy tensor is defined as

κkT
effec
μν = κkT

M
μν − Δtμν, (17)

which consists of the usual stress energy of the matter
Lagrangian T M

μν and an additional contribution due to the
scale dependence of the gravitational coupling

Δtμν = Gk

(
gμν� − ∇μ∇ν

)
G−1

k . (18)

For the vacuum solution presented in this paper, the pure
matter contribution is absent T M

μν = 0.
Varying the action (15) with respect to the scale-field k(x)

gives[
R

∂

∂k

(
1

Gk

)
− 2

∂

∂k

(
Λk

Gk

)]
· ∂k = 0. (19)

The above equations of motion are consistently comple-
mented by the Bianchi identity, reflecting invariance under
coordinate transformations

∇μGμν = 0. (20)

4 Scale dependence BTZ solution with J0 �= 0

The line element consistent with a static space-time, with
rotational symmetry is given by

ds2 = − f (r)dt2 + g(r)dr2 + r2
[
N (r)dt + dφ

]2
, (21)

where f (r), g(r) N (r), and k(r) are functions that must be
determined from the equations of motion (16–20). When the
functional scale dependence of the couplings Gk and Λk is
known, the system closes into itself and the equations (16-
20) allow, at least numerically to determine the functions
f (r), g(r) N (r), and k(r) [16]. In certain truncations and
functional approaches such as the functional renormalization
group approach it is indeed possible to study scale depen-
dence and approximate improvement of classical black hole
solutions [33–48]. However, those approximation scenarios
are subject to theoretical uncertainties related to the trunca-
tions used to calculate the beta functions. Further, due to the
implicit assumption of improvement of classical solutions,
they typically do not solve the whole selfconsistent system
of equations (16–20) anymore.

The idea is to avoid the theoretical uncertainties inflicted
with the usage of given functions Gk and Λk , and instead
to learn about the radial dependence of the functions G(r)
and Λ(r) directly from the selfconsistent system of equations
(16–20). Thus, instead of trying to solve for the four functions
{ f (r), g(r), N (r), k(r)} for given, but uncertain, Gk and
Λk one can try to solve the equations (16–20) directly for the
five functions { f (r), g(r), Λ(r), G(r), N (r)}. Here, G(r)
and Λ(r) have inherited their radial dependence from k(r).
The problem for this elegant workaround is that there are now
five unknown functions in a system which only has four inde-
pendent equations. Thus, one additional condition is needed
in order to be able to fully solve this system of equations. Fol-
lowing previous findings [16,18,20,21,27,32] this additional
condition is that we restrict to solutions which fulfill the so-
called Schwarzschild relation, namely that g(r) ≡ f (r)−1.
Therefore, the corresponding line element is

ds2 = − f (r)dt2 + f (r)−1dr2 + r2
[
N (r)dt + dφ

]2
(22)

and the equations of motion can be solved for the four func-
tions { f (r), Λ(r), G(r), N (r)}.
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4.1 Solution

Based on the ansatz (22) one finds that the equations (16) are
solved by

G(r) = G0

1 + rε
, (23)

N (r) = − 4G0 J0

r2 Y (r), (24)

f (r) = − 8M0G0Y (r) + r2

�2
0

+ 16G2
0 J

2
0

r2 Y (r)2, (25)

Λ(r) = − r + 3r2ε − 8G0�
2
0M0εY (r)

�2
0r(1 + rε)

− 4G2
0 J

2
0

r2 (Y (r)′)2

+ 4G0(M0r + 2M0r2ε − 4G0 J 2
0 εY (r))

r2(1 + rε)
Y (r)′,

(26)

where

Y (r) ≡ 1 − 2rε + 2(rε)2 ln

(
1 + 1

rε

)
. (27)

This solution involves five constants of integration, which are
labeled {G0, J0, M0,Λ0 = −1/�2

0, and ε}. Their naming
and physical meaning is given from their interpretation in
two complementary limits. First, the constant J0 → 0 does
not appear in the scale dependent but non-rotating case [19].
Thus, one imposes that for J0 → 0 the solution (23) reduces
to the solution reported in [19], namely

lim
J0→0

G(r) = G0

1 + rε
, (28)

lim
J0→0

N (r) = 0, (29)

lim
J0→0

f (r) = − 8M0G0Y (r) + r2

�2
0

, (30)

lim
J0→0

Λ(r) = − r + 3r2ε + 8G0�
2
0M0εY (r)

�2
0r(1 + rε)

+ 4G0(M0r + 2M0r2ε)

r2(1 + rε)
Y (r)′. (31)

The second limit is the rotating classical solution (referring
to constant couplings as in (5)), which is obtained when the
running paramter ε is taken to be zero,

lim
ε→0

G(r) = G0, (32)

lim
ε→0

N (r) = N0(r) ≡ −4G0 J0

r2 , (33)

lim
ε→0

f (r) = f0(r) ≡ −8M0G0 + r2

�2
0

+ 16G2
0 J

2
0

r2 , (34)

lim
ε→0

Λ(r) = Λ0. (35)

Fig. 2 Radial dependence of the lapse function f (r) for �0 = 5, G0 =
1, M0 = 1, and J0 = 1. The different curves correspond to the classical
case ε = 0 solid black line, ε = 0.05 dashed orange line, ε = 0.2
dotted blue line, and ε = 1 dot-dashed red line

Moreover, when {ε, M0} → {0,−1/8G0} the appropriate
vacuum of the theory is AdS3 which is invariant under per-
turbations due to the running of the couplings controlled
by ε. Further asymptotic corrections can be seen from (47).
Since corrections due to quantum scale dependence should
be small, it is useful to expand the solutions around ε ≈ 0

G(r) = G0

[
1 − rε + O(ε2)

]
, (36)

N (r) = N0(r)
[
1 − 2rε + O(ε2)

]
(37)

f (r) = f0(r) + 16

[
G0M0 − 4G2

0 J
2
0

r2

]
rε + O(ε2), (38)

Λ(r) = Λ0

[
1 + 2rε + O(ε2)

]
. (39)

Making this expansion one assumes that the dimensionfull
quantity ε is much smaller than any other dimensionfull
quantity, such as r , G0, J0, or Λ0. In order to get an intuition
on the radial dependence of the lapse function f (r) and the
corresponding asymptotic behavior one can also refer to a
graphical analysis, which is done in Fig. 2 which shows the
lapse function f (r) for different values of ε in comparison
to the classical BTZ solution.

One observes that the lapse function f (r) presents two
real valued horizons after the inclusion of non-zero angular
momentum, just like the classical case. However, the loca-
tion of those two horizons changes due to the inclusion of
scale dependence. Thus, for non vanishing J0, there are two
horizons independent of the presence (ε 
= 0) or absence
(ε = 0) of scale dependence. One remembers that for van-
ishing angular momentum, there is only a single horizon for
the BTZ black hole which also gets shifted to lower values
if one allows for scale dependence ε > 0 [19]. In the scale
dependent case there does not exist any finite ε value for
which the black hole becomes extremal. This will be dis-
cussed in more detail in Sect. 6. However, if one considers
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the limit ε → ∞, the lapse function approaches that of an
extremal black hole.

It is important to note that, some relevant quantities, such
as the black hole radius rH , depend on the scale dependence
parameter ε. However, the asymptotic space-time for r → ∞
does not show this dependence. This important fact will be
discussed in more detail in Sect. 5.

4.2 Horizon structure

The appearance of horizons is the defining criterium justify-
ing that solution can be called black hole solution. The event
horizons are defined by f (rH ) = 0, which can be written as
the solutions of the equation

Y (rH ) = 1

4

M0

G0 J 2
0

[
1 ± Δ

]
r2
H (40)

where Δ remains the same definition given in Eq. (8) Unfor-
tunately, this condition has no closed analytical solution for
the scale–dependent lapse function (25). Therefore, one has
to restrict to a numerical analysis of the black hole horizons
and of the related subjects. Figure 3 shows the dependence
of the horizons rH on the classical mass parameter M0.

One observes that for vanishing angular momentum J0 =
0 there is only one real valued horizon with and without
scale dependence ε. For finite angular momentum J0 
= 0
there appears a second inner horizon. In all studied cases, the
effect of the scale dependence ε > 0 was to reduce the outer
horizon radius with respect to the non-scale dependent case
ε = 0. Even though the analytical solution for the horizon
is not obtained, one still can analyze the lapse function in a
regime when the ε correction is small. The event horizon, up
to leading order, is

Fig. 3 Black hole horizons rH as a function of the mass M0 for ε = 0
and J0 = 0 (dotted dashed black line), ε = 0 and J0 = 8 (blue dashed
line), ε = 0.1 and J0 = 0 (solid thin red line) and ε = 0.1 and J0 = 8
(solid thick orange line). In addition �0 = 5 and the values of the rest
of the parameters have been taken as unity

rH ≈ r0

[
1 − εr0 + O(ε2)

]
, (41)

where one indeed observes the expected deviation of the hori-
zon with respect the classical case. One notes that in the
scale–dependent scenario the event horizon decreases when
ε > 0 or increases when ε < 0. This feature reveals that the
black hole thermodynamics is directly affected.

For the inner horizon and for large values of M0, the lapse
function takes an simplified form, which allows to express
the horizon as

r0
H =

√
2G0

M0
J0

[
1 − 2

(√
2G0

M0
J0

)
ε + O(ε2)

]
, (42)

where one recovers the classical horizon in the limit ε → 0.

5 Invariants and asymptotic space-times

This section discusses different asymptotic limits. In partic-
ular, we will focus on the asymptotic line element and the
behavior of the the Ricci scalar R.

5.1 Asymptotic line element

5.1.1 Behaviuor when r → 0

When we are close to the horizon, the lapse and shift functions
suffer deviations respect the classical solution. In order to
emphasize that, we expand our result around r up to first
order to get

ds2
0+ = − f0+dt2 + f −1

0+ dr2 + r2 [N0+dt + dφ]2 , (43)

with

f0+(r) = − 8M0G0
[
1 − 2εr

]

+ 16G2
0 J

2
0

r2

[
1 − 4εr

]
+ O(r2),

(44)

N0+(r) = N0(r)
[
1 − 2εr + O(r2)

]
, (45)

where we only are considering terms up to linear order in ε.
Given these expressions, it is very obvious that the lapse and
shift functions decreases if ε > 0, respect the usual solution.

5.1.2 Behaviuor when r → ∞

The asymptotic line element is expressed in terms of asymp-
totic lapse and shift function (at large radii respect to the
inverse of scale dependent parameter), i.e.

ds2∞ = − f∞dt2 + f −1∞ dr2 + r2 [N∞dt + dφ]2 . (46)
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where the aforementioned functions are shown below

f∞(r) = r2

�2
0

− 8M0G0

(
2

3

1

rε

)
+ O

(
1

r2

)
, (47)

N∞(r) = N0(r)

(
2

3

1

rε

)
+ O

(
1

r4

)
. (48)

It is important to note that the asymptotic lapse function
mimics at leading order an AdS3 behavior. Going further,
we observe that the lapse function given in Eq. (47), at sub–
leading order, reflects the effect of the scale–dependent sce-
nario through a factor 1/(εr). For the shift function, the scale
dependent effect is dominant at leading order in r (which
is given in Eq. (48)), which means that asymptotically the
running of the gravitational coupling modifies the classical
behavior. In addition, the quantum correction in both func-
tions appear as a term ∼ 1/(rε). Regarding the lapse func-
tion, if one remains only the dominant term in the large radius
limit, the asymptotic structure does not change, therefore, it
is equivalent to AdS3, which is consistent with our previous
work [19].

When studying the sub-leading corrections one has to be
carefull with the two competing limits ε → 0 and r → ∞,
which can not be commuted. In this context we note that the
naming of the integration constants (J0, M0, . . . ) and thus of
their physical interpretation was based on the classical limit
ε → 0.

5.2 Asymptotic Invariants

For the study of coordinate independent properties of a solu-
tion it is useful to refer to invariants. For the given metric
(22) the Ricci scalar is given below

R = 1

2r

(
r3N ′(r)2 − 4 f ′(r)

)
− f ′′(r), (49)

which, after explicit insertion, reads as follows

R = R0 + 16G0M0
Y ′(r)
r

[
1 + 2G0 J 2

0

M0

Y (r)

r2

− 3G0 J 2
0

2M0

Y ′(r)
r

]
+ 8M0G0Y

′′(r)
[

1 − 4G0 J 2
0

M0

Y (r)

r2

]

(50)

From Eq. (50) we get the classical solution after demand that
ε → 0, which reads

R0 ≡ 6Λ0, (51)

5.2.1 Behaviuor when r → 0

For small r the invariant expansion of Eq. (50) gives

R = −64G2
0 J

2
0

r3 ε (1 + O(r)). (52)

One observes that the presence of scale–dependent couplings
(ε 
= 0) produces a singularity at r = 0. This finding is
somewhat surprising since one might have hoped that quan-
tum induced scale dependence would help with singularity
problems of the classical theory and not make them worse.
However, the implementation of scale dependence that was
used here is clear and determinating the solution under the
given assumptions. Thus, one has to conclude that the solu-
tion of the singularity problem shown in (52) has to come
from a framework that falls outside of our assumptions such
as a line element with different structure, or the addition of
non-local or higher order terms in the effective action.

5.2.2 Behaviuor when r → ∞

The other asymptotic regime of interest is the large radius
expansion r → ∞. In this regime one can approximate the
logarithm contribution according to ln(1 + z) ≈ z − z2/2
(using z = 1/εr ). In this limit the Ricci scalar is given by

R = R0 − 32M0G0

εr3 + O
(

1

r4

)
. (53)

Please note that the Ricci is asymptotically finite independent
of the order one takes the competing limits r → ∞ and
ε → 0. However, due to the expansion of the logarithms, the
expression (53) is only valid if r 
 1/ε. As we know, the
Ricci scalar is constant in the classical case (51) and therefore
for certain values of the parameter ε, asymptotically the Ricci
scalar is well-behaved take the classical value (51).

6 Thermodynamic properties

The (numerical) knowledge of the horizons allows to study
the thermodynamic properties of the scale dependent rotating
black hole solution (25).

6.1 Hawking temperature

The Hawking temperature of a black hole assuming a circu-
larly symmetric line element (22), is defined by

TH (rH ) = 1

2π

∣∣∣∣∣
1

2

∂ f

∂r

∣∣∣∣
r=rH

∣∣∣∣∣ , (54)
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Fig. 4 The Hawking temperature TH as function of the classical mass
M0 for four different cases: ε = 0 and J0 = 0 (dotted dashed black
line), ε = 0 and J0 = 8 (blue dashed line), ε = 0.1 and J0 = 0 (solid
thin red line) and ε = 0.1 and J0 = 8 (solid thick orange line). In
addition �0 = 5 and the values of the rest of the parameters have been
taken as unity

which gives for the solution of (25)

TH (rH ) = 1

4π

∣∣∣∣ 16M0G0

rH (1 + εrH )
Δ

∣∣∣∣. (55)

Please, note that this formula coincides with the classical
expression, if one replaces G0 by G(rH ) in Eq. (13). As it
can be seen from (55), the Hawking temperature vanishes
for Δ = 0. The extremal black hole is given when M0�0,
which is the same extremality condition as in the classical
case (11). Figure 4 shows the temperature which takes into
account the running coupling effect in comparison to the
“classical” temperature, as a function of the parameter M0.

We notes that indeed the curves with (ε 
= 0) and without
scale dependence (ε = 0) coincide at the same minimal mass
M0 = J0/�0.

Since scale dependence is motivated by quantum correc-
tions and since those corrections are typically small, it can be
expected that the integration constant ε, which parametrizes
the scale dependence, is small. Under this assumption one
can expand for rε � 1 to get the well-known Hawking tem-
perature (at leading order) i.e.

TH (r0
H ) = T0(r0+)

∣∣1 + 4r0+ε + O(ε2)
∣∣ (56)

where r0+ is the classical horizon rH which is a solution of
(5) evaluated when r is close to zero. We wish to remark
that this approximation is used because we always assume a
weak coupling ε. Besides, the classical Hawking temperature
T0(r0+) is computed following the usual procedure for the
lapse function (5) when r is small.

Fig. 5 The Bekenstein-Hawking entropy S as function of classical
mass M0 for four different cases: ε = 0 and J0 = 0 (dotted dashed
black line), ε = 0 and J0 = 8 (blue dashed line), ε = 0.1 and J0 = 0
(solid thin red line) and ε = 0.1 and J0 = 8 (solid thick orange line). In
addition �0 = 5 and the values of the rest of the parameters have been
taken as unity

6.2 Bekenstein-Hawking entropy

The Bekenstein-Hawking entropy is also valid for theories
in which the gravitational coupling is variable [49–52]. For
black hole solutions in D+1 dimensions with varying New-
ton’s coupling the entropy is given by

S =
∮

dD−1r

√
h

4G(r)
, (57)

where hi j is the induced metric at the horizon r = rH .
For the present circularly symmetric solution the aforemen-
tioned integral is straightforward. The induced line element
for constant t and r slices is simply ds = rdθ and moreover
GH = G(rH ) is constant along the horizon. Therefore, the
entropy for the solution (25) is

S = AH (rH )

4G(rH )
= S0(rH )(1 + εrH ). (58)

Figure 5 shows the entropy for our BTZ rotating scale–
dependent black hole as a function of M0. We observe that
when J0 = 0 both, the classical entropy (ε = 0) and the
scale–dependent entropy (ε 
= 0) tend to zero for M0 →
0, whereas for J0 
= 0 both, the classical and the scale–
dependent solution, present a cut-off for the critical mass
M0 = J0/�0. An analytic expression can be can be obtained
in certain limit. By considering small values of ε it is possible
to expand this expression

S(r0
H ) = S0(r

0
H )

[
1 + εr0

H + O(ε3)
]
. (59)

Thus, the quantum effect increases the entropy respect the
classical solution.
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7 Discussion

Effective quantum corrections can be systematically intro-
duced to the BTZ black hole by assuming a scale–dependent
framework. This implies non-trivial deviations from classi-
cal black hole solutions. In this work, one of the integration
constants (ε) of the generalized field equations is used as a
control parameter, which allows to regulate the strength of
scale dependence, such that for ε → 0, the well-know classi-
cal BTZ background is recovered. This article discusses the
BTZ black hole taking into account angular momentum in
the context of scale dependent couplings. A solution of the
corresponding field equations is presented and compared it
with three different known cases: the classical case (ε = 0)
without angular momentum, the classical case (ε = 0) with
angular momentum, and the scale dependent case (ε 
= 0)
without angular momentum.

The new scale–dependent solution has some interesting
features, for instance the lapse function increases rapidly
when r → ∞ (which is present in the classical case) but
now the effect is deeper, see Fig. 2 and compare the black
curve (ε = 0) with red curve (ε = 1). By comparing Eq.
(5) with Eq. (47) and with Eq. 44, we observe the deviation
given by the scale–dependent framework respect to the clas-
sical solution. It is remarkable that when we are close to the
origin the lapse function suffers a shift, while when we are
far from the origin it shows a decrease by a factor of 1/εr .
In both cases the solution is affected.

Furthermore, according to Fig, 3, the outer horizons
decrease when ε increases. The effect of the scale depen-
dent approach is thus that it produces smaller horizons, when
compared to the usual case. Interestingly this decrease does
not come with a change of the critical mass, where the two
outer horizons merge.

An analysis of the Ricci scalar reveals that a singular-
ity appears at r → 0 which is absent in the corresponding
classical BTZ solution. Indeed, the BTZ black hole has a
constant scalar, according to Eq. (51), whereas in the scale
dependent case (ε 
= 0) the singularity at r = 0 is always
present according with Eq. (52). This is a consequence of the
scale–dependent scenario.

Regarding the Hawking temperature, it is interesting that
the scale dependent formula and the corresponding clas-
sical counterpart, coincide, under the replacement G0 →
G(rH ) = G0/(1 + εrH ) (23). It is further remarkable
that the extreme black hole condition is also maintained
and, therefore, the Hawking temperature is equal to zero
when Mmin

0 = J0/�0, independent of the strength of scale
dependence ε. Moreover, we note that in presence of scale–
dependent couplings the temperature is lowered with respect
to the classic BTZ solution for large values of M0. Whereas
when M0 is close to zero (for J0 = 0) and when M0 is close to
Mmin

0 (for J0 
= 0), the classical and the scale dependent solu-

tion are very similar. One notes that the Bekenstein-Hawking
entropy is increased by the scale dependence ε 
= 0 and that
for large values of M0 the solutions with and without angu-
lar momentum match for a given value of ε, but they differ
for different values of ε. Throughout the numeric analysis
we also have used a relatively “small” value of ε, a choice
which can be motivated by the assumption of relatively weak
quantum effects provoking scale dependence at the level of
the effective action (15). Lets mention in this context that the
integration constant ε can be made dimensionless for exam-
ple by defining ε = ε̄M0, in which case the graphical and
analytical results with respect to ε̄ would have to be rescaled
correspondingly.

Finally, lets comment on the ansatz (22). This type of
ansatz also works for the spherically symmetric case. How-
ever, inspired by the ideas presented by Jacobson [53] it was
possible to show that, for spherically symmetric static black
holes, this type of ansatz is actually a consequence of a simple
Null Energy Condition (NEC) [19–21].

This condition allows the avoidance of pathologies such
as tachyons, instabilities, and ghosts [54–56]. Further, the
NEC plays a crucial role in the Penrose singularity theorem
[57]. However, a straight forward implementation of a gen-
eralized NEC to the rotating BH was not achieved, since the
appearance of angular momentum reduces the symmetry of
the problem. One would first have to generalize the argu-
ments given in [53] to the rotational symmetry, before one
can try to build an argument deriving the ansatz (22), as a
consequence of some kind of NEC. Thus, at this point the
use of the ansatz (22) is well justified, since it agrees with the
NEC for vanishing rotation and since it further implements
the structure of the line element for the case of the classical
(not scale-dependent) counterpart.

8 Conclusion

In this work we have studied the scale dependence of the
rotating BTZ black hole assuming a finite cosmological term
in the action. After presenting the models and the classical
black hole solutions, we have allowed for a scale dependence
of the cosmological “constant” as well as the gravitational
coupling, and we have solved the corresponding general-
ized field equations with static circular symmetry. We have
compared the classical solutions distinguishing two differ-
ent cases, i.e. with and without angular momentum, with the
corresponding scale dependent solution for same values of
angular momentum. In addition, the horizon structure, the
asymptotic spacetime and the thermodynamics were ana-
lyzed. In particular, the analysis of the Hawking temperature
allowed to find a extremal black hole which coincides with
the classical counterpart.
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