
Eur. Phys. J. C (2018) 78:937
https://doi.org/10.1140/epjc/s10052-018-6387-7

Regular Article - Theoretical Physics

The ratioR(D) and the D-meson distribution amplitude

Tao Zhong1,a, Yi Zhang2, Xing-Gang Wu2,b, Hai-Bing Fu3, Tao Huang4,c

1 College of Physics and Materials Science, Henan Normal University, Xinxiang 453007, People’s Republic of China
2 Department of Physics, Chongqing University, Chongqing 401331, People’s Republic of China
3 School of Science, Guizhou Minzu University, Guiyang 550025, People’s Republic of China
4 Institute of High Energy Physics and Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences, Beijing 100049,

People’s Republic of China

Received: 24 August 2018 / Accepted: 27 October 2018 / Published online: 14 November 2018
© The Author(s) 2018

Abstract In this paper, we calculate the B → D transition
form factors (TFFs) within the light-cone sum rules (LCSRs)
and predict the ratio R(D). More accurate D-meson distri-
bution amplitudes (DAs) are essential to get a more accu-
rate theoretical prediction. We construct a new model for the
twist-3 DAs φ

p
3;D and φσ

3;D based on the QCD sum rules
under the background field theory for their moments as we
have done for constructing the leading-twist DA φ2;D . As
an application, we observe that the twist-3 contributions are
sizable in whole q2-region. Taking the twist-2 and twist-3
DAs into consideration, we obtain f B→D+,0 (0) = 0.659+0.029

−0.032.
As a combination of the Lattice QCD and the QCD LCSR
predictions on the TFFs f B→D+,0 (q2), we predict R(D) =
0.320+0.018

−0.021, which is about 1.5σ deviation from the HFAG
average of the Belle and BABAR data. At present the data
still have large errors, and we need further accurate measure-
ments of the experiment to confirm whether there is a signal
of new physics from the ratio R(D).

1 Introduction

The B-meson physics provides a good platform for accu-
rately testing the standard model (SM) and for finding the
possible signal of new physics (NP), which has received
much attention from physicists. In particular, the ratio R(D)

in the semileptonic decay B → Dlν̄l has aroused great inter-
ests in recent years, since there appears to be a considerable
difference between the experimental data and the SM theo-
retical predictions.
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In 2012, the BaBar Collaboration reported a first measure-
ment of the ratio R(D), which is defined as

R(D) = B(B → Dτ ν̄τ )

B(B → Dl ′ν̄l ′)
(1)

with l ′ standing for the light lepton e or μ. The BaBar Col-
laboration gives Rexp(D) = 0.440 ± 0.058 ± 0.042 [1,2].
The Belle Collaboration gives a slightly smaller value,
Rexp(D) = 0.375 ± 0.064 ± 0.026 [3]. The weighted
average of those experimental measurements (HFAG aver-
age) gives Rexp(D) = 0.407 ± 0.039 ± 0.024 [4]. Many
approaches have been tried to explain the data. Based
on heavy quark effective theory (HQET), Refs. [5,6] pre-
dict R(D) = 0.302 ± 0.015. By using the lattice QCD
(LQCD), the FNAL/MILC Collaboration gives R(D) =
0.299 ± 0.011 [7] and the HPQCD Collaboration gives
R(D) = 0.300 ± 0.008 [8], whose average gives R(D) =
0.300 ± 0.008 [9]. By using a global fit of the available
LQCD predictions and experimental data, Ref. [10] predicts
R(D) = 0.299 ± 0.003. Those SM predictions are consis-
tent with each other within errors, however, all of them are
lower than its measured value, e.g. the LQCD prediction has
about 2.1σ deviation from the HFAG average. This incon-
sistency has motivated various speculations on the possible
NP beyond the SM [11–13].

The theoretical prediction of R(D) strongly depends on
the B → D transition form factors (TFFs) f B→D+,0 (q2),
which are mainly non-perturbative and can only be pertur-
batively calculated for large recoil region with q2 ∼ 0. Thus
before drawing any definite conclusion, we have to know
those TFFs better. The TFFs f B→D+,0 (q2) have been stud-
ied within the LQCD approach [7,8], the pQCD factoriza-
tion approach [14,15], and the light-cone sum rule (LCSR)
approach [16–20]. The pQCD approach is applicable for
large recoil region and the LQCD approach is applicable
for soft regions with large q2. The LCSR approach involves
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both the hard and the soft contributions below ∼ 8GeV2. In
the paper, we shall first adopt the LCSR approach to recal-
culating the TFFs and then combine the LQCD prediction
to obtain a reliable prediction of the TFFs within the whole
q2-region.

The LCSRs for the TFFs f B→D+,0 (q2) can be expanded as
a series over various D-meson light-cone distribution ampli-
tudes (DAs). The high-twist DAs are generally power sup-
pressed but could be sizable and helpful for a precise pre-
diction. Several models for the leading-twist DA φ2;D have
been proposed in the literature [21–27]. In Ref. [19], we have
studied the DA φ2;D by recalculating its moments within
the frame work of QCD SVZ sum rules [28] in the frame-
work of background field theory (BFT) [29–31]. However, at
present, there is little research on the D-meson twist-3 DAs
φ
p
3;D and φσ

3;D . According to our experience, it is reasonable
to assume that the twist-3 DAs shall have sizable contribu-
tions to the TFFs f B→D+,0 (q2). In a previous pQCD treatment,
the twist-3 DA φ

p
3;D is usually approximated by the leading-

twist DA φ2;D due to the difference between the moments of
φ
p
3;D and φ2;D is power suppressed by ∼ O(�̄/mD) (where

�̄ = mD − mc with the c-quark mass mc and the D-meson
mass), and the contribution from φσ

3;D is usually neglected,

which is suppressed byO(�̄/mD) compared to those of φ2;D
and φ

p
3;D [21]. Thus more accurate twist-3 DAs shall also be

helpful for achieving a precise prediction under pQCD fac-
torization approach. In the paper, we will construct a new
model for the D-meson twist-3 DAs φ

p
3;D and φσ

3;D , whose
moments will be determined by using the QCD SVZ sum
rules under the BFT.

The remaining parts of the paper are organized as follows.
The LCSRs for the TFFs f B→D+,0 (q2) with the next-to-leading
order (NLO) corrections to the D-meson leading-twist DA
contributions are given in Sect. 2. The models for the D-
meson DAs are discussed in Sect. 3. A brief review of our
previous model for the D-meson leading-twist DA φ2;D is
presented in Sect. 3.1, which shall be improved by including
the spin-space part into the wavefunctions. A new model for
the twist-3 DAs φ

p
3;D and φσ

3;D is given in Sect. 3.2. Numeri-
cal analysis and discussions are presented in Sect. 4. Section
5 is reserved for a summary.

2 The RatioR(D) and the B → D TFFs f B→D
+,0 (q2) in

the Light-Cone Sum Rules

The ratioR(D) is determined by the branching ratioB(B →
Dlν̄l), which can be calculated with

B(B → Dlν̄l) = τB

∫ (mB−mD)2

m2
l

dq2 d�(B → Dlν̄l)

dq2 (2)

and

d

dq2 �(B → Dlν̄l)

= G2
F |Vcb|2

192π3m3
B

(
1 − m2

l

q2

)2

×
[(

1 + m2
l

2q2

)
λ3/2(q2)| f B→D+ (q2)|2

+ 3m2
l

2q2

(
m2

B − m2
D

)2
λ1/2(q2)| f B→D

0 (q2)|2
]

, (3)

where we have the phase-space factor λ(q2) = (m2
B +m2

D −
q2)2 − 4m2

Bm
2
D , τB is for the B-meson lifetime, mB stands

for the B-meson mass, GF is the Fermi constant, |Vcb| is the
CKM matrix element, and ml is the lepton mass.

The TFFs f B→D+,0 (q2) are important components of the
ratio R(D), which are defined as

〈
D(p)

∣∣c̄γμb
∣∣ B(p + q)

〉 = 2 f B→D+ (q2)pμ +
[
f B→D+ (q2)

+ f B→D− (q2)
]
qμ (4)

and

f B→D
0 (q2) = f B→D+ (q2) + q2

m2
B − m2

D

f B→D− (q2), (5)

where p is the D-meson momentum and q is the transition
momentum. To determine the TFFs f B→D+,0 (q2), we adopt
the LCSR method and take the correlator as

�μ(p, q) = i
∫

d4xeiq·x

× 〈D(p)
∣∣c̄(x)γμb(x),mbb̄(0)iγ5q(0)

∣∣ 0〉 . (6)

Following the standard LCSR procedures, we obtain

f B→D+ (q2)

= em
2
B/M2

2m2
B fB

[
F0(q

2, M2, sB0 ) + αsCF

4π
F1(q

2, M2, sB0 )

]

(7)

and

f B→D+ (q2) + f B→D− (q2)

= em
2
B/M2

m2
B fB

[
F̃0(q

2, M2, sB0 ) + αsCF

4π
F̃1(q

2, M2, sB0 )

]
,

(8)

where

F0(q
2, M2, sB0 )

= m2
b fD

∫ 1



du exp

[
−m2

b − ūq2 + uūm2
D

uM2

]
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×
{

φ2;D(u)

u
+ 1

mb

[
μ

p
Dφ

p
3;D(u)

+μσ
D

6

(
1 − m2

c

m2
D

)(
2

u
+ 4um2

bm
2
D(

m2
b − q2 + u2m2

D

)2

− m2
b + q2 − u2m2

D

m2
b − q2 + u2m2

D

d

du

)
φσ

3;D(u)

]}
, (9)

F̃0(q
2, M2, sB0 )

= mb fD

∫ 1



du exp

[
−m2

b − ūq2 + uūm2
D

uM2

]

×
[
μ

p
Dφ

p
3;D(u) + μσ

D

6u

(
1 − m2

c

m2
D

)
dφσ

3;D(u)

du

]
, (10)

with

 =
[√

(sB0 − q2 − m2
D)2 + 4m2

D(m2
b − q2)

− (sB0 − q2 − m2
D)

]
/
(

2m2
D

)
.

The first terms in Eqs. (7) and (8) are leading-order (LO)
contributions for f B→D+ (q2) and f B→D+ (q2) + f B→D− (q2),
respectively. fB(D) is the B(D)-meson decay constant, mb

is the b-quark mass, sB0 is the threshold parameter, M is

the Borel parameter, and finally μ
p(σ )
D is the normalization

parameter of the DA φ
p(σ )

3;D . The second terms in Eqs. (7)
and (8) are NLO corrections. Those LCSRs show that up
to twist-3 accuracy, we have to know the twist-2 DA φ2;D
and twist-3 DAs φ

p
3;D and φσ

3;D well. There are also three-
particle twist-3 terms, whose contributions are rather small
and can be safely neglected. The �̄/mD power-suppression
and the αs-suppression are quantitatively at the same order
level, thus in the paper, we shall consider the NLO corrections
to the twist-2 terms and keep the twist-3 terms at the LO level.
As an estimation, we neglect the charm-quark current-mass
effect to the twist-2 NLO terms of the B → D TFFs and take
them to be the same as the ones of the B → π TFFs [32].

3 The D-meson leading-twist and twist-3 DAs

3.1 An improved model for the D-meson leading-twist DA
φ2;D

In Ref. [19] we have suggested a new light-cone harmonic
oscillator model for the D-meson leading-twist wavefunc-
tion, which is based on the Brodsky–Huang–Lepage (BHL)-
prescription [33–35], e.g.,

ψ2:D(x,k⊥) = χ2:D(x,k⊥)ψ R
2:D(x,k⊥). (11)

In Eq. (11), χ2:D(x,k⊥) = m̃/

√
k2⊥ + m̃2 with m̃ =

m̂cx + m̂q(1 − x) stands for the spin-space wavefunction.
ψ R

2:D(x,k⊥) indicates the spatial wavefunction and which
can be divided into two parts, i.e., the x-dependent part and
the k⊥-dependent part. The x-dependent part dominates the
longitudinal distribution broadness of the wavefunction and
can be expanded in terms of the Gegenbauer polynomials.
We only keep the first few terms and take

ϕD(x) = 1 +
4∑

n=1

BD
n C3/2

n (2x − 1).

For the k⊥-dependent part, according to the suggestion of
BHL, i.e., there is a possible connection between the rest
frame wavefunction and the light-cone wavefunction, and
considering the approximate bound-state solution in the
quark model for D-meson in the rest frame, we have

�R
2;D(x,k⊥) ∝ exp

[
− 1

β2
D

(
k2⊥ + m̂2

c

1 − x
+ k2⊥ + m̂2

q

x

)]
.

As a combination, one can obtain the explicit form of the
spatial wavefunction

�R
2;D(x,k⊥) = ADϕD(x)

× exp

[
− 1

β2
D

(
k2⊥ + m̂2

c

1 − x
+ k2⊥ + m̂2

q

x

)]
,

(12)

where k⊥ is the transverse momentum, m̂c and m̂q are the
constituent charm-quark and light-quark masses, and we
adopt m̂c = 1.5GeV and m̂q = 0.3GeV. This model is

applicable for both D
0

and D− leading-twist wavefunctions
since the mass difference between u and d is negligible. One
can obtain the leading-twist wavefunction of D0 or D+ by
replacing x with 1 − x in Eq. (11).

After integrating out the transverse momentumk⊥ compo-
nent in the wavefunction �2;D(x,k⊥), the D-meson leading-
twist DA φ2;D can be obtained. We have approximately taken
χ2;D → 1 in our previous treatment [19]; at present, we keep
the χ2;D-terms to obtain a more accurate behavior for φ2;D ,
i.e.

φ2;D(x, μ0)

=
√

3ADm̃βD

2π3/2 fD

√
x(1 − x)ϕD(x)

× exp

[
− m̂2

c x + m̂2
q(1 − x) − m̃2

8β2
Dx(1 − x)

]

×
{

Erf

[√
m̃2 + μ2

0

8β2
Dx(1 − x)

]
− Erf

[√
m̃2

8β2
Dx(1 − x)

]}
,

(13)
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where μ0 is the factorization scale; Erf(x) is the error func-
tion. The input parameters AD , BD

n and βD can be fixed by
the normalization condition of φ2;D , the probability of find-
ing the leading Fock-state |c̄q〉 in the D-meson Fock-state
expansion which can be taken as PD 	 0.8 [25], and the
known moments 〈ξn〉D [or the known Gegenbauer moments
aD
n ] of φ2;D . Furthermore, the average value of the squared
D-meson transverse momentum

〈
k2⊥
〉
D can be calculated in

the following way:

〈
k2⊥
〉
D

= 1

PD

∫ 1

0
dx
∫

d2k⊥
16π3 k

2⊥
∣∣∣�R

2;D(x,k⊥)

∣∣∣2

= A2
Dβ4

D

π2PD

∫ 1

0
dxx2(1 − x)2(ϕD(x))2

× exp

[
− m̂2

c x + m̂2
q(1 − x)

4β2
Dx(1 − x)

]
, (14)

which can be used to constrain the behaviors of the D-meson
twist-3 DAs φ

p
3;D and φσ

3;D .

3.2 A new model for the D-meson twist-3 DAs

Following the above idea of constructing the D-meson
leading-twist DA, we suggest the following model for the
twist-3 DA φ

p
3;D:

φ
p
3;D(x, μ0) =

√
3Ap

Dm̃β
p
D

2π3/2 fD

√
x(1 − x)ϕ p

D(x)

× exp

[
− m̂2

c x + m̂2
q(1 − x) − m̃2

8(β
p
D)2x(1 − x)

]

×
{

Erf

[√
m̃2 + μ2

0

8(β
p
D)2x(1 − x)

]

− Erf

[√
m̃2

8(β
p
D)2x(1 − x)

]}
, (15)

with

ϕ
p
D(x) = 1 +

4∑
n=1

BD,p
n × C1/2

n (2x − 1). (16)

The model parameters Ap
D , BD,p

n and β
p
D are determined by

the following constraints:

• The normalization condition of φ
p
3;D ,

∫ 1

0
dxφ p

3;D(x, μ0) = 1. (17)

• The average value of the squared D transverse momen-
tum

〈
k2⊥
〉
D , i.e.

〈
k2⊥
〉
D

= (Ap
D)2(β

p
D)4

π2PD

∫ 1

0
dxx2(1 − x)2(ϕ

p
D(x))2

× exp

[
− m̂2

c x + m̂2
q(1 − x)

4(β
p
D)2x(1 − x)

]
. (18)

• The moments
〈
ξnp

〉
D

of the D-meson twist-3 DA φ
p
3;D are

defined as

〈
ξnp

〉
D

|μ0 =
∫ 1

0
dx(2x − 1)nφ

p
3;D(x, μ0), (19)

which can be calculated by using the QCD sum rules in
the framework of BFT.

The twist-3 DA φσ
3;D can be constructed in the same way.

By replacing the upper index ‘p’ with ‘σ ’ in Eq. (15) and
taking the expansion

ϕσ
D(x) = 1 +

4∑
n=1

BD,σ
n × C3/2

n (2x − 1), (20)

we obtain the model for φσ
3;D .

In the above equations, the factorization scale is taken as
μ0 ∼ 1 GeV, and the DAs at any other scale can be obtained
via the conventional evolution equation [36].

In addition to the known parameters, our task left is to
determine the moments of the twist-3 DAs φ

p
3;D and φσ

3;D .
We adopt the following correlators to obtain the sum rules

for the moments
〈
ξnp

〉
D

and
〈
ξnσ
〉
D:

�
p
D(q) = i

∫
d4xeiq·x 〈0

∣∣∣T
{
JPS
n (x)JPS†

0

}∣∣∣ 0
〉

= (z · q)n I pD(q2) (21)

and

�σ
D(q) = i

∫
d4xeiq·x 〈0

∣∣∣T
{
JPT
n (x)JPS†

0

}∣∣∣ 0
〉

= −i(qμzν − qνzμ)(z · q)n I σ
D(q2), (22)

where z2 = 0, JPS
n (x) and JPT

n (x) are pseudo-scalar and
pseudo-tensor currents

JPS
n (x) = c̄(x)γ5(i z · ↔

D)nq(x), (23)

JPT
n (x) = c̄(x)σμνγ5(i z · ↔

D)n+1q(x) (24)

with σμν = i
2 (γμγν − γνγμ).

Following the standard procedures of the SVZ QCD sum
rules under the BFT [19,31] with the help of the relations
between the hadronic transition matrix elements and the
moments〈

0
∣∣∣JPS

n (0)

∣∣∣ D(q)
〉
= −iμp

D fD
〈
ξnp

〉
D

(z · q)n, (25)

123
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〈
0
∣∣∣JPT

n (0)

∣∣∣ D(q)
〉
= −n + 1

3
μσ
D fD

(
1 − m2

c

m2
D

) 〈
ξnσ
〉
D

×(qμzν − qνzμ)(z · q)n, (26)

one can obtain the required sum rules, i.e.

〈
ξnp

〉
D

= M2e
m2
D

M2

(
μ

p
D

)2
f 2
D

{
1

π

1

M2

∫ sD0

m2
c

dse− s
M2 ImI pD,pert.

+L̂M I pD,〈q̄q〉 + L̂M I p
D,〈G2〉 + L̂M I pD,〈q̄Gq〉

+ L̂M I p
D,〈q̄q〉2 + L̂M I p

D,〈G3〉
}

, (27)

〈
ξnσ
〉
D = 3M2e

m2
D

M2

(n + 1)μ
p
Dμσ

D f 2
D

m2
D

m2
D − m2

c

×
{

1

π

1

M2

∫ sD0

m2
c

dse− s
M2 ImI σ

D,pert.

+L̂M I σ
D,〈q̄q〉 + L̂M I σ

D,〈G2〉 + L̂M I σ
D,〈q̄Gq〉

+ L̂M I σ

D,〈q̄q〉2 + L̂M I σ
D,〈G3〉

}
, (28)

where L̂M is the Borel transformation operator. The explicit
expressions for the short notations like ImI pD,pert., L̂M I pD,〈q̄q〉
etc. are presented in the appendix. In doing the calculation,
we have used the quark propagator formula listed in Ref. [31],
in which the quark mass terms are preserved, and thus the
effect of the c-quark mass in the sum rules (27) and (28) is
included completely.

4 Numerical analysis

4.1 Input parameters

To determine the moments of the D-meson twist-3 DAs, we
take [37]

mD− = 1869.59 ± 0.09 MeV,

fD = 203.7 ± 4.7 ± 0.6 MeV,

m̄c(m̄c) = 1.28 ± 0.03 GeV,

m̄d(2GeV) = 4.7+0.5
−0.4 MeV. (29)

For the condensates up to dimension six, we take [38]

〈q̄q〉 (1GeV) = −(240 ± 10 MeV)3,

〈gsq̄σTGq〉 (1 GeV) = 0.8 〈q̄q〉 (1 GeV),〈
αsG

2
〉
= 0.038 ± 0.011 GeV4,〈

g3
s f G

3
〉
= 0.045 GeV6,

〈gsq̄q〉2 = 1.8 × 10−3 GeV6. (30)

Table 1 Criteria for determining the Borel windows of the moments〈
ξn=1,...,4

〉
D

Continue Dimension six
Contribution (%) Contribution (%)

〈
ξ1
〉
D < 15 < 5〈

ξ2
〉
D < 30 < 10〈

ξ3
〉
D < 30 < 10〈

ξ4
〉
D < 45 < 15

Table 2 The Borel windows and the allowable regions for the moments〈
ξn=1,...,4

〉
D . All other input parameters are set to be their central values

M2 Value

〈
ξ1
〉
D [2.667, 7.095] [−0.433,−0.399]〈

ξ2
〉
D [2.627, 3.374] [0.319, 0.321]〈

ξ3
〉
D [3.671, 14.862] [−0.192,−0.169]〈

ξ4
〉
D [3.589, 5.257] [0.157, 0.148]

The scale-dependent parameters at any other scales can
be obtained by using the renormalization group equa-
tion [39,40]. As exceptions, the gluon condensates

〈
αsG2

〉
and

〈
g3
s f G

3
〉
are scale-independent, and we ignore the scale-

dependence of the four-quark condensate 〈gsq̄q〉2, whose
contribution to the twist-3 DA moment is small. In doing the
calculation, we take the renormalization scale μ = M , since
the Borel parameter M characterizes the typical momentum
flow of the process. For the continuous threshold sD0 , as dis-
cussed in Ref. [19], we take sD0 	 6.5GeV2.

4.2 Update for the D-meson twist-2 DA φ2;D

Here, we adopt the value of
〈
g3
s f G

3
〉

being the commonly
used one suggested by Ref. [38], instead of the one adopted
in our previous paper [19]. Then the corresponding results as
regards the moments of the D-meson leading-twist DA φ2;D
should be updated. The criteria for determining the Borel
windows of

〈
ξn=1,...,4

〉
D is exhibited in Table 1; the Borel

windows and the allowable regions for
〈
ξn=1,...,4

〉
D are dis-

played in Table 2. Then the values of those moments are
updated as〈
ξ1
〉
D

|2 GeV = −0.421+0.025
−0.026,〈

ξ2
〉
D

|2 GeV = 0.316+0.023
−0.021,〈

ξ3
〉
D

|2 GeV = −0.186+0.015
−0.015,〈

ξ4
〉
D

|2 GeV = 0.153+0.011
−0.010. (31)

With the values of
〈
ξn=1,··· ,4〉

D shown in Eq. (31), the
input parameters of the model (13) for the D-meson leading-
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Table 3 Typical values for the model parameters of the D-meson leading-twist DAs at the scale μ = 2GeV
〈
ξ1
〉
D

〈
ξ2
〉
D

〈
ξ3
〉
D

〈
ξ4
〉
D AD (GeV−1) BD

1 BD
2 BD

3 BD
4 βD (GeV)

−0.421 0.316 −0.186 0.153 16.071 −0.561 0.356 −0.012 −0.093 0.986

−0.421+0.025 0.316−0.021 −0.186+0.015 0.153−0.010 27.261 −0.287 0.418 0.112 0.031 0.842

−0.421−0.026 0.316+0.023 −0.186−0.015 0.153+0.011 8.360 −0.748 0.345 −0.052 −0.201 1.350

Fig. 1 The D-meson leading-twist DA φ2;D corresponds to the input
parameter values listed in Table 3

twist DA φ2;D can be obtained, and their typical values at the
scale μ = 2GeV are shown in Table 3. The corresponding
curves of φ2;D are shown in Fig. 1. Comparing with the old
simplified model suggested in Ref. [19], the improved model
(13) has a more obvious double-humped behavior and is nar-
rower, but both have a peak around x ∼ 0.2. Substituting
the model parameters exhibited in Table 3 into Eq. (14), one

can obtain
〈
k2⊥
〉1/2
D 	 (651 − 1038)MeV (the central value is

755MeV). The behavior of the twist-3 DAs is insensitive to
the average value of the squared transverse momentum [31].
We will take the central values of

〈
ξn=1,··· ,4〉

D , correspond-

ing to
〈
k2⊥
〉1/2
D = 755MeV, to constrain the behaviors of φ

p
3;D

and φσ
3;D in later subsections.

4.3 Moments of the D-meson twist-3 DAs

As suggested by Refs. [41,42], the quarks inside the bound
state are not exactly on shell, and a more reasonable predic-
tion for μ

p
π or μσ

π could be obtained by using the sum rules
derived from the zeroth moment of the pion twist-3 DA. More
explicitly, by taking n = 0 in the sum rules (27) and (28) and

using the normalization conditions
〈
ξ0
p

〉
D

= 〈
ξ0
σ

〉
D = 1, we

obtain the sum rules for μ
p
π or μσ

π . We present the criteria for

Table 4 Criteria for determining the Borel windows of μ
p
D and μσ

D ,〈
ξ
n=1,··· ,4
p

〉
D

and
〈
ξn=1,··· ,4
σ

〉
D

Continue Dimension six
contribution (%) contribution (%)

μ
p
D < 30 < 2

μσ
D < 30 < 10〈

ξ1
p

〉
D

< 15 < 5〈
ξ2
p

〉
D

< 30 < 10〈
ξ3
p

〉
D

< 30 < 10〈
ξ4
p

〉
D

< 45 < 15〈
ξ1
σ

〉
D < 30 < 10〈

ξ2
σ

〉
D < 30 < 10〈

ξ3
σ

〉
D < 45 < 15〈

ξ4
σ

〉
D < 45 < 15

Table 5 The Borel windows and the allowable regions for μ
p
D , μσ

D ,〈
ξnp

〉
D

and
〈
ξnσ
〉
D . All other input parameters are set to their central

values

M2 Value

μ
p
D [1.102, 1.979] [2.028, 2.298]

μσ
D [1.139, 1.643] [2.086, 2.005]〈

ξ1
p

〉
D

[1.478, 2.111] [−0.581,−0.496]〈
ξ2
p

〉
D

[1.684, 2.295] [0.431, 0.389]〈
ξ3
p

〉
D

[2.372, 2.961] [−0.299,−0.281]〈
ξ4
p

〉
D

[2.380, 3.203] [0.249, 0.240]〈
ξ1
σ

〉
D [1.576, 2.466] [−0.504,−0.387]〈

ξ2
σ

〉
D [1.995, 2.141] [0.321, 0.304]〈

ξ3
σ

〉
D [2.083, 3.572] [−0.248,−0.168]〈

ξ4
σ

〉
D [2.533, 3.127] [0.176, 0.147]

determining the Borel window in Table 4, where for conve-
nience we have also presented the criteria for the moments〈
ξ
n=1,...,4
p

〉
D

and
〈
ξn=1,...,4
σ

〉
D . The determined Borel win-

dows together with the determined values of μ
p
D and μσ

D
are presented in Table 5. Table 5 shows
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Fig. 2 The D-meson twist-3 DAs moments
〈
ξnp

〉
D

and
〈
ξnσ
〉
D (n =

1, 2, 3, 4) versus the Borel parameter M2, where all input parameters
are set to be their central values. The solid, the dashed, the dotted and
the dash-dotted lines are for the first, the second, the third and the fourth
moments, respectively

μ
p
D = 2.535+0.136

−0.131 GeV, (32)

μσ
D = 2.534+0.267

−0.246 GeV, (33)

where the errors are squared average of those from the errors
of the parameters such as the Borel parameter, the conden-
sates and the bound-state parameters. As a comparison, if
roughly using the equation of motion for the on-shell parti-
cles [43–45], we obtain μ

p
D = μσ

D 	 m2
D/mc ∼ 3.04 GeV,

which are about 20% larger than the sum rule predictions.
We present the criteria for determining the Borel win-

dows of the moments
〈
ξnp

〉
D

and
〈
ξnσ
〉
D (n = 1, 2, 3, 4) in

Table 4. The determined Borel windows and the correspond-

ing moments are displayed in Table 5. Figure 2 shows the

stabilities of the D-meson twist-3 DAs moments
〈
ξnp

〉
D

and〈
ξnσ
〉
D (n = 1, 2, 3, 4) within the allowable Borel windows.

Following the same idea as suggested by Ref. [19], we

analyze the impact of various inputs on the moments
〈
ξnp

〉
D

and
〈
ξnσ
〉
D; the results are put in Table 6. Table 6 shows that the

effects of the input parameters on
〈
ξnp

〉
D

and
〈
ξnσ
〉
D are similar

to those of the leading-twist moments 〈ξn〉D [19]. By varying
the mentioned error sources within allowable regions, we
obtain〈
ξ1
p

〉
D

|2GeV = −0.484+0.075
−0.080,〈

ξ2
p

〉
D

|2GeV = 0.400+0.057
−0.052,〈

ξ3
p

〉
D

|2GeV = −0.277+0.037
−0.041,〈

ξ4
p

〉
D

|2GeV = 0.242+0.035
−0.033, (34)

and〈
ξ1
σ

〉
D

|2GeV = −0.381+0.068
−0.071,〈

ξ2
σ

〉
D

|2GeV = 0.296+0.037
−0.033,〈

ξ3
σ

〉
D

|2GeV = −0.190+0.043
−0.044,〈

ξ4
σ

〉
D

|2GeV = 0.156+0.024
−0.022, (35)

where the errors are squared averages of the errors from all
the mentioned error sources. The errors are dominated by
the parameters μ

p,σ
D , fD , mc, and the condensates 〈q̄q〉 and

〈gsq̄σTGq〉.

4.4 Properties of the twist-3 DAs φ
p
3;D and φσ

3;D

Similar to the leading-twist DA [19], the twist-3 DA moments

cannot be varied independently. For example, if
〈
ξ1
p

〉
D

and
〈
ξ3
p

〉
D

take the upper bound,
〈
ξ2
p

〉
D

and
〈
ξ4
p

〉
D

should

take the lower bound so as to obtain a self-consistent
estimation of φ

p
3;D uncertainty. The error band of φ

p
3;D

can be determined by two sets of
〈
ξnp

〉
D

, namely, (i)〈
ξ1
p

〉
D

|2GeV = −0.484+0.075,
〈
ξ2
p

〉
D

|2GeV = 0.400−0.052,〈
ξ3
p

〉
D

|2GeV = −0.277+0.037,
〈
ξ4
p

〉
D

|2GeV = 0.242−0.033;

(ii)
〈
ξ1
p

〉
D

|2GeV = −0.484−0.080,
〈
ξ2
p

〉
D

|2GeV = 0.400+0.057,〈
ξ3
p

〉
D

|2GeV = −0.277−0.041,
〈
ξ4
p

〉
D

|2GeV = 0.242+0.035.

The twist-3 DA φσ
3;D can be treated in the same way. We

present the determined values for the parameters of the twist-
3 DAs φ

p
3;D and φσ

3;D at the scale μ = 2GeV in Table 7, and
the corresponding curves are displayed in Fig. 3.
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Table 6 The impact of various inputs on the moments
〈
ξnp

〉
D

and
〈
ξnσ
〉
D .

The Borel parameter M is fixed to its central value. The labels “|up” and
“|low” stand for the upper and lower bounds of the inputs, and the sym-
bols “+” and “−” represent the positive and negative errors brought

about by the corresponding input, respectively. The
〈
G2
〉
, 〈q̄Gq〉 and〈

G3
〉
are abbreviations of the vacuum condensates

〈
αsG2

〉
, 〈gs q̄σTGq〉

and
〈
g3
s f G

3
〉
, respectively

〈
G2
〉 |up

〈
G2
〉 |low

〈
G3
〉 |up

〈
G3
〉 |low 〈q̄q〉 |up 〈q̄q〉 |low 〈q̄Gq〉 |up 〈q̄Gq〉 |low μ

p
D |up μ

p
D |low

〈
ξ1
p

〉
D

− + / / + − − + + −〈
ξ2
p

〉
D

+ − / / − + + − − +〈
ξ3
p

〉
D

− + / / + − − + + −〈
ξ4
p

〉
D

+ − / / − + + − − +〈
ξ1
σ

〉
D − + / / − + + − + −〈

ξ2
σ

〉
D + − / / + − − + − +〈

ξ3
σ

〉
D − + / / − + + − + −〈

ξ4
σ

〉
D + − / / + − − + − +

m̄c|up m̄c|low m̄d |up m̄d |low mD |up mD |low fD |up fD |low μσ
D |up μσ

D |low

〈
ξ1
p

〉
D

+ − + − − + + − / /〈
ξ2
p

〉
D

− + − + + − − + / /〈
ξ3
p

〉
D

+ − + − − + + − / /〈
ξ4
p

〉
D

− + − + + − − + / /〈
ξ1
σ

〉
D + − + − − + + − + −〈

ξ2
σ

〉
D − + − + + − − + − +〈

ξ3
σ

〉
D + − + − − + + − + −〈

ξ4
σ

〉
D − + − + + − − + − +

Table 7 Typical values for the input parameters of the D-meson twist-3 DAs at the scale μ = 2 GeV
〈
ξ1
p

〉
D

〈
ξ2
p

〉
D

〈
ξ3
p

〉
D

〈
ξ4
p

〉
D

Ap
D (GeV−1) BD,p

1 BD,p
2 BD,p

3 BD,p
4 β

p
D (GeV)

−0.484 0.400 −0.277 0.242 34.907 −0.927 2.522 −0.496 1.463 0.993

−0.484+0.075 0.400−0.052 −0.277+0.037 0.242−0.033 21.744 −1.195 2.185 −0.788 1.520 1.131

−0.484−0.080 0.400+0.057 −0.277−0.041 0.242+0.035 91.860 −0.068 2.886 0.255 1.511 0.804

〈
ξ1
σ

〉
D

〈
ξ2
σ

〉
D

〈
ξ3
σ

〉
D

〈
ξ4
σ

〉
D Aσ

D (GeV−1) BD,σ
1 BD,σ

2 BD,σ
3 BD,σ

4 βσ
D (GeV)

−0.381 0.296 −0.190 0.156 11.378 −0.564 0.270 −0.104 0.064 1.148

−0.381+0.068 0.296−0.033 −0.190+0.043 0.156−0.022 10.871 −0.400 0.216 0.011 0.089 1.201

−0.381−0.071 0.296+0.037 −0.190−0.044 0.156+0.024 12.860 −0.783 0.322 −0.262 0.026 1.050

Comparing Eqs. (34) and (31), one can find that the dif-
ferences among the moments of φ

p
3;D and φ2;D are about

13–37%, and these increase with the increase of the moment
order. Figures 1 and 3 show that there is a large difference
between the behaviors of φ2;D and φ

p
3;D . It is then reasonable

to assume that a large discrepancy on the predictions involv-
ing them could be obtained by taking the rough approxima-
tion φ

p
3;D 	 φ2;D .

The D-meson twist-3 DAs φ
p
3;D and φσ

3;D at any other
scales can be obtained by using the evolution equation. We
present the twist-3 DAs φ

p
3;D and φσ

3;D with several typical
scales, such as μ = 2 ,3, 10 and 100 GeV, in Fig. 4. With
the increment of μ, φ

p
3;D and φσ

3;D become more symmet-
ric with the peak around x = 0.5, both of which tend to the
asymptotic form 6x(1−x). This situation in φ

p
3;D is different

from that of the heavy pseudo-scalar meson, which shows a
humped behavior near the end-point region x → 0, 1 for
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Fig. 3 The D-meson twist-3 DAs φ
p
3;D and φσ

3;D with the parameter
values given in Table 7

high scales [46]. Unlike the asymptotic form of φ
p
3;D , i.e.

φ
p
3;D(x, μ → ∞) ≡ 1, the model (15) for μ → ∞ still

equals zero as x → 0 or x → 1, which is due to an exponen-
tial suppression from the BHL-prescription. It has already
been observed that more reasonable twist-3 contributions to
the pion form factor [47] and the B → π TFFs [48] can
be achieved by using the pion twist-3 DAs with similar end-
point behaviors. Thus the D-meson DAs with suitable end-
point singularity behavior shall be helpful for obtaining more
reliable twist-3 predictions within the pQCD approach.

4.5 The B → D TFFs

Substituting the D-meson twist-2 and twist-3 DAs into the
LCSRs (7) and (8), we can obtain the B → D TFFs

Fig. 4 The D-meson twist-3 DAs φ
p
3;D and φσ

3;D at different scales,
where the solid, the dashed, the dotted and the dash-dotted lines are for
the scales μ = 2, 3, 10, 100 GeV, respectively

f B→D+,0 (q2) with the help of Eq. (5). To do the numerical cal-
culation, we take the B-meson massm

B
0 = 5279.63±MeV,

the decay constant fB = 188±17±18MeV, and the b-quark
mass m̄b(m̄b) = 4.18+0.04

−0.03GeV [37]. For the continuous
threshold parameter sB0 , we take it to be sB0 = 36 ± 1 GeV2;
we take the Borel parameter M2 = (20 ∼ 30)GeV2, the
factorization scale μ 	 3GeV. We need to run the model
parameters of the D-meson twist-2, 3 DAs exhibited in Table
3 and 7 up to the scale μ = 3GeV via the QCD evolution
equation, which are presented in Table 8. It is found that the
differences caused by different bound-state masses are less
than 10−4 of the total contributions, thus TFFs f B→D+,0 (q2)

obtained with the above parameters can be applied for both

the decays B− → D0lν̄l and B
0 → D+lν̄l .
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Table 8 Typical values for the input parameters of the D-meson twist-2
and twist-3 DAs at the scale μ = 3 GeV

AD (GeV−1) BD
1 BD

2 BD
3 BD

4 βD (GeV)

8.293 −0.349 0.231 −0.007 −0.052 1.309

6.724 −0.364 0.202 0.018 −0.024 1.465

9.231 −0.313 0.258 −0.009 −0.071 1.249

Ap
D (GeV−1) BD,p

1 BD,p
2 BD,p

3 BD,p
4 β

p
D (GeV)

10.387 −0.491 1.408 −0.246 0.771 1.401

7.451 −0.596 1.136 −0.324 0.762 1.602

23.402 −0.009 1.878 0.105 0.989 1.078

Aσ
D (GeV−1) BD,σ

1 BD,σ
2 BD,σ

3 BD,σ
4 βσ

D (GeV)

4.431 −0.316 0.122 −0.037 0.029 1.907

5.018 −0.266 0.108 0.005 0.040 1.749

6.007 −0.320 0.188 −0.077 0.030 1.551

At the maximum recoil point q2 = 0, we have

f B→D+,0 (0) = 0.570 +0.029
−0.032|LO + 0.089|NLO, (36)

where the error is obtained by adding all the errors in quadra-
ture, whose error sources contain the choices of φ2;D , φ

p
3;D

and φσ
3;D , the Borel parameter M2, the continuum threshold

sB0 , the B(D)-meson decay constant fB(D), the b-quark mass

mb and the normalization parameter μ
p(σ )
D . For the LO contri-

butions, we have found that different choices of the D-meson
DAs φ2;D , φ

p
3;D and φσ

3;D shall bring about (0.1 ∼ 0.5)%,

(1.5 ∼ 2.1)% and (0.1 ∼ 0.2)% errors to f B→D+,0 (0), respec-
tively. Thus the more precise twist-2 DA φ2;D and the twist-3
DA φ

p
3;D are important for a precise prediction on the B → D

TFFs.
To show how various D-meson DAs contribute to the TFF,

we present the LO contributions to the TFF f B→D+ (q2) sep-
arately from φ2;D , φ

p
3;D and φσ

3;D in Fig. 5, in which all
input parameters are set to their central values. In the whole
q2-region, the twist-3 contributions are sizable but smaller
than the twist-2 contribution. For example, at q2 = 0, we
have f B→D+ (0)|φ2;D = 0.347, f B→D+ (0)|φ p

3;D
= 0.138 and

f B→D+ (0)|φσ
3;D = 0.085, which lead to 61%, 24% and 15%

contributions to the LO TFF f B→D+ (0), respectively.
To show how various twist-3 DA φ

p
3;D models affect the

LO TFF, we take four models for the twist-3 DA φ
p
3;D , e.g. I)

φ
p,I
3;D , which equals our present model (15); II) φ

p,I I
3;D = φ2;D

with φ2;D from Eq. (13); III) φ
p,I I I
3;D = φ2;D with φ2;D equal

to the KLS-model [22]; IV) φ
p,I V
3;D ≡ 1. We present a com-

parison in Fig. 6, in which all other parameters are set to their
central values. Figure 6 shows that the TFF is sensitive to the
behavior of φ

p
3;D . For example, at the large recoil point, by

Fig. 5 The LO LCSR prediction on the TFF f B→D+ (q2), where the
solid line is for the total LO TFF f B→D+ (q2); the dashed, the dash-dot
and the dotted lines are for the separate contributions from φ2;D , φ

p
3;D

and φσ
3;D , respectively

Fig. 6 The LCSR prediction on the TFF f B→D+ (q2) by using four
different twist-3 DA φ

p
3;D , where the solid, the dashed, the dash-dot,

and the dotted lines are for φ
p,I
3;D , φ p,I I

3;D , φ p,I I I
3;D and φ

p,I V
3;D , respectively

taking φ
p
3;D = φ

p,I I
3;D , we obtain f B→D+ (0) = 0.598, which

is 4.9% larger than the value derived by taking φ
p
3;D = φ

p,I
3;D;

by taking φ
p
3;D = φ

p,I V
3;D , we obtain f B→D+ (0) = 0.546,

which is 4.2% smaller than the value derived by taking
φ
p
3;D = φ

p,I
3;D . Moreover, by taking φ

p
3;D = φ

p,I I I
3;D , we obtain

f B→D+ (0) = 0.563, which is close to the value derived by
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Fig. 7 The LCSR predictions on the TFF f B→D+ (q2) for various mod-
els of the D-meson twist-2 DA φ2;D . The thick-solid line is for our
model (13), and the dashed, the dash-dot, the solid, and the dotted
lines are for the GH-model [25], the KLS-model [21,22], the LLZ-
model [23], and the LM-model [24], respectively

Table 9 The fitted parameters a+(0) and b+(0) for the extrapolation of
the TFFs f B→D

+(0) (q2)

f B→D+,0 (0) a+ b+ a0 b0

0.689 1.036133 − 0.057093 0.108209 − 1.362107

0.659 1.040720 − 0.067793 0.100657 − 1.381510

0.627 1.039425 − 0.109856 0.082498 − 1.447109

taking φ
p
3;D = φ

p,I
3;D; the reason is that the behavior of φ

p,I
3;D

at μ = 3GeV is coincidentally close to φ
p,I I I
3;D .

Figure 7 shows the model dependence of the TFF
f B→D+ (q2) for different choices of the D-meson leading-
twist DA φ2;D , where the dashed, the dash-dot, the solid,
and the dotted lines are for the GH-model [25], the KLS-
model [21,22], the LLZ-model [23], and the LM-model [24],
respectively. In drawing the figure, the NLO correction to the
twist-2 DA is considered. Compared with the predictions of
our model (13) and the LM-model, the predictions for the
GH-model, the KLS-model and the LLZ-model give smaller
values for f B→D+ (q2) in the low q2-region, which, however,
grow faster with the increment of q2.

4.6 The ratio R(D)

The LCSRs for the TFFs f B→D+,0 (q2) are reliable in low and

intermediate regions such as q2 ∈ [0, 8] GeV2, and to make
it applicable in all q2-region, one usually extrapolates it by
using the following parametrization [49]:

Fig. 8 The fitted LCSR and LQCD predictions on the TFFs
f B→D+,0 (q2). The solid lines are central values of the TFFs f B→D+,0 (q2),
and the shaded bands are their corresponding uncertainties. The extrap-
olated LCSR predictions with the vacuum-to-B-meson correlator [20],
and the LQCD predictions by the HPQCD Collaboration [8] or by the
FNAL/MILC Collaboration [7], and the data from the Belle Collabora-
tion [50] and the BaBar Collaboration [51] are presented as a compari-
son

f B→D
+(0) (q2) = f B→D

+(0) (0)

1 − a+(0)

(
q2/m2

B

)+ b+(0)

(
q2/m2

B

)2 .

(37)

On the other hand, the LQCD results for the TFFs f B→D+,0 (q2)

are available for the high energy region [7,8]; thus one may
combine the LCSR and LQCD predictions to have an accu-
rate reliable prediction within the whole q2-region. In mak-
ing the combination, we adopt the extrapolation formulas
(37) to fit our LCSR predictions for the TFFs with φ

p,I
3;D and

the LQCD predictions by the HPQCD Collaboration [8]. The
fitted parameters a+(0) and b+(0) are presented in Table 9.

We present the fitting TFFs f B→D+,0 (q2) and their uncer-
tainties in Fig. 8. The solid lines are the central values
of the TFFs f B→D+ (q2) and f B→D

0 (q2) and the shaded
hands are their uncertainties. The extrapolated LCSR pre-
dictions with the vacuum-to-B-meson correlator [20], and
the LQCD predictions by the HPQCD Collaboration [8] or
by the FNAL/MILC Collaboration [7], and the data from the
Belle and BaBar Collaborations [50,51] are presented as a
comparison. Figure 8 shows that our predictions on the TFFs
f B→D+ (q2) agree with the Belle and BaBar measurements
within errors.

To proceed, we present the differential decay rates for the

decay B
0 → D+lν̄l in Fig. 9, where the solid lines are for

B
0 → D+l ′ν̄l ′ and B

0 → D+τ ν̄τ , respectively. The shaded
bands are their uncertainties. The extrapolated LCSR pre-
diction with the vacuum-to-B-meson correlation [20], the
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Fig. 9 Differential decay rates for the decay B
0 → D+l ν̄l . The solid

lines are for B
0 → D+l ′ν̄l ′ and B0 → D+τ ν̄τ , respectively. The

shaded hands are their uncertainties. The extrapolated LCSR prediction
with the vacuum-to-B-meson correlation [20], the LQCD prediction by
the HPQCD Collaboration [8] and the FNAL/MILC Collaboration [7]
are presented as a comparison. The experimental data are from the Belle
Collaboration [50]

Table 10 Theoretical predictions for the branching ratios (in units of
10−2) of the B → Dl ν̄l decays. As a comparison, the PDG values [37],
the BaBar predictions [1,2,52], the HQET predictions [5] are also pre-
sented

Channels This work HQET BaBar PDG

B
0 → D+l ′ν̄l ′ 2.086+0.230

−0.232 − 2.23 ± 0.16 2.19 ± 0.12

B
0 → D+τ ν̄τ 0.666+0.058

−0.057 0.64 ± 0.05 1.01 ± 0.22 1.03 ± 0.22

B− → D0l ′ν̄l ′ 2.260+0.249
−0.251 − 2.31 ± 0.12 2.27 ± 0.11

B− → D0τ ν̄τ 0.724+0.063
−0.062 0.66 ± 0.05 0.99 ± 0.23 0.77 ± 0.25

LQCD prediction by the HPQCD Collaboration [8] and the
FNAL/MILC Collaboration [7] are presented as a compari-
son.

We present the branching ratios for the decay B → Dlν̄l
in Table 10, where the PDG values [37], the BaBar data [1,
2,52], and the HQET predictions [5] are presented as a com-
parison. To do the numerical calculation, we adopt GF =
1.1663787(6) × 10−5GeV−2, |Vcb| = (40.5 ± 1.5) × 10−3,
mτ = 1776.86 ± 0.12MeV, mB− = 5279.32 ± 0.14MeV,
mD0 = 1864.83 ± 0.05MeV, τ

B
0 = (1.520 ± 0.004) ×

10−12s and τB− = (1.638 ± 0.004) × 10−12s[37]. Table 10

shows our predictions on the branching ratios B(B
0 →

D+l ′ν̄l ′), B(B− → D0l ′ν̄l ′) and B(B− → D0τ ν̄τ ) are in
agreement with the HQET prediction, PDG values and the

BaBar data within the errors; our prediction of B(B
0 →

Fig. 10 The ratio R(D) of the semileptonic decays B → Dl ν̄l . The
dashed line stands for the central value and the shaded band is its uncer-
tainty

D+τ ν̄τ ) agrees with the HQET prediction, but it is smaller
than the value given by the BaBar Collaboration and the PDG
average value. We finally get

R(D) = 0.320+0.018
−0.021. (38)

This value is shown in Fig. 10, where the central value and its
uncertainty are indicated by the dashed line and the shaded
band, respectively. As a comparison, the experimental data
reported by the BaBar Collaboration [1,2], the Belle Collab-
oration [3] and the weighted average of those experimental
measurements (HFAG average) [4] are presented. The HQET
prediction [5,6], the LQCD prediction [9] and the LCSR pre-
diction [20] are presented as a comparison.

5 Summary

In the paper, we have adopted the LCSR approach to calculat-
ing the key components of the B → D semileptonic decays,
i.e. the B → D TFFs. The LCSR predictions on the B → D
TFFs depend heavily on the D-meson DAs. At present, we
have little knowledge of the D-meson twist-3 DAs, and the
rough approximation φ

p
3;D 	 φ2;D is usually adopted. In

the paper, we have constructed a new model for the twist-
3 DAs φ

p
3;D and φσ

3;D . The input parameters of the twist-3
DAs have been fixed by using the normalization condition,
the average value of the D-meson transverse momentum and

the moments
〈
ξnp

〉
D

and
〈
ξnσ
〉
D , which have been calculated

by using the QCD SVZ sum rules within the framework of
BFT up to NLO level.
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Taking n = 0 in sum rules (27) and (28) and using the

normalization conditions
〈
ξ0
p

〉
D

= 〈ξ0
σ

〉
D = 1, we obtain the

sum rules for μ
p
π and μσ

π , leading to μ
p
D = 2.535+0.136

−0.131GeV

and μσ
D = 2.534+0.267

−0.246GeV at the scale μ = 2GeV. The
twist-3 DA moments up to fourth order, at the scale μ =
2GeV, are

〈
ξ1
p

〉
D

= −0.484+0.075
−0.080,

〈
ξ1
σ

〉
D

= −0.381+0.068
−0.071, (39)

〈
ξ2
p

〉
D

= +0.400+0.057
−0.052,

〈
ξ2
σ

〉
D

= +0.296+0.037
−0.033, (40)

〈
ξ3
p

〉
D

= −0.277+0.037
−0.041,

〈
ξ3
σ

〉
D

= −0.190+0.043
−0.044, (41)

〈
ξ4
p

〉
D

= +0.242+0.035
−0.033,

〈
ξ4
σ

〉
D

= +0.156+0.024
−0.022. (42)

Using the determined D-meson twist-3 DAs, we have found
that the contributions from the twist-3 DAs are large, which
are added up to 39% for LO f B→D+ (0). We have also shown
how various models of the twist-3 DA φ

p
3;D affect the B → D

TFF f B→D+ (q2). Figure 6 shows that the models φ
p,I I,I V
3;D

bring about a (4–5)% error for the LO f B→D+ (q2); thus, a
proper φ

p
3;D shall be important for a precise prediction. Fig-

ures 8 and 9 show that the TFF f B→D+ (q2) and the differential

decay rates for the decay B
0 → D+lν̄l are in agreement with

the experimental measurements within errors.
Previous SM theoretical predictions for the ratio R(D)

are always lower than the experimental measurements; some
people thus think this inconsistency could indicate a signal
of NP. In combination with the LQCD predictions with the
LCSR predictions for the TFFs f B→D+,0 (q2), we achieve a
more reliable prediction of the TFFs in the whole physical
region; and we further predict R(D) = 0.320+0.018

−0.021, whose
central value is slightly larger than previous SM predictions
and is within 1σ deviation from the 2015 Belle data. At
present the data still contain large errors, and our predic-
tion is still about 1.5σ deviation from the HFAG average of
the Belle and BABAR data. We need further accurate mea-
surements of the experiment to confirm whether there is a
signal of NP from the ratio R(D).
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Appendix: Expressions for the terms in the sum rules (27)
and (28)

We present the expressions for the terms in the sum rules (27)
and (28) in the following:

ImI pD,pert.

= 3s

16π(n + 1)(n + 2)

⎧⎨
⎩(−1)n

[
(n + 2) − (n + 3)

m2
c
s

]

+
(

1 − 2
m2
c

2

)n+2 [
(n + 2) − (n + 1)

m2
c
s

]⎫⎬
⎭

+ 3m2
c

16π(n + 1)(n + 2)

⎧⎨
⎩
[
(2n + 3) − 2(n + 1)

m2
c
s

]

×
(

1 − 2
m2
c
s

)n+1

+ (−1)n

⎫⎬
⎭ , (A1)

L̂M I pD,〈q̄q〉

= 〈q̄q〉
M2

(−1)n

2
exp

[
− m2

c

M2

](
mq

m2
c

M2 − 2mc + mq (n + 1)

)
,

L̂M I p
D,〈G2〉

=
〈
αsG2

〉

24π

[
3(n + 1)H(n, 0, 1, 1) + 2n(n2 − 1)

×H(n − 2, 1, 2, 1) − m2
cnH(n, 1, 0, 2) + 3m2

cH(n, 0, 1, 2)

+ 2m2
cn(n − 1)H(n − 1, 1, 2, 2) − 2m4

cH(n, 1, 0, 3)
]
, (A2)

L̂M I pD,〈q̄Gq〉

= 〈gs q̄σTGq〉
(M2)2

(−1)n

36
exp

[
− m2

c

M2

]⎧⎨
⎩−4mq

(
m2
c

M2

)2

+3
[
3mc + mq (3 − 4n)

] m2
c

M2 + 18(n − 1)mc

− n(8n − 5)mq
}
,

L̂M I p
D,〈q̄q〉2

= 〈gs q̄q〉2

(M2)2
(−1)n

81
exp

[
− m2

c

M2

][
3
m2
c

M2 + (2n2 + 7n − 12)

]
,

L̂M I p
D,〈G3〉

=
〈
g3
s f G3

〉

2880π2

[
− 280F(n, −1, 0, 2) − 110m2

cF(n,−1, 0, 3)

+200F(n, −1, 1, 2) + 140m2
cF(n,−1, 1, 3)

−45nF(n, −1, 2, 2) − 45m2
cF(n,−1, 2, 3)

+210F(n, −2, 0, 2) − 280F(n, −2, 1, 2)

+70F(n, −2, 2, 2) − 255nF(n, −2, 3, 2)

−255m2
cF(n,−2, 3, 3) − 10n(n − 1)F(n − 2, −1, 3, 2)

−70

(
3
m2
c

M2 − 2

)
F̃(n, 0, 0, 2) − 110m2

cF̃(n, 0, 0, 3)
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+40

(
7
m2
c

M2 − 9

)
F̃(n, 0, 1, 2)

+140m2
cF̃(n, 0, 1, 3) −

(
70

m2
c

M2 + 45n − 140
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+255n
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c
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c
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)

×F̃(n, 0, 3, 3) − 10n(n − 1)F̃(n − 2, 0, 3, 2)

+210F̃(n, 1, 0, 2) − 180F̃(n, 1, 1, 2) + 70F̃(n, 1, 2, 2)

−255nF̃(n, 1, 3, 2) − 255m2
cF̃(n, 1, 3, 3)

+70H(n, 0, 0, 2) + 80m2
cH(n, 0, 0, 3) + 210m4

cH(n, 0, 0, 4)

−45nH(n, 0, 1, 2) − 30(4n − 1)m2
cH(n, 0, 1, 3)

−360m4
cH(n, 0, 1, 4) − 255nH(n, 1, 0, 2)

−30m2
c(n + 16)H(n, 1, 0, 3) + 18m4

c(2n − 9)H(n, 1, 0, 4)

+144m6
cH(n, 1, 0, 5) − 30n(n − 1)H(n − 2, 0, 2, 2)

−10n(n − 1)H(n − 2, 1, 1, 2)

−20m2
cn(n − 1)H(n − 2, 1, 1, 3) − 20n2(n2 − 1)

×H(n − 2, 1, 3, 2) − 80m2
cn

2(n − 1)H(n − 2, 1, 3, 3)

−120m4
cn(n − 1)H(n − 2, 1, 3, 4) + 5(−1)n

2(M2)2

× exp

[
− m2

c

M2

]⎧⎨
⎩
(

ln
M2

μ2 − γE

)

×
⎡
⎣
(

306
m2
c

M2 + 306n + 56

)
δn0

−4n(n − 1)θ(n − 2) +
(

102(2n + 3)
m2
c

M2 + 204n2

+306n + 56) θ(n − 1) + 102

(
m2
c

M2

)2

+ 6(17n − 52)
m2
c

M2 − 222n − 32

]

+
(

459
m2
c

M2 + 306n − 28

)
δn0 − 4n(n − 1)θ(n − 2)

+
(

153(2n + 3)
m2
c

M2 + 204n2 + 306n + 56

)
θ(n − 1)

+187

(
m2
c

M2

)2

+ 9(17n − 52)
m2
c

M2 − 222n − 32

⎫⎬
⎭
⎤
⎦ , (A3)

ImIσD,pert.

= 3s

16π(n + 2)(n + 3)

⎧⎨
⎩(−1)n

[
(n + 2) − (n + 3)

m2
c
s

]

+
(

1 − 2
m2
c

2

)n+2 [
(n + 2) − (n + 1)

m2
c
s

]⎫⎬
⎭ , (A4)

L̂M IσD,〈q̄q〉

= 〈q̄q〉
M2 (n + 1)

(−1)n

2
exp

[
− m2

c

M2

]
mq ,

L̂M IσD,〈G2〉

=
〈
αsG2

〉

24π
(n + 1)

[
H(n, 0, 1, 1)

+2n(n − 1)H(n − 2, 1, 2, 1) − m2
cH(n, 1, 0, 2)

]
, (A5)

L̂M IσD,〈q̄Gq〉

= 〈gs q̄σTGq〉
(M2)2 (n + 1)

(−1)n

36
exp

[
− m2

c

M2

]

×
[
−4mq

m2
c

M2 − [6mc + (8n + 1)mq
]]

,

L̂M Iσ
D,〈q̄q〉2

= 〈gs q̄q〉2

(M2)2 (n + 1)
(−1)n

81
exp

[
− m2

c

M2

](
2n − 5 − 2

m2
c

M2

)
,

L̂M IσD,〈G3〉

=
〈
g3
s f G3

〉

2880π2 (n + 1) [15F(n, −1, 2, 2)

−10(n + 1)(3n − 1)F(n,−1, 3, 2) − 10m2
c(3n − 1)

F(n,−1, 3, 3)

−255F(n, −2, 3, 2) − 5n(3n + 5)F(n − 1, −1, 3, 2)

−30nm2
cF(n − 1, −1, 3, 3)

+15n(n − 1)F(n − 2, −1, 3, 2) + 15F̃(n, 0, 2, 2)

+5

(
51

m2
c

M2 − 2(3n2 + 2n + 50)

)
F̃(n, 0, 3, 2)

−10(3n − 1)m2
cF̃(n, 0, 3, 3) − 5n(3n + 5)F̃(n − 1, 0, 3, 2)

−30nm2
cF̃(n − 1, 0, 3, 3)

+15n(n − 1)F̃(n − 2, 0, 3, 2) − 255F̃(n, 1, 3, 2)

+15H(n, 0, 1, 2) + 20m2
cH(n, 0, 1, 3)

−20(n + 1)H(n, 0, 2, 2) − 40m2
cH(n, 0, 2, 3)

−255H(n, 1, 0, 2) − 30m2
cH(n, 1, 0, 3) + 36m4

cH(n, 1, 0, 4)

+90(n + 1)H(n, 1, 1, 2) − 20m2
c(n − 9)H(n, 1, 1, 3)

−180m4
cH(n, 1, 1, 4) + 240m4

cH(n, 1, 2, 4)

−40(n + 1)(n + 2)H(n, 2, 1, 2) − 160(n + 1)m2
cH(n, 2, 1, 3)

+60n(n + 1)H(n − 1, 0, 3, 2)

+120nm2
cH(n − 1, 0, 3, 3) + 5n(7n + 5)H(n − 1, 1, 1, 2)

+80nm2
cH(n − 1, 1, 1, 3)

−60n(n + 1)H(n − 1, 1, 2, 2) − 160nm2
cH(n − 1, 1, 2, 3)

+40nm2
cH(n − 1, 2, 1, 3)

−30n(n − 1)H(n − 2, 0, 3, 2) + 5n(n − 1)H(n − 2, 1, 1, 2)

−30n(n − 1)H(n − 2, 1, 2, 2)

−20n(n2 − 1)H(n − 2, 1, 3, 2) − 40n(n − 1)m2
c

123



Eur. Phys. J. C (2018) 78 :937 Page 15 of 16 937

×H(n − 2, 1, 3, 3) + 5(−1)n
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