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Abstract We use a recent formalism of the weak hadronic
reactions that maps the transition matrix elements at the quark
level into hadronic matrix elements, evaluated with an elab-
orate angular momentum algebra that allows finally to write
the weak matrix elements in terms of easy analytical for-
mulas. In particular they appear explicitly for the different
spin third components of the vector mesons involved. We
extend the formalism to a general case, with the operator
γ μ−αγ μγ5, that can accommodate different models beyond
the Standard Model and study in detail the B → D∗ν̄l reac-
tion for the different helicities of the D∗. The results are
shown for each amplitude in terms of the α parameter that is
different for each model. We show that dΓ

dM(νl)
inv

is very different

for the different components M = ± 1, 0 and in particular
the magnitude dΓ

dM(νl)
inv

|M=−1 − dΓ

dM(νl)
inv

|M=+1 is very sensitive

to the α parameter, which suggest to use this magnitude to test
different models beyond the standard model. We show that
our formalism implies the heavy quark limit and compare our
results with calculations that include higher order corrections
in heavy quark effective theory. We find very similar results
for both approaches in normalized distributions, which are
practically identical at the end point of M (νl)

inv = mB −mD∗ .

1 Introduction

Semileptonic decays of hadrons have been thoroughly stud-
ied and have brought much information on the nature of weak
interactions and some aspects of QCD [1–16]. The relative
good control of the reactions within the Standard Model (SM)
has led to new work searching for evidence of new physics
beyond the standard model (BSM) [17–19].

One of the magnitudes that has captured attention as a
source of information of new physics BSM is the polariza-
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tion of vector mesons in B decays. One intriguing feature
was observed in the B → φK ∗ decays, where naively it
was expected that the transverse amplitudes would be highly
suppressed while the experiment showed equal strength for
longitudinal and transverse polarizations [20,21]. Theoreti-
cal papers have followed [22,23], as well as new experimen-
tal measurements on related reactions, like B0

s → φφ [24],
B+ → ρ0K ∗+ [25], B0

s → K ∗0 K̄ ∗0 [26], which had been
addressed in papers dealing with B → VV decays [27,28],
B → VT decays [29], and some particular reactions as the
B(s) → D(∗)

(s) D̄
∗
s [30]. More recently the topic has caught

up in studies of weak decays into a vector and two leptons
as the experiments on B → K ∗l+l− [31], B → K ∗l+l−
[32], B0 → K ∗0μ+μ− [33–35], and theoretical works on
B → K ∗νν̄ [36,37], B → K ∗l+l− [37], B → K ∗0l+l−
[38], B → K ∗

J l
+l− [39] and B → K ∗

2 μ+μ− [40].
In the present work we retake this line of research and

study the polarization amplitudes in semileptonic B̄ → V ν̄l
decays, applied in particular to the B̄ → D∗ν̄l reaction.
We look at the problem from a different perspective to
the conventional works where the formalism is based on
a parametrization of the decay amplitudes in terms of cer-
tain structures involving Wilson coefficients and form fac-
tors. A different approach was followed recently in the study
of B or D weak decays into two pseudoscalar mesons,
one vector and a pseudoscalar and two vectors [41]. Start-
ing from the operators of the Standard Model at the quark
level, a mapping is done to the hadronic level and the
detailed angular momentum algebra of the different pro-
cesses is carried out leading to very simple analytical for-
mulas for the amplitudes. By means of that, reactions like
B̄0 → D−

s D+, D∗−
s D+, D−

s D∗+, D∗−
s D∗+, and others,

can be related up to a global form factor that cancels in ratios
by virtue of heavy quark symmetry. The approach proves
very successful in the heavy quark sector and, due to the
angular momentum formalism used, the amplitudes are gen-
erated explicitly for different third components of the spin of
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Fig. 1 Diagrammatic representation of B− → D∗0ν̄l l− at the quark
level

the vectors involved. In view of this, the formalism is ideally
suited to study polarizations in these type of decays.

Work along the line of [41] is also done in [42] in the
study of the semileptonic B, B∗, D, D∗ decays into ν̄l and
a pseudoscalar or vector meson. Once again, we can relate
different reactions up to a global form factor. If one wished to
relate the amplitudes of different spin third components for
the same process, the form factor cancels in the ratio and the
formalism makes predictions for the Standard Model without
any free parameters.

In the present work we extend the formalism and allow a
(γ μ − αγ μγ5) structure for the weak hadronic vertex which
makes it easy to make predictions for different values of α

that could occur in different models BSM (α = 1 here for the
SM). We evaluate different ratios for the B → D∗ν̄l reaction.
Work on this particular reaction, looking at the helicity ampli-
tudes within the Standard Model, was done in [43]. A recent
work on this issue is presented in [44] where the B → D∗ν̄τ τ

is studied separating the longitudinal and transverse polariza-
tions. The same reaction, looking into τ and D∗ polarization,
is studied in [45]. Helicity amplitudes are also discussed in
the related B̄∗ → Plν̄l reactions in the recent paper [46].

The formalism of Ref. [42] produces directly the ampli-
tudes in terms of the third component of the D∗ spin along
the D∗ direction. This corresponds to helicity amplitudes of
the D∗. The formulas are very easy for these amplitudes and
allow to understand analytically the results that one obtains
from the final computations. Not only that, but they indicate
which combinations one should take that make the results
most sensitive to the parameter α that will differ from unity
for models BSM.

We find some observables which are very sensitive to the
value of α, which should stimulate experimental work to
investigate possible physics BSM.

2 Formalism

We want to study the B → D∗ν̄l decay, which is depicted in
Fig. 1 for B− → D∗0ν̄l l−

The Hamiltonian of the weak interaction is given by

H = CLαQα , (1)

where the C contains the couplings of the weak interaction.
The constant C plays no role in our study because we are only
concerned about ratios of rates. The leptonic current is given
by

Lα = 〈ūl |γ α(1 − γ5)|vν〉 , (2)

and the quark current by

Qα = 〈ūc|γ α(1 − γ5)|ub〉 . (3)

In the evaluation of B− → D∗0ν̄l l− decay we need
∑ ∑

|t |2 =
∑

lep pol

LαLβ∗ ∑

quark

∑

pol

QαQ
∗
β

≡ Lαβ
∑ ∑

QαQ
∗
β , (4)

where t is the transition amplitude, and for simplicity

Lαβ =
∑

lep pol

LαLβ∗
, (5)

which can be easily obtained with the result [47]

Lαβ = 2
pα
ν p

β
l + pα

l p
β
ν − pν · plgαβ − iερασβ pνρ plσ

mνml
,

(6)

where we adopt the Mandl and Shaw normalization for
fermions [48]. In Ref. [42] a study of the meson decays
JM → ν̄l l J ′M ′ was done, where JM(J ′M ′) are the modu-
lus and third component of the initial (final) meson spin, and
the rates for the different J, J ′ cases were evaluated. The sum
over the M and M ′ components of Eq. (4) was done in Ref.
[42]. Here we shall keep track of the individual M and M ′
contributions.

In evaluating the quark current, we use the ordinary
spinors [49]

ur = Ã

(
χr

B̃σ · pχr

)
; Ã =

√
Ep + m

2m
; B̃ = 1

Ep + m
,

(7)

where χr are the Pauli bispinors and m, p and Ep are the
mass, momentum and energy of the quark. As in Ref. [47]
we take

pb
mb

= pB
mB

; Eb

mb
= EB

mB
, (8)

where mB , pB , and EB are the mass, momentum and energy
of the B meson, and the same for the c quark related to the
D∗ meson. Theses ratios are tied to the velocity of the quarks
or B mesons and neglect the internal motion of the quarks
inside the meson. We evaluate the matrix elements in the
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frame where the ν̄l system is at rest, where pB = pD∗ = p,
with p given by

p = λ1/2(m2
B, M2(νl)

inv ,m2
D∗)

2M (νl)
inv

, (9)

where M (νl)
inv is the invariant mass of the νl pair. By using Eq.

(8) we can write

ur = A

(
χr

Bσ · pB χr

)
; A =

√
EB + mB

2mB
;

B = 1

mB + EB
(10)

and A′, B ′ would be defined for the D∗ meson, simply chang-
ing the mass in Eq. (7).

In the present work, we are only interested in the B− →
D∗0ν̄l l− decay, which means J = 0, J ′ = 1 decay.

As in [42] we need to evaluate LαβQαQ∗
β which sums

over the polarizations of ν̄l l, but keeping M ′ fixed. We have
∑

|t |2 = L00M0M
∗
0 + Li j Ni N

∗
j , (11)

where

M0 = −AA′(B + B ′) p δM0 δM ′0 , (12)

and Ni , written in spherical coordinates, is

Nμ = AA′ {1 + BB′ p2 (−1)−M ′ + √
2

×(Bp + B′ p(−1)−M ′
) C(111; M ′, 0, M ′)

}
δμ,M ′ δM0 ,

(13)

with C(· · · ) a Clebsch-Gordan coefficient.
In addition to the p dependence (and hence M (νl)

inv ) of these
amplitudes, in [42] there is an extra form factor coming from
the matrix element of radial B and D∗ quark wave functions.
However, in our approach we normalize the different helicity
contributions to the total and the effect of this extra form
factor disappears.

The magnitude Li j Ni N∗
j can be written in spherical coor-

dinates as
∑

i, j

Li j Ni N
∗
j =

∑

α,β

(−1)αLαβN−αN
∗
β , (14)

and then, following the steps of the appendix of Ref. [42] we
obtain

1) M ′ = 0

∑
|t |2 = m2

l
mνml

M2(νl)
inv − m2

l

M2(νl)
inv

{
AA′(B + B′)p

}2

+ 2

mνml

(
Ẽν Ẽl + 1

3
p̃2
ν

) {
AA′(1 + BB′ p2)

}2
.

(15)

2) M ′ = 1

∑
|t |2 = 2

mνml

(
Ẽν Ẽl + 1

3
p̃2
ν

)

×{
AA′[(1 − BB ′ p2) + (Bp − B ′ p)]}2

.

(16)

3) M ′ = −1

∑
|t |2 = 2

mνml

(
Ẽν Ẽl + 1

3
p̃2
ν

)

×{
AA′[(1 − BB ′ p2) − (Bp − B ′ p)]}2

.

(17)

where p̃ν , Ẽν , Ẽl are the momentum of the ν̄, its energy and
the lepton energy in the rest frame of the ν̄l system

p̃ν = p̃l = λ1/2(M2(νl)
inv ,m2

ν,m
2
l )

2M (νl)
inv

,

Ẽν = M2(νl)
inv + m2

ν − m2
l

2 M (νl)
inv

,

Ẽl = M2(νl)
inv + m2

l − m2
ν

2 M (νl)
inv

. (18)

M ′ in Eqs. (15), (16), and (17) stands for the third component
of the D∗ spin in the direction of D∗. Hence these are the
helicities of the D∗. Note that in the boost from the B rest
frame to the frame where B and D∗ have the same momentum
and ν̄l are at rest, the direction of D∗ does not change and
the helicities are the same. We can see that the sum of these
expressions for the three helicities gives the same result as
the sum obtained in Ref. [42] using properties of Clebsch-
Gordan and Racah coefficients.

3 Results

The differential width is given for B → D∗ν̄l by

dΓ

dM (νl)
inv

= 2mν2ml

(2π)3

1

4M2
B

p′
D∗ p̃ν

∑
|t |2 , (19)

where p′
D∗ is the D∗ momentum in the B rest frame and p̃ν

the ν̄ momentum in the νl rest frame,

p′
D∗ = λ1/2(m2

B, M2(νl)
inv ,m2

D∗)

2mB
. (20)

The factor mνml in the numerator of Eq. (19) is due to the
normalization used in [48] and cancels exactly the same fac-
tor appearing in the denominator of Eqs. (15), (16) and (17).

It is interestig to look individually at the distribution of
the three third components of the D∗ spin. For this we plot
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Fig. 2 Values of Bp and B ′ p as a function of M (νl)
inv of Eqs. (9), (7)

Bp, B ′ p as a function of M (νl)
inv in Fig. 2. We can see that

B ′ p is always bigger than Bp and that both Bp and B ′ p go
to unity as M (νl)

inv → 0 (for ml = mν = 0). Moreover, when

M (νl)
inv goes to its maximum, then p → 0 and Bp, B ′ p go to

zero.
Taking into account the behaviour of Bp and B ′ p depicted

in Fig. 2, we can see that when M (νl)
inv → 0 then

∑ |t |2
goes to 2(AA′)2

mνml

(
Ẽν Ẽl + 1

3 p̃
2
ν

)
F , with F → 4, 0, 0 for

M ′ = 0, 1,−1 respectively, with (AA′)2
(
Ẽν Ẽl + 1

3 p̃
2
ν

)

going to a constant. Conversely, when M (νl)
inv goes to its max-

imum,
∑ |t |2 goes to the same value 2(AA′)2

mνml

(
Ẽν Ẽl + 1

3 p̃
2
ν

)

for M ′ = 0, 1,−1 cases.
It is also interesting to see that

∑ ∑
(|t |2M ′=−1 − |t |2M ′=+1) = 8

mνml

(
Ẽν Ẽl + 1

3
p̃2
ν

)

×(AA′)2(1 − BB ′ p2)(B ′ p − Bp) . (21)

This means that the differential width dΓ/dM (νl)
inv for this

difference goes as (1−BB ′ p2)(B ′ p−Bp) and the difference
of these two distributions goes to zero, both as M (νl)

inv → 0

or M (νl)
inv going to its maximum. We show also these results

in Figs. 3 and 4. The total differential width is given by

R = dΓ

dM (νl)
inv

|M ′=0 + dΓ

dM (νl)
inv

|M ′=−1 + dΓ

dM (νl)
inv

|M ′=+1 .

(22)

In Fig. 3 we show the individual contribution of each M ′
and the total. In Fig. 4 we show the contribution of each M ′
and the difference of M ′ = −1 and M ′ = +1, divided by
the total differential width R. In this latter figure we can see
how fast the individual M ′ = −1 and M ′ = +1 components
go to zero.
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Fig. 3 Total differential width R, and individual contributions of
dΓ

dM(νl)
inv

|M ′=0, dΓ
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|M ′=+1
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Fig. 4 The same as Fig. 3 but for different ratios. The lines (a), (b)
and (c) show dΓ

dM(νl)
inv

|M ′=0, dΓ

dM(νl)
inv

|M ′=−1, and dΓ

dM(νl)
inv

|M ′=+1 respectively,

and line (d) denotes the difference of dΓ

dM(νl)
inv

|M ′=−1 − dΓ

dM(νl)
inv

|M ′=+1, all

divided by the total differential width R of Eq. (22)

In the search for contributions BSM one usually compares
some magnitude with experiment and diversions of experi-
ment with respect to the SM predictions are seen as a signal
of possible new physics. So far the experimental errors do
not make the cases compelling. The present case could offer
a good opportunity, since the individual contributions for dif-
ferent M ′ vary appreciably when diverting from the Standard
Model, as we show in the next section.

We also appreciate in Fig. 4 that the ratio of dΓ

dM(νl)
inv

|M ′=−1−
dΓ

dM(νl)
inv

|M ′=+1 divided by the total differential width goes fast

to zero for M (νl)
inv → 0 or maximum, while individually each

of the contributions goes to 1
3 at the maximum of M (νl)

inv . In
Fig. 4 we also see a smooth transition from 1 to 1

3 for the
M ′ = 0 case. The rapid transition to zero of some of the
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amplitudes discussed and the wide change of values for the
(a), (b), (c) and (d) cases in the figure make these magnitudes
specially suited to look for extra contribution beyond the SM.

To give a further insight into this issue we stress that
the reason for the zero strength at M (νl)

inv → 0 in the case
of M ′ = ±1, is tied not to the lepton current, since we
always get (AA′)2

(
Ẽν Ẽl + 1

3 p̃
2
ν

)
, which goes to a con-

stant for M (νl)
inv → 0, but to the quark current. Indeed,

if we look at Eqs. (12), (13), we can see that both M0
AA′

and Nμ

AA′ (μ = 0) are different from zero for M ′ = 0

in the limit of M (νl)
inv → 0. However, for M ′ = ±1,

M0 = 0 and Nμ goes to zero in that limit. This said, the
models beyond the SM which could provide finite con-
tribution for M ′ = ±1, or a sizeably bigger one, are
those that go beyond the γ μ − γ μγ5 structure in the
quark current, like leptoquarks or right-handed quark cur-
rents of the type γ μ + γ μγ5 [50–52]. We discuss this case
below.

4 Consideration of right-handed quark currents

The literature about models BSM is large and this is not
the place to discuss it. Yet, we would like to mention more
recent papers on models which could be easily tested within
the present approach, minimal gauge extensions of the SM
[53,54], leptoquarks [55], scalar leptoquarks [56,57], vector
leptoquarks [58–60], Pati-Salam gauge models [61–63] and
right-handed models [19,64].

Some models BSM have quark currents that contain the
combination γ μ+γ μγ5. The models mentioned above could
be accommodated with an operator

a(γ μ − γ μγ5) + b(γ μ + γ μγ5)

= (a + b)
{
γ μ − a−b

a+bγ μγ5

}
. (23)

We shall call a−b
a+b = α and study the distributions for different

M ′ as a function of α. We have thus the operator

γ μ − αγ μγ5 .

Using the same formalism of [42] it is easy to see the results
as a function of α. We obtain the following results:

M0 = −AA′(B + B ′)pδM0 δM ′0 α (24)

and Ni written in spherical coordinates is

Nμ = AA′ {[
1 + BB′ p2 (−1)−M ′]

α + √
2

×[Bp + B′ p(−1)−M ′ ] C(111; M ′, 0, M ′)
}

δμ,M ′ δM0 .

(25)

Then, the different helicity contributions are given by

1) M ′ = 0

∑
|t |2 = m2

l

mνml

M2(νl)
inv − m2

l

M2(νl)
inv

{
AA′(B + B ′)p

}2
α2

+ 2

mνml

(
Ẽν Ẽl + 1

3
p̃2
ν

)

×{
AA′(1 + BB ′ p2)

}2
α2 .

(26)

2) M ′ = 1

∑
|t |2 = 2

mνml

(
Ẽν Ẽl + 1

3
p̃2
ν

)

×{
AA′[(1 − BB ′ p2)α + (Bp − B ′ p)]}2

.

(27)

3) M ′ = −1

∑
|t |2 = 2

mνml

(
Ẽν Ẽl + 1

3
p̃2
ν

)

×{
AA′[(1 − BB ′ p2)α − (Bp − B ′ p)]}2

.

(28)

Since 1 − BB ′ p2 and B ′ p − Bp go individually to zero
for M (νl)

inv → 0, then we see that the M (νl)
inv distributions for

M ′ = ±1 still go to zero in that limit. Yet, the individual
contributions depend strongly on α.

In Fig. 5 we show the results of M ′ = ±1 and
M ′ = 0 for different values of α. We can see that for
α = 0.5 the contribution of M ′ = +1 eventually van-
ishes. However, for α = 1.5 it is much bigger and close
to the distribution of M ′ = −1. For α = −0.5 the
values for M ′ = +1 and M ′ = −1 are exchanged
with respect to α = 0.5 and the M ′ = +1 con-
tribution is much bigger than the one of M ′ = −1.
Such cases should be easy to differentiate experimen-
tally.

We also see that now
∑ ∑

(|t |2M ′=−1 − |t |2M ′=+1) = 8 α

mνml

(
Ẽν Ẽl + 1

3
p̃2
ν

)

×(AA′)2(1 − BB ′ p2)(B ′ p − Bp) . (29)

Then, it is also interesting to see what happens for the ratio
1
R ( dΓ

dM(νl)
inv

|M ′=−1 − dΓ

dM(νl)
inv

|M ′=+1). We show these results in

Fig. 6. We can see that this magnitude keeps rising up as α

goes from 1.5 to about 0.2. For α = 0.1 the shape changes
drastically, and as α goes to zero it changes very fast. This is
because for α → −α the magnitude changes sign. We also
show the value of the magnitude for α = −0.5, which indeed
is symmetric of the one for α = 0.5 with respect to the M (νl)

inv
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Fig. 5 The same as Fig. 4 but for different α
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a function of α, divided by the total differential width R

axis. It is clear that magnitudes like this, which can change
sign from one model to another, should be very useful in the
search of contributions BSM.

5 Connection with the conventional formalism and
discussion on heavy quark symmetry

In Ref. [42] one relates the weak amplitudes for the B →
Dν̄l, D∗ν̄l, B∗ → Dν̄l, D∗ν̄l. This means that there is only
one independent amplitude for all these processes. This is
reminiscent of the heavy quark symmetry [65,66] where all
form factors can be cast in terms of only one in the limit of
infinite masses of the mesons. In view of this, let us face this
issue here to see the heavy quark symmetry implicit in the
approach of [42] which we follow here.

The key point in our approach, which allows us to express
the quark matrix elements in terms of the meson variables,
is Eq. (8). Let is take the first relation pb

mb
= pB

mB
. In the B

meson at rest there is a distribution of quark momenta due to
the internal motion of the quarks, pin . If we make a boost to
have the B with a velocity of v, we will have

p′
bL = pin,L + vp0

in√
1 − v2

, p′
bT = pbT ,

where we have split pin into a longitudinal and transverse
parts along the direction of v. We can write now

pbL
pB

= pin,L + vp0
in√

1 − v2
÷ mBv√

1 − v2
= pin,L + vp0

in

mBv

= p0
in

mB
+ pin,L

mBv
= mb

mB
+ pin,L

mBv
.

The relative correction factor is
pin,L

mBv
÷ mb

mB
= pin,L

mbv
	 pin,L

mBv
,

but since pin,L has positive and negative components the
correction is of order
(
pin,L

mBv

)2

	 1

3

p2
in

m2
Bv2

. (30)

Let us remark that around M (νl)
inv |min, p from Eq. (9) becomes

infinite and thus v = 1. Hence, the correction terms are of the

order of 1
3

p2
in

m2
Bv2 . With typical values of | pin| 	 300 MeV, this

is a correction of one permil. For the D∗ meson is a correction
of less than 1%. We can make v smaller as M (νl)

inv grows and
still keep these numbers very small. Certainly, when we go
to the end point, for M (νl)

inv /max, when both B and D∗ are at
rest, the argument would fail since v = 0. However, in this
case the approximation is equally good since the Bp term is

zero and only A, A′ matter and Eb = mb at the level of
p2
in

2m2
B

and EB = MB , hence Ã in Eq. (7) and A in Eq. (10) are again
remarkably close. Incidentally, the transverse components in
the boosted frame lead to a correction of

pin,T

pB
= pin,T

√
1 − v2

mBv
→ 2

3

p2
in(1 − v2)

mBv2 ,
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and their effect is further negligible. One can repeat the argu-
mentation for the second relation of Eq. (8). This indicates
that in the ν̄l rest frame, where we evaluate the matrix ele-
ments, Eq. (8) is very accurate. However, it is only exact in
the strict limit that mB,mD∗ go to infinite. Hence, it should
not be surprising that our method implements automatically
the symmetries of heavy quark physics.

In order to test this hypothesis let us first study the B̄ →
Dν̄l transition. We have [67,68]

< D, P ′|Jμ(0)|B, P >√
mBmD

= (v + v′)μh+(w)

+(v − v′)μh−(w) , (31)

where v = P
MB

, v′ = P ′
MD

and

w = vv′ = M2
B + M2

D − M2(νl)
inv

2MBMD
, (32)

(MD → MD∗ for the B̄ → D∗ν̄l transition). Similarly (using
ε0123 = 1) we have [8,67,68]

< D∗, λ, P ′|Jμ(0)|B, P >√
mBmD∗

= iεμναβ(ε(λ)ν)∗vαv
′βhV

−(ε(λ)∗(w + 1)hA1 + (ε(λ)∗ · v)(vμhA2 + v′
μhA3).

(33)

In the heavy quark limit, with the quark masses going to
infinite, one finds [8,67,68]

h+(w) = hA1(w) = hA3(w) = hV (w) = ξ(w) ,

h−(w) = hA2(w) = 0, (34)

with ξ(w) the Isgur Weise function, and with a certain nor-
malization of Jμ, ξ(w) at the end point, M (νl)

inv /max =
MB − MD,D∗(p = 0),

ξ(w = 1) = 1. (35)

This condition appears naturally in the quark model since for
w = 1 the momentum transfer is zero and the wave functions
with very large quark masses are also equal. Hence the quark
transition form factor is unity.

We take the D∗ polarization vectors consistent with our
convention in [42] for the angular momentum states

M ′ = 0 , ε(0)ν ≡
(

p

MD∗
, 0, 0,

ED∗

MD∗

)
,

M ′ = 1 , ε(+)ν ≡ − 1√
2

(0, 1, i, 0) ,

M ′ = −1 , ε(−)ν ≡ 1√
2

(0, 1,−i, 0) . (36)

By using these polarization factors we compare the J0, Ji

(Jμ̃ in spherical basis) matrix elements with M0 and Nμ̃ of
the expressions found in [42].

1) J = 0, J ′ = 0 (B̄ → Dν̄l )

M0 = AA′(1 + BB ′P2) δM0 δM ′0 ,

Nμ̃ = −AA′(B + B ′) p δM0 δM ′0 δμ0 . (37)

2) J = 0, J ′ = 1 (B̄ → D∗ν̄l)
M0 and Nμ̃ are given by Eqs. (12) and (13).

We find

h+ =
√
mBmD

mB + mD
AA′(B + B ′),

h− = 0,

hA1 = 1

w + 1
AA′(1 − BB ′ p2)

1√
mBmD∗

,

hV = √
mBmD∗ AA′ (B − B ′)

ED∗ − EB
,

hA2 = 0,

hA3 = M2
D∗MB

EB − ED∗
AA′

ED∗
√
mBmD∗

×
{

1

MD∗
(1 − BB ′ p2) − (B + B ′)

}
. (38)

Because of our normalization for the spinors from Ref. [48],
ūu = 1, [see Eq. (10)], all these functions are normalized
to the value 1

2
√
mBmD∗ at w = 1 (p = 0), while with the

prescription ūu = 2M implicit in Eqs. (31), (33), they are
normalized to 1. Multiplying our form factors by 2

√
mBmD∗

we find the form factors normalized to 1 as in Eqs. (31), (33)
which allow us to compare with other formalisms. In Fig. 7
we plot all these functions normalized to 1 at w = 1. We
can see that h+ (calculated with mD∗), hA1 , hV and hA3 are
identical, even when we would not expect it from the different
expressions in Eq. (38). We can then see that our formalism
implements exactly the symmetry of heavy quark physics,
and provides an w dependence for these functions.

It is interesting to compare our results with those of [9].
There a quark model calculation is done, and the quark matrix
elements are evaluated, including the transition form factor
from B to D∗ which we do not evaluate since it cancels in
ratios of amplitudes for different M ′. This transition form
factor, evaluated in the quark model, is close to 1 at w = 1,
where there is no momentum transfer, and decreases as the
momentum transfer increases. This allows us to compare our
calculated h+ factor normalized to 1 at w = 1 with h+ of
Ref. [9]. We see that h+ in [9] is qualitatively similar to ours,
although it falls faster with w. The difference with us are of
the order of 15% at the maximum value of w, indicating in
any case a soft transition matrix element.
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Fig. 7 h+, hA1 , hV and hA3 of Eq. (38) as a function of w normalized
to 1 at w = 1

Next, in order to connect with the conventional formalism
we follow Refs. [18,69] and have

< D∗, λ, PD∗ |Jμ(0)|B, PB >√
mBmD∗

= 2iV (q2)

mB + mD∗
εμναβ(ε(λ)ν)∗Pα

B Pβ
D∗

−2mD∗ A0(q2)
ε(λ)∗ · q

q2 qμ

−(mB + mD∗)A1(q2)

[
ε
(λ)∗
μ − ε(λ)∗ · q

q2 qμ

]

+A2(q2)
ε(λ)∗ · q

mB + mD∗

[
(PB + PD∗)μ − m2

B − m2
D∗

q2 qμ

]
,

(39)

where qμ = PBμ − PD∗μ. Once again, comparing this
expression with our results for μ = 0, μ = 1, 2, 3 with
M ′ = 0,+1,−1, we obtain the following results:

V (q2) = AA′(B − B ′) mB + mD∗

2(ED∗ − EB)
, (40)

A0(q
2) = 1

2
AA′(B + B ′) , (41)

A1(q
2) = 1

mB + mD∗
AA′(1 − BB ′ p2) . (42)

(mB + mD∗)A1(q
2)

ED∗

mD∗
− 2p2(EB − ED∗)

mD∗(mB + mD∗)
A2(q

2)

= AA′(1 + BB ′ p2) , (43)

from where we find

A2(q
2) = −mD∗(mB + mD∗)

2(EB − ED∗)
AA′

×
{

2BB ′ − 1

p2

(
ED∗

mD∗
− 1

)
(1 − BB ′ p2)

}
.

(44)

As in [18] (Eq.(B.5)), we define here hA1(w) as

hA1(w) = 2

w + 1

1

RD∗
A1(q

2) , (45)

with RD∗ = 2
√
mBmD∗

mB+mD∗ . Hence hA1(w) here is identical to
hA1 of Eq. (38).

In [18,69] the Ai , V form factors are parameterized as

A0(q
2) = R0(w)

RD∗
hA1(w) ,

A2(q
2) = R2(w)

RD∗
hA1(w) ,

V (q2) = R1(w)

RD∗
hA1(w) . (46)

Our expressions in Eqs. (40), (41), (42), (43), (44) and (45)
fulfill these conditions in the strict heavy quark limit with
R0(w) = 1, R2(w) = 1, R1(w) = 1, such that RD∗ Ai

and RD∗V are exactly equal to hA1 . This is seen in Fig. 8.
Diversions from the strict heavy quark limit of the Standard
Model, including higher order corrections in heavy quark
effective theory (HQEF) and phenomenological information,
are incorporated in this formalism parameterizing hA1(w),
R0(w), R1(w), R2(w) with the results [18,69]

hA1(w) = hA1(1)[1 − 8ρ2z + (53ρ2 − 15)z2

−(231ρ2 − 91)z3] ,

R1(w) = R1(1) − 0.12(w − 1) + 0.05(w − 1)2 ,

R2(w) = R2(1) + 0.11(w − 1) − 0.06(w − 1)2 ,

R0(w) = R0(1) − 0.11(w − 1) + 0.01(w − 1)2 , (47)

where z =
√

w+1−√
2√

w+1+√
2

, with

R0(1) = 1.14 ± 0.07 ,

R1(1) = 1.401 ± 0.034 ± 0.018 ,

R2(1) = 0.864 ± 0.024 ± 0.008 ,

ρ2 = 1.214 ± 0.034 ± 0.009 ,

hA1(1) = 0.921 ± 0.013 ± 0.020 . (48)

The results for hA1 RD∗V , RD∗ A0, RD∗ A2 are shown in Fig.
9. Comparison of Fig. 8 with Fig. 9 shows the difference
with our approach, implying the heavy quark limit, with the
more accurate results including higher order corrections in
HQEF. We can appreciate a bigger slope as a function of
w for the improved model (as already seen comparing with

123



Eur. Phys. J. C (2018) 78 :951 Page 9 of 11 951

0

0.5

1

1.5

2

RD∗V

1 1.1 1.2 1.3 1.4 1.5 1 1.1 1.2 1.3 1.4 1.5
0

0.5

1

1.5

2

RD∗A0

0

0.5

1

1.5

2

w

hA1

1 1.1 1.2 1.3 1.4 1.5 1 1.1 1.2 1.3 1.4 1.5
0

0.5

1

1.5

2

w

RD∗A2

Fig. 8 RD∗V , RD∗ A0, hA1 and RD∗ A2 from Eqs. (40), (41), (44), and
(45) as a function of w normalized to 1 at w = 1
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Fig. 9 the same as Fig. 8 but from Eqs. (46), (47) and (48)

Ref. [9]) and also a different normalization at w = 1. The
differences are not small, since the values of Ri (1) in Eq.
(48) compared with those in the heavy quark limit implicit

in our approach where Ri = 1, contain deviations from
14% to 40%. Yet, the claim we make here is that the dif-
ferences become much smaller when we use our approach
to calculate ratios of amplitudes. To see the accuracy of our
model to provide ratios, we evaluate again the contribution of
M ′ = 0,±1, divided by the sum of the three contributions,
for different values of α, with the form factor of the improved
model and compare the results with those obtained in Fig. 5.
To evaluate those contributions in the improved model we
look at the formulas of Eqs. (26), (27), (28), and looking at
the expressions of Eqs. (40), (41), (42), (43), (44) and (45)
we substitute,

AA′(B + B ′) p → 2A0 p ,

AA′(1 + BB ′ p2) → ED∗(mB + mD∗)

mD∗
A1

− 2p2(EB − ED∗)

mD∗(mB + mD∗)
A2 ,

AA′(1 − BB ′ p2) → (mB + mD∗)A1 ,

AA′(B − B ′) p → 2(ED∗ − EB)

(mB + mD∗)
V p . (49)

The results are shown in Fig. 10 for different values of α.
One can appreciate some differences from Fig. 5, but they
are very small. For M (νl)

inv maximum, which corresponds to
w = 1 the results are practically identical. The differences
are more visible for small M (νl)

inv , a region which is anyway
suppressed by phase space in the mass distributions. The fact
that the three contributions are equal at w = 1 (M (νl)

inv /max)

in both approaches is trivial since only A1 contributes there
and the kinematical factors in

∑ |t |2 are identical for all M ′.
The fact that close to M (νl)

inv /max the behaviour in both cases
is so close can also be traced to the fact that for a certain range
of p momentum the A1 term is still largely dominant. Yet,
this could be seen as a manifestation of a general behaviour
of the helicity amplitudes close to the end point discussed in
Ref. [70].

The comparison of these two approaches is useful. Once
again, we can see some differences in the distributions of
Figs. 5 and 10 for low and intermediate values of M (νl)

inv .
Should one see in an experiment some discrepancy with
respect to our predictions of Fig. 5 this should not be taken
as evidence of physics BSM. Indeed, there are corrections in
these distributions in Fig. 10 when one includes higher order
corrections in HQEF. The differences with respect to Fig. 10
would be more significant. Yet, the most significant thing is
the large sensitivity of the difference of the M = −1 and
M = 1 contributions to small changes of α, which is shared
in both approaches. The other point worth stressing is that
since close to the end point our approach and the improved
one are practically indistinguishable, the predictions in that
region are rather model independent, and, yet, different for
different values of α. Differences found in experiment with
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Fig. 10 The same as Fig. 5 but from Eqs. (46), (47), (48), and (49)

respect to these predictions for α = 1 in that region would
clearly manifest some physics beyond the Standard Model.

6 Conclusions

We have taken advantage of a recent reformulation of the
weak decay of hadrons, where, instead of parameterizing the
amplitudes in terms of particular structures with their corre-
sponding form factors, the weak transition matrix elements
at the quark level are mapped into hadronic matrix elements
and an elaborate angular momentum algebra is performed
that allows one to correlate the decay amplitudes for a wide
range of reactions. The formalism allows one to obtain easy
analytical formulas for each reaction in terms of the angu-
lar momentum components of the hadrons. One global form
factor also appears in the approach related to the radial wave
functions of the hadrons involved, but since this form fac-

tor is common to many reactions and in particular is exactly
the same for the different spin components of the hadrons
within the same reaction, it cancels in ratios of amplitudes or
differential mass distributions.

In the present paper we have taken this formalism and
extended it to the case of hadron matrix elements with an
operator γ μ−αγ μγ5, which can accommodate many models
beyond the standard model by changing α. We have applied
the formalism to study the B → D∗ν̄l reaction and the
amplitudes for different helicities of the D∗ are evaluated.
We see that dΓ

dM(νl)
inv

depends strongly on the helicity ampli-

tude and also on the α parameter. In particular the difference
dΓ

dM(νl)
inv

|M=−1 − dΓ

dM(νl)
inv

|M=+1 is shown to be very sensitive to

the α parameter and changes sign when we go from α to −α.
Such a magnitude, with its strong sensitivity to this parame-
ter, should be an ideal test to investigate models beyond the
Standard Model and we encourage its measurement in this
and analogous reactions, as well as the theoretical calcula-
tions for different models.

We have taken advantage to relate our approach, which
implies the heavy quark limit, to the conventional one using
explicit polarization vectors, by calculating the form factors
V (q2), A0(q2), A1(q2), A2(q2) in our approach and com-
paring them to the parameterization of the improved conven-
tional model which incorporates higher order corrections in
HQEF and phenomenological information. The form factors
are qualitatively similar but one can observe clear differences.
Yet, when one uses them to evaluate ratios of amplitudes,
or partial differential mass distributions, the differences are
small, and near the end point w = 1 the distributions are
practically identical.
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