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Abstract If a new signal is established in future LHC data,
a next question will be to determine the signal composi-
tion, in particular whether the signal is due to multiple near-
degenerate states. We investigate the performance of a deep
learning approach to signal mixture estimation for the chal-
lenging scenario of a ditau signal coming from a pair of
degenerate Higgs bosons of opposite C P charge. This con-
stitutes a parameter estimation problem for a mixture model
with highly overlapping features. We use an unbinned max-
imum likelihood fit to a neural network output, and com-
pare the results to mixture estimation via a fit to a single
kinematic variable. For our benchmark scenarios we find a
~ 20% improvement in the estimate uncertainty.

1 Introduction

Machine learning techniques have already proven useful in
particle physics, especially for separating signal from back-
ground events in analyses of LHC data. More recently, deep
learning methods, such as multi-layer neural networks, have
been shown to perform very well, due to their ability to
learn complex non-linear correlations in high-dimensional
data [1-3]. In this paper we study the performance of a deep
neural network classifier, but rather than classifying signal
vs. background we focus on estimating the mixture of dif-
ferent signal classes in a dataset. This is motivated by the
not-unlikely scenario where a new (and possibly broad) res-
onance is discovered in future LHC data, but limited statistics
makes the interpretation difficult, in particular the question
of whether the signal is due to multiple degenerate states.
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In such a scenario it will clearly be important to squeeze as
much information as possible from the available data.

While the approach studied here is general, we take a Two-
Higgs-Doublet Model (THDM) as our example scenario. In
these models the Higgs sector of the Standard Model (SM)
is extended with an additional SU (2) doublet, predicting the
existence of a pair of charged scalars (H¥) and three neu-
tral scalars (h, H, A), one of which should be the observed
125 GeV Higgs. Several more extensive frameworks for
New Physics predict a Higgs sector with the structure of
a THDM, the prime example being the Minimal Supersym-
metric Standard Model (MSSM). A further motivation for
THDMs comes from the fact that the extended scalar sec-
tor can allow for additional sources of C P violation and a
strongly first-order electroweak phase transition, as required
for electroweak baryogenesis [4-7]. For a recent study of
this, see [8].

We associate the light scalar 4 with the observed 125 GeV
Higgs and take the heavier scalars H, A and H* to be mass
degenerate. The focus of our study is on the ditau LHC signal
from decays of the neutral states H and A, which in this
case are indistinguishable save for their opposite C P charges.
Searches for heavy neutral Higgses in ditau final states are
carried out by both the ATLAS and CMS collaborations, see
[9,10] for recent results.

The remainder of this paper is structured as follows. In
Sect. 2 we motivate why it is reasonable to expect a certain
level of mass-degeneracy among the new scalars in THDMs
and present our example THDM scenario. The technical
setup for our analysis is given in Sect. 3. Here we define our
signal models, describe the procedure for Monte Carlo event
generation and detail the neural network layout and training.
In Sect. 4 we demonstrate H/A signal mixture estimation
using the method of fitting a single kinematic variable. The
result serves as our baseline for judging the performance of
the deep learning approach. Our main results are presented in
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Sect. 5. Here we estimate the signal mixture via a maximum
likelihood fit to the output distribution from a network trained
to separate H and A ditau events. The results are compared
to those from Sect. 4. We state our conclusions in Sect. 6.

2 Theory and motivation

The starting point for our study is a THDM scenario where
mpy ~ m4.Our main motivation for this choice is to obtain a
challenging test case for signal mixture estimation. However,
there are also physical reasons to expect the H and A states
to have similar masses. After requiring that the scalar poten-
tial has a minimum in accordance with electroweak symme-
try breaking, we are left with a model with only two mass
scales, v & 246 GeV and a free mass parameter j, to control
the four masses mj, mp, m4 and my=. From the point of
view of the general THDM parameter space, the least fine-
tuned way to align the light state 7 with SM predictions, as
favoured by LHC Higgs data, is to move towards simulta-
neous decoupling of the three heavier states by increasing
1, leaving v to set the scale for m; = 125GeV [11]. This
points to a scenario where |mpy —my4| < 100 GeV, and quite
possibly much smaller, depending on the quartic couplings
of the scalar potential.!

Further motivation for a small H—A mass difference can
be found in less general realisations of THDMs. For the type-
II THDM in the MSSM the quartic couplings are fixed by the
squares of the SM gauge couplings, resulting in the tree-level
prediction thatmpy —m < 10 GeV for m4 ~ 400 GeV and
tan 8 ~ 1, and decreasing further with increasing tan 8 or
m 4 [13]. Another well-motivated scenario predicting closely
degenerate H and A states is the SO (5)-based Maximally
Symmetric THDM [14].

When mass degenerate, the H and A appear identical
except for their C P charge. If the properties of the light &
deviates from SM predictions, this difference in C P charge
can manifest as non-zero ZZ and WW couplings for H,
while for the C P-odd A the Zh coupling is available. How-
ever, these couplings all vanish in the perfect SM-alignment
limit we assume here. Yet the C P nature of H and A is still
expressed as spin correlations in fermionic decay modes,
impacting the kinematics of subsequent decays. Here we
study the channels H — tt and A — tt. Methods for
reconstructing spin correlations in ditau decays of the 125
GeV Higgs have been investigated in detail [15-18], pro-
viding a good baseline for comparison. The use of neural

1A large H-A mass difference in this decoupling scenario relies on
O(1) quartic couplings. We note that when loop corrections are taken
into account, the viability of such scenarios can be significantly more
restricted than what tree-level results suggest [12].
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networks to optimize C P measurements for the 125 GeV
state is studied in [19,20].

2.1 Benchmark scenario

Two-Higgs-Doublet Models are classified in different types
based on the structure of the Yukawa sector. We choose
a benchmark scenario within the C P-conserving lepton-
specific THDM, with mpy = ms = mg+ = 450GeV. In
this model, the quarks couple to one of the Higgs doublets
and the leptons to the other. This enables large branching
ratios for H/A — 11, even for masses above the 350 GeV
threshold for H/A — tt.

By varying the remaining THDM parameters we can
obtain a wide range of ditau signal strengths for the H and A
states at 450 GeV. In Appendix A we illustrate how o (pp —
A) x B(A — tt)and o(pp — H) x B(H — 17) vary
across the high-mass region of the lepton-specific THDM
parameter space. Formpy = m 4 ~ 450 GeV, we find that the
ditau signal strengths canreachuptoo (pp — H)xB(H —
t7) ~ 34fb and o (pp — A) x B(A — t1) =~ 54fbin
13 TeV proton—proton collisions. This includes production
via gluon—gluon fusion and bottom-quark annihilation, with
cross sections evaluated at NLO using SusHi 1.6.1 [21-27]
and branching ratios obtained from 2HDMC 1.7.0 [28].

For comparison, in Appendix A we also show the result of
a similar scan of the type-I THDM. In this model all fermions
couple to only one of the two Higgs doublets. Compared to
the lepton-specific THDM, the ditau signal in type-I THDM
suffers a much stronger suppression from the H/A — tf
channel.

As further described in Sects. 3 and 4, the mixture estima-
tion techniques we study require each tau to decay through
the ¥ — 7*7% channel, which has a branching ratio of
25%. However, the neural network method we employ can be
extended to include other tau decay modes as well, by imple-
menting the “impact parameter method” in [18] in addition
to the “p decay-plane method” used here.

If we only assume the 1+ — 7*7% decay channel and
an acceptance times efficiency of 5%—-10% for the signal
selection, our example scenarios predict no more than ~ 100
signal events for the anticipated 300 fb~! dataset at the end
of Run 3. However, as the model scan in Appendix A shows,
considering slightly lower benchmark masses can provide an
order of magnitude increase in the predicted cross-section.
Also, extending the method to include more tau decay chan-
nels can greatly increase the statistics available to the anal-
ysis discussed here. Still, the large backgrounds in the ditau
channel, e.g. from “fake QCD taus”, implies that a signal
mixture estimation study for the THDM benchmark scenario
we present here likely will require the improved statistics of
the full High-Luminosity LHC dataset.
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We do not include a third mixture component represent-
ing ditau backgrounds for our benchmark study. Clearly, the
inclusion of backgrounds will increase the uncertainty in the
estimated H/A — tt signal mixture. However, as we dis-
cuss in more detail in Sect. 5.1, the mixture estimate obtained
from the neural network approach we study here is likely to
be less affected by backgrounds than traditional mixture esti-
mation from fitting a single kinematic variable.

For our further discussions we define the parameter « as
the ratio of the A — tt signal strength to the total ditau
signal strength,

o(pp—> A)xB(A—17)
o(pp— A)xBA—11) +0(pp— H)xB(H —17)°
(H

o=

This is the parameter we seek to determine in our signal
mixture estimation.”> The parameter region of our benchmark
scenario predicts values of o between 0.5 and 0.7. To allow
for some further variation in the assumptions, we will in our
tests use « values of 0.5, 0.7 and 0.9.

3 Analysis setup
3.1 Event generation

We generate 13 TeV pp Monte Carlo events for this study
using Pythia 8.219 [29,30]. Only gluon-gluon fusion and
bottom-quark annihilation are considered, as these are the
dominant H/A production modes at the LHC.? For our anal-
ysis we select opposite-sign taus decaying to 7+ 7%, which
is the decay mode with the highest branching ratio. In order to
roughly match recent LHC searches for H/A — tt,taus are
required to have visible transverse momentum pr larger than
40 GeV and pseudorapidity less than 2.1. Further, we require

the taus to be separated by AR = 4/ (A(;b)2 + (An)2 > 0.5,

and that there are no more than two taus in the event which
pass the pr selection. Events with muons or electrons with
pt > 20 GeV are rejected.

Detector effects are taken into account by randomly
smearing the directions and energies of the outgoing pions,
following the procedure described in [18]: Each track is
deflected by a random polar angle 6, which is drawn from

2 In linking this theory quantity directly with the H/A event mixture in
the datasets we simulate, we make the approximation that the acceptance
times efficiency is equal for H — 7t and A — 77 events.

3 The magnitudes of the up-type and down-type Yukawa couplings
have the same tan 8 dependence in both the lepton-specific and the
type-I THDM. Gluon—gluon fusion through a top loop is therefore by
far the most important production channel for the scenarios considered
here.

a Gaussian distribution with width oy, so that the smeared
track lies within a cone around the true track direction. For
charged pions a value of oy = 1mrad is used, while the
energy resolution is AE/E = 5%. For neutral pions, we
use oy = 0.025/+/12rad and AE/E = 10%. To gauge the
impact of such detector effects on our results, we repeat the
main analyses in Sects. 4 and 5 for simulated data with and
without detector smearing.

3.2 Network input features

For the neural signal mixture estimation in Sect. 5, we train
a network to separate H — 7t events from A — 77 events.
The four-momenta of the visible tau decay products (7 * and
79) constitute the most basic kinematic input features to our
network. The momenta are boosted back to the visible ditau
rest frame (the zero-momentum frame for the four pions) and
rotated so that the visible taus are back-to-back along the z-
axis. The system is then rotated a second time, now around
the z-axis, so that the x-component of the 77T is zero. This
is done in order to align all events to a common orientation,
as the azimuthal angle around the z-axis carries no physics
information.

In addition to the pion momenta, the network is trained
on missing transverse energy (E?i“); the invariant mass of
the four-pion system (mjs); the transverse mass (mt}’t); the
impact parameter vectors of the charged pions, which help
constrain the neutrino directions; the pion energy ratios 7'+,
defined as

E.+—F
ye o B B, @
7t + En0

and the angle ¢* between the tau decay planes. For ¢* we
follow the definition in [18],* which uses the direction ﬁf)i
of the ¥ transverse to the direction p* of the corresponding
7E, to form an intermediate observable ¢ € [0,7) and a

C P-odd triple correlation product 0%,

@ = arccos (f)j?)Jr . f)g(_))_) and 3)
or=pt- (P <), @)

From these, we can define an angle continuous on the interval
[0, 27):

10 ifo* >0

e o . 5)
2r — @ if 0% <0

¢ =

4 Our definition of ¢* only differs from that in [18] in that we define ¢*
in the 7t 7% 7 zero-momentum frame, whereas the 717~ zero-
momentum frame is used in [18].

@ Springer
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Fig. 1 Distributions for some kinematic features in H — 17 —
#@ta%) (@~ 7%) events (solid purple line) and A — 1t —
(rt7%)(r~7%) events (dashed blue line), assuming my = mp =
450 GeV. The quantities in a and b are momentum components of the
7~ and 70 from the T~ decay, after each event has been boosted back
to the visible ditau restframe and rotated such that the taus are back-to-

The distribution of ¢’ depends on the sign of the product
YT 7;in the case of Y77~ > 0, the distribution is phase-
shifted by 7 relative to the case of Y77~ < 0. To incor-
porate this into a single consistent C P-sensitive observable,
we define ¢* as

o' ifr+tr->0
¢* = . (6)
(¢ +m)mod 27 ifYTY™ <0

Before being input to the network, all feature distribu-
tions are standardised to have zero mean and unit variance.
A selection of the feature distributions in the training data
is shown in Fig. 1. The univariate feature distributions are
severely overlapping for H and A events, indicating that the
classification task is very challenging. The one feature which
stands out here is ¢*, which is the basis for the single-variable
mixture estimation described in Sect. 4.

For the results presented in Sect. 5 we use a network
trained on all features discussed above. However, features
such as ¢* and mr are derived from the basic pion momenta

@ Springer

back in the z direction and the x-component of the 7+ momentum is
zero. ¢ The transverse mass m‘}", defined in [31]. The observables 7" (d)
and 0™ (e), defined in Egs. (2) and (4), respectively, are required for the
computation of ¢*, along with the momentum vectors of the tau decay
products. The distribution of ¢* is shown in (f). The green graph below
each plot shows the ratio of the A-event and H-event distributions

that the network also has access to. These “high-level” fea-
tures can in principle be inferred by the network itself from
the “low-level” pion momenta. To briefly investigate this
we repeat the network training with varying subsets of the
input features, starting with only the pion four-momenta
and sequentially adding ¢*, T and the remaining features.
For all networks we obtain ROC AUC scores of ~ 0.630.
While a full statistical comparison of the resulting networks
is beyond the scope of our study, this indicates that the net-
work is itself able to extract the relevant information from
high-dimensional correlations between the pion momenta,
making the explicit inclusion of the high-level inputs mostly
redundant. We note that this observation is in agreement with
the results of [1,2].

It is still interesting to investigate how much of the dis-
criminatory power can be captured by the high-level features
alone. For this we train several classifiers on high-level fea-
tures only, adding a new set of features for each classifier. The
first classifier is trained only on ¢* and achieves a ROC AUC
score of ~ 0.605. When Y+ and Y~ are included as input



Eur. Phys. J. C (2018) 78:1010 Page 50f 11 1010
features the performance improves to a score of ~ 0.618. — pule)
This improvement can be understood qualitatively from the 0.25 pato’)

fact that the difference between the " *-conditional ¢* dis-
tributions for H and A events increases with |7 ¥|. Adding
E?iss, mr, T+ impact parameter vectors and * raises the
ROC AUC score to ~ 0.620, and finally including m ;s fur-
ther increases the score to ~ 0.623, which seems to be the
limit for our network when trained on high-level features
only. This indicates that ¢* and T together capture most of
the sensitivity, but that the neural network is able to extract
from the pion four-momenta some additional information
which is not contained in the high-level quantities. Similar
behaviour was seen in [19] in a study focusing on the C P-
nature of the 125 GeV Higgs.

3.3 Network layout

In this study we employ a fully-connected feed-forward net-
work. The input layer has 26 nodes, followed by 500 nodes in
the first hidden layer, 1000 nodes in the second hidden layer,
and 100 nodes in the final hidden layer. These have leaky
ReLU [32] activation functions, and dropout [33] is applied
with a dropping probability of 0.375. No further regularisa-
tion is imposed. All network weights are initialised from a
normal distribution, following the He procedure [34]. The
output layer has a softmax activation function, and we apply
batch normalisation [35] between all layers. The weights are
optimised using Adam [36] with cross-entropy loss and an
initial learning rate of 0.03. 20% of the training data are set
aside to validate the model performance during training. If
there is no improvement of the loss on the validation data
for ten consecutive epochs, the learning rate is reduced by
a factor ten. The network is trained for 100 epochs or until
no improvement is observed during 15 epochs, whichever
occurs first. The neural network implementation is done
using the Keras [37] and TensorFlow [38] frameworks.

4 The ¢* method

Traditional approaches for separating C P-even and -odd
decays are based on the angle ¢* between the tau decay
planes, as defined in Eq. (6). The ¢* distribution for H and
A events can be seen in Fig. 2a. The C P-sensitive parameter
in this distribution is the phase of the sinusoidal curve, which
is shifted by & radians between the H and A hypotheses. We
note that the distributions overlap across the full ¢* range,
hence no absolute event separation is possible based on this
variable.

Using the simplified notation p(¢*|A) = pa(¢*) and
p(p*|H) = py(¢*), the ¢* distribution for H/A signal data
can be expressed as a simple mixture model,

Probability density
e @
= N
(6] o

0.10
0.05
0.00
1 2 3 4 5 6
*
(%
(a)
<+ Data
20 — plp"|a=0.74)
— pulp")
M — pale")
© 15 !
o
=
2
c 10
7}
>
w
5
0
0 1 2 3 4 5 6
*
(%
(b)

Fig. 2 a The probability density for ¢* in H events (pu (¢*)) and A
events (pa(¢™)). b A fit of the mixture model p(¢*|a) = apa(p™) +
(1 — @) pu (¢*) to a test dataset. Data points are shown in black, while
the fitted model (normalized to 100 events) is shown in green. For this
dataset the best-fit « value is @ = 0.74

p@*la) = apa(@®) + (1 —a)pu(9™)
=a(acosp* +c)+ (1 —a)(acos(p* + ) +¢)
=aacose*+ (1 —a)acos(p* +7) +c,
(7

where we fix the amplitude a and offset ¢ to a = 0.041 and
¢ = 0.159, obtained from a separate fit to H and A training
data. This leaves us with a model for the ¢* distribution
where « is the only free parameter. Given a dataset {¢}
with N events, we can now obtain an estimate & for « by
maximising the likelihood function

N
& = arg max 1_[ p(@F o). 8)

“ =

We demonstrate this method in Fig. 2 for a dataset with 100
H /A Pythia events, generated using a model with a true «
of 0.7. The pdfs py(¢*) and p4(p*) are shown in Fig. 2a,
while the fit result is shown in Fig. 2b. For this example the
best-fit « estimate comes out at & = 0.74.

To demonstrate the statistical performance of this esti-
mator we repeat the fit using 10,000 independent test sets
with 100 Pythia events each, generated with true « values

@ Springer



1010 Page6of 11

Eur. Phys. J. C (2018) 78:1010

0f 0.5, 0.7 and 0.9. The resulting distributions of « estimates
are shown in Fig. 4a, where the purple (green) distributions
depict results without (with) detector effects. By fitting a
Gaussian to each distribution we find the spread in the esti-
mates to be o, = 0.27 ((70‘36t =~ (0.45) when detector smearing
is omitted (included). Further, the estimator is mean-unbiased
for all three cases. Note that to demonstrate the unbiasedness
we have allowed the fit to vary o beyond the physically valid
range of [0, 1].

5 The neural network method

When estimating some parameter 6 using collider data we
ideally want to make use of the multivariate density p(x|60)
for the complete set of event features x.7 However, it is typi-
cally infeasible to evaluate this density directly for a given x.
A common approach is then to construct a new variable y(x)
and base the parameter estimation on the simpler, univariate
distribution p(y(x)|0), as exemplified by the ¢* fitin Sect. 4.

The performance of such a univariate approach depends
on how well the distribution p(y(x)|0) retains the sensitivity
to 6 found in the underlying distribution p(x|0). In the special
case where the map y(x) is the output from a trained classifier,
it can be shown that using p(y(x)|6) to estimate € in the ideal
limit is equivalent to using the full data distribution p(x|9).
Here we briefly review this argument before applying the
classifier approach to our mixture estimation problem.

After training on 6-labeled data, a classifier that mini-
mizes a suitably chosen error function will approximate a
decision function s(x) that is a strictly monotonic function
of the density ratio p(x|0)/p(x|0") [391.% As shown in [40],
the monotonicity of s(x) ensures that density ratios based on
the multivariate distribution p(x|@) and the univariate distri-
bution p(s(x)|@) are equivalent,

pxIO) _
p(xI0)

p(s(x)[0)
p(s(x)10")

©))

If we now take 6’ to be a fixed value such that the support
of p(x|6") covers the support of p(x|6),” the maximum like-
lihood estimator for 6 based on p(x|0) can be rewritten as
follows [40]:

> Here 0 represents an arbitrary model parameter, not necessarily a
simple mixture parameter.

© In general the decision function can depend directly on the parameter
values @ and 0': s = s(x; 0, 0"). However, this is not the case for a mix-
ture estimation problem like the one considered here, where X represents
a single draw from one of the mixture model components (kinematic
data from a single H or A event) and the parameter of interest is the
unknown component mixture («) of the complete dataset {x;}.

7 This is trivially satisfied for any choice 8" € (0, 1) when 6 represents
the mixture parameter of a simple two-component mixture model.

@ Springer

N
6 = argmaxl_[ p(x;10)
o iz

p(x:160)
- e l_[ p(x:160') o

P(s(x)16)
- e H Lo Gse0i0)

= arg max H P(s(x)16).

i=1

Hence, if the classifier output y(x) provides a reasonable
approximation of s(x) we can expect the maximum likeli-
hood estimator based on p(y(x)|0) to exhibit similar per-
formance to an estimator based on p(x|6). The main draw-
backs of this approach are the complications associated with
training the classifier, and that the physics underlying the
parameter sensitivity may remain hidden from view.

‘We now apply this classifier approach to our H/A mixture
estimation problem. The maximum likelihood estimator for
the mixture parameter « is then given by

N

& = argmax | | p(y(xp) e
i=1

= arg max H lapaGx) + (1 =@pu(yxin |, (11)
i=1

where we have expressed the overall network output distri-
bution p(y|a) as a mixture of the pure-class distributions
p(y|A) = pa(y) and p(y|H) = pu(y). We use a net-
work trained on a balanced set of H and A events. The
network is trained to associate outputs y = 0 and y =
with H and A events, respectively. By applying this network
to another labeled dataset of equal size to the training set,
we construct templates for the probability densities pg(y)
and ps(y) in Eq. (11) using a nonparametric kernel den-
sity estimation method (KDE) [41]. The resulting templates
are shown in Fig. 3a. We note that the pdfs do not span
the entire allowed range y € [0, 1]. This is expected, since
the C P nature of a single event cannot be determined with
complete certainty. Proper determination of the pdf shapes
in the extremities — where the sensitivity is highest — requires
a sufficient amount of data, which is why we devote a simi-
larly sized data set to the template creation as to the network
training.

Given a set of unlabeled data we can now estimate o by
carrying out the maximization in Eq. (11) as an unbinned
maximume-likelihood fit. The resulting fit to the same exam-
ple dataset as used for the ¢* fit in Fig. 2b is shown in Fig.
3b. The best-fit « estimate in this case is @ = 0.67.
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Fig. 3 a KDE estimate for the distribution of the network output y for
H events (py (y)) and A events (pa(y)), given a balanced network. b
A fit of the mixture model p(y|a) = apa(y) + (1 — @) pu(y) to the
same example dataset as used in Fig. 2b. Data points are shown in black
and the fitted model in green. The best-fit « value is @ = 0.67

5.1 Results

We can now compare the performance of the neural network
method with that of the ¢* method of Sect. 4. To this end,
we apply the network method to the same test sets as used in
Fig. 4a, i.e. 10,000 datasets of 100 Pythia events each, for
each of the three scenarios « = 0.5, 0.7, 0.9. The analysis is
repeated with network training and test sets with and without
detector smearing. The results are given in Fig. 4b, for easy
comparison with the corresponding results of the ¢* method
in Fig. 4a. We fit each distribution of « estimates with a
Gaussian and summarize the fit parameters in Table 1.

As for the ¢* method, we find that detector smearing
significantly impacts the width of the « distribution, which
increases from o, = 0.21 to 6% = 0.37 upon inclusion
of detector effects. Yet, the network approach consistently
outperforms the ¢* method, as o, and Uo‘liet are reduced by
~ 229% and ~ 18%, respectively, compared to the ¢* results.
So while the absolute widths of the « distributions in Fig. 4
illustrate that a dataset of 100 events is probably too small
to obtain an accurate « estimate, the comparison with the ¢*
results indicates that the relative performance gain offered

by the network approach is relatively robust against detector
smearing.

Similar to the ¢* method, the network method provides
a mean-unbiased estimator. In order to demonstrate this we
allow « to vary outside the physical range [0, 1] in our fits.
However, for @ > 1, the combined mixture model p(y|a) =
apa(y) + (1 — @) pg (y) will become negative for y values
that satisfy pa(y)/pu(y) < (¢ —1) /. This we do not allow
in our fits, and in such cases we lower the « estimate until
p(y]a) is non-negative everywhere. This choice explains the
slight deviation from Gaussianity in the region around & =
1.2 in the bottom right plot.®

Figure 5 shows the distributions of « estimates for the
cases of 20 events per test dataset (top row) and 500 events per
test dataset (bottom row), where all sets have been generated
with « = 0.7 and no detector smearing has been included.
Compared to the results with 100 events per set, o, for both
fit methods increase (decrease) by approximately a factor /5
for the case with 20 (500) events per set, as expected from
the factor 5 decrease (increase) in statistics. Thus, the relative
accuracy improvement of the neural network approach over
the ¢* method remains approximately the same: 30% for the
20-events case, and 25% for the 500-events case. However,
the absolute spread of estimates in the 20-events case shows
that this is clearly not enough statistics to obtain a useful
estimate of «.

As a cross-check of the behaviour of the network fit
method, we plot in Fig. 6a the distribution of the log-
likelihood ratio —2 In(L (« = 0.7) /L(&)) for all test datasets
of our benchmark point with « = 0.7. According to Wilks’
theorem [42], the distribution of this statistic should tend
towards a x2 distribution with one degree of freedom. By
overlaying a x2 distribution in Fig. 6a we see that this is
indeed the case. Thus, confidence intervals constructed from
the log-likelihood ratio for a neural network fit should have
the expected coverage. In Fig. 6b we show the log-likelihood
ratio curves for the example dataset used in Figs. 2b and 3b.
The narrowing of the log-likelihood parabola for the network
method again illustrates the increase in precision over the ¢*
method.

For this study we focus only on the separation of two sig-
nal classes, not the separation of signal from background.
Of course, a realistic dataset is likely to contain a signif-
icant fraction of background events. For the signal sce-
nario studied here, the most important backgrounds are
due to “fake taus” from QCD production, single Z pro-
duction (pp — Z — t1), double Z and W production
(pp > ZZ/WZ/WW — 11 4+ X) and top pair produc-
tion (1t — WbWb — 1t + X). While such backgrounds

8 The same effect is not seen for the p* fits, as the ratio
pa(@™)/pu(p*) > 0.59 for all ¢*, and none of the test sets prefer
an « value as large as 1/(1 — 0.59) ~ 2.4.
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Table 1 Summary of «
estimation on 10,000
independent test sets with 100
events in each set, using the ¢*
fit and the neural network (NN)
fit methods

Fig. 4 Comparison of the
distributions of « estimates
using a the ¢* method and b the
neural network method, for test
sets generated with @ = 0.5
(top), @ = 0.7 (middle) and

a = 0.9 (bottom). The slight
deviation from Gaussianity seen
around & = 1.2 in the bottom
right plot is due to the fact that
we let « vary beyond [0, 1] in
our fits, but still demand that
that the mixture model p(y|«) is
always non-negative. See the
text for further details

Fig. 5 Comparison of the
distributions of « estimates
using a the ¢* method and b the
neural network method, for test
sets generated with o = 0.7.
The top row shows results for
test sets containing 20 events
each, while the bottom row
corresponds to test sets with 500
events each. The deviation from
the Gaussian distribution seen at
high « in the upper right plot is
due to the same effect as
discussed for Fig. 4

True mixture parameter o a=0.5 a=0.7 a=09
o Estimates (¢* method, no detector smearing) 0.50 £0.27 0.71 £0.27 0.90 £ 0.27
o Estimates (¢* method, with detector smearing) 0.50 £0.45 0.70 £ 0.46 0.90 £0.45
o Estimates (NN method, no detector smearing) 0.50+0.21 0.70 £ 0.21 0.90 £ 0.21
a Estimates (NN method, with detector smearing) 0.48 +0.37 0.68 +0.37 0.88 £ 0.37
—— With det. res. - =
800 1 —— No det. res. Z= 2?50 800 1 Z= (]5950
600 | Mg =0.50 600 Hq=0.50
0,=0.27 0,=0.21
400 f Hgt=0.50 - 400 t Hget=0.48 -
gdet=0.45 gdet = 0.37

Test sets / 0.04

Test sets / 0.04

Test sets / 0.02

200 1

800 1

600 r

400

2001

800 1

600 r

400

2001

600 -

400

600

400 |

200

n=100
a=0.9
Ho = 0.90
0 =0.27
pdet=0.90
0det=0.45

n=100
a=0.7
He=0.71
0q=0.27
u%et=0.70 |
03t =0.46

0.0 0.5 1.0 1.5
a
(a)
n=20
a=0.7
Hg=0.70 |
0, =0.64

will degrade the absolute accuracy in the signal mixture esti-
mate, it is likely to impact the ¢* method more severely than
the neural network method. With one or several background
components in the mixture model, the network’s ability to

@ Springer
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extract information from the many-dimensional kinematic
space should allow it to differentiate the background compo-
nents from the signal components better than what is possi-
ble with the ¢* variable alone. We therefore expect a similar
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Fig. 6 a Distribution of the log-likelihood ratio —2In(L(e¢ =
0.7)/L(a)) for the 10,000 test sets generated with @ = 0.7. Overlaid is
a x?2 distribution for one degree of freedom. b Comparison of the log-
likelihood ratio curves for the test dataset from Figs. 2b and 3b, using
the network method (green) and the ¢* method (black). Intersection
with the horizontal dashed line at —2 In(L («)/L(c&)) = 1 illustrates the
1o confidence intervals, which for this example are [0.48, 1.0] for the
¢* method and [0.50, 0.86] for the neural network method

or better relative performance of the network method in the
presence of background, compared to the results we have
presented here. There are two ways to extend the network
method to take into account additional components in the
mixture model: either by implementing a multi-class clas-
sifier, or by training multiple binary classifiers on pairwise
combinations of the model components. Based on [43] we
expect the latter approach would give the best performance.

6 Conclusions

Estimating the component weights in mixture models with
largely overlapping kinematics is a generic problem in high-
energy physics. In this paper we have investigated how a
deep neural network approach can improve signal mixture
estimates in the challenging scenario of a ditau LHC signal
coming from a pair of heavy, degenerate Higgs bosons of
opposite C P charge. This is a theoretically well-motivated

scenario within both general and more constrained Two-
Higgs-Doublet Models.

We have studied a benchmark scenario with degenerate H
and A states at mgy = m4 = 450 GeV. For this case we find
that the neural network approach provides a ~ 20% reduc-
tion in the uncertainty of signal mixture estimates, compared
to estimates based on fitting the single most discriminating
kinematic variable (¢*). However, the improved accuracy of
the neural network approach comes with a greater computa-
tional complexity.

The network method we have studied here can be extended
to include additional mixture components, such as one or
several background processes, either by training a multi-
class classifier or by training multiple binary classifiers.
To increase the available statistics, the method can also be
extended to work with a wider range of tau decay modes, for
instance by using the “impact parameter method” described
in [18].

The code used to generate events, train the network and
run the maximum likelihood estimates will be made available
on gitlab.com/BSML after publication.
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Appendix A Supplementary figures

A simple scan of the high-mass parameter regions of the (SM-
aligned) lepton-specific and type-I THDMs is performed
to illustrate the parameter dependence of the ditau signal
strengths o (pp — H) x B(H — tt) and o (pp — A) X
B(A — 17), as well as the mixture parameter «. The results
are shown in Fig. 7. The parameters my = my4 = mpg=,
tan 8 and m%z are varied in the scan, while we fix the light
Higgs mass m, = 125GeV and the neutral scalar mixing
parameter sin(8 — o’) = 1 to ensure perfect SM align-
ment for the light state 4. The NLO cross sections are cal-
culated with SusHi 1.6.1, while branching ratios are cal-
culated using 2HDMC 1.7.0. We test the parameter points
against constraints from the various collider searches for
Higgs bosons using HiggsBounds 4.3.1 [44-48], while the-
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Fig. 7 Top row, lepton-specific THDM: a Signal strength for pp — H — 17, as a function of m g and tan g. b Similar result for pp - A — t7.
¢ The ratio of the signal strength of pp — A — 7 to the total ditau signal strength, as defined in Eq. (1). Bottom row: Corresponding results

within the type-I THDM

oretical constraints are checked with 2HDMC. Constraints 9.

from flavour physics, in particular B(b — sy), disfavour
parameter regions at very low tan § in the type-I and lepton-
specific THDMs. These constraints were not included in the 3
simple scan.
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