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Abstract The standard chiral perturbation theory is known
to predict much weaker effects in magnetic field, than found
in numerical lattice data. To overcome this disagreement
we are using the effective chiral confinement Lagrangian,
LECCL , containing both chiral and quark degrees of free-
dom, in the presence of external magnetic field. Without mag-
netic fields LECCL reduces to the ordinary chiral Lagrangian
LECL , yielding in the lowest order O(∂μϕ)2 all known rela-
tions, and providing explicit numerical coefficients in the
higher O(p4, p6) orders. The inclusion of the magnetic field
in LECCL strongly modifies ECL results for chiral con-
densates, coupling constants fπ , fK and masses of chiral
mesons. The resulting behavior contains the only parameter
– the string tension σ , is roughly proportional to O

( eB
σ

)
and

agrees very well with lattice data. These results show that
the magnetic field acts not only on the chiral degrees of free-
dom (ϕπ ), but also on quarks in the quark-chiral Lagrangian,
which produce much stronger effect.

1 Introduction

The effective chiral theory (ECL) [1–3] was developing long
before the notion of the quark dynamics was introduced, and
the relation between the quark confinement and dynamics
and ECL remains obscure to a large extent till now.

In particular, the leading terms of the effective chiral
Lagrangian (ECL) [4–6] to all orders do not contain any rela-
tion to quark dynamics and quark masses appear actually as
correction terms.

Nevertheless even in this form ECL was very useful to
describe low energy reactions with chiral mesons. At higher
energies, where internal structure of chiral mesons becomes
more important, one needs additional power terms O(p4, p6)
and some modifications of the theory, and the corresponding
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effective models with adjustable coefficients have been sug-
gested, [7–9], which can describe the experimental data.

So far so good, but at some moment an interesting idea
has appeared, what could happen, when one considers the
chiral systems in the constant magnetic field (m.f.). As an
immediate reaction it was suggested, that one can use as an
effective Lagrangian in m.f. the well known ECL with the
replacement of the derivatives (∂μU )n in its terms by the full
derivative DμU = ∂μU + ieAμU which takes into account

the action of m.f. on the chiral d.o.f. in U = exp
(
i ϕ̂aλa
fπ

)
.

This idea was considered well substantiated and it was
used in many papers, both in the ECL [10–16] and in the
NJL model [18–20].

In particular, for the quark condensate in [10] with the
definition 〈q̄q〉 ≡ ∑ = |〈ūu〉| = |〈d̄d〉| it was found, using
chiral perturbation theory (ChPT)

∑
(B) =

∑
(0)

[

1 + eBln2

16π2F2
π

+ O

(
eB

16π2 f 2
π

)2
]

. (1)

Note the integer value of charge e in (1), and the same
linear behavior for 〈ūu〉 and 〈d̄d〉 condensates, which is the
consequence of purely chiral degrees of freedom, having only
integer charges, but looks unrealistic for the quark observable
with charge eq �= e. In [10] also the relation for fπ0 and Mπ0

were found, supported later with corrections due to m2
π �= 0

in [11–17]

f 2
π0(B)

f 2
π0(0)

= 1 + eBln2

8π2 f 2
π

+ · · · (2)

M2
π0(B) = M2

π0(0)

[
1 − eBln2

16π2 f 2
π

+ · · ·
]

(3)

The appearance of the factor 1/ f 2
π in (1), (2), (3) is not sur-

prising, since this is the basic dimensional factor in the ECL.

L = f 2
π

4
tr(∂μU∂μU

+) + O(m̂qU ) + · · · (4)
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The idea of a specific chiral-magnetic physics, mostly
independent of separate quark degrees of freedom, was and
still is attractive and produced several directions. One of this
is the theory suggested in [21].

One assumes in this type of approach that quark d.o.f.
are inessential for low values of eB � (4π fπ )2, where the
phenomena of the chiral magnetic system can be observed,
while for higher m.f. as was argued in [10] the qq̄ d.o.f. can
be important, but due to asymptotic freedom quarks can be
considered as free of strong interaction and only subject to
m.f. Thus one can neglect strong interactions, and first of all
the confinement, considering chiral systems, made of quarks,
in weak and strong m.f. However, the accurate lattice calcula-
tions of the quark condensate |〈q̄q〉| in [22–25] have provided
much stronger linear growth of |〈q̄q〉|, than in the ChPT [10].
In general, the numerous lattice data in [22–32] demonstrate
much stronger influence of m.f. on chiral observables, than
is predicted by ChPT.

It is a purpose of this paper to present a theory and explicit
calculations which can explain this disagreement. We take
into account quarks and antiquarks with confinement in the
framework of the Effective Chiral Confinement Lagrangian
(ECCL) [33–41] in m.f. and demonstrate, that confinement
yields much larger effects due to m.f., than in the purely chiral
theory shown in (1), (2), (3).

We also show that our results are in good agreement with
available lattice data [22–32] for the same physical quantities.

To understand the importance of confinement in the mag-
netic effects of chiral observables one can compare the pure
chiral results (1), (2), (3), which can be written as X�, f,M =
1 + a(ChPT )

�, f,M
eB

(4π fπ )2 + · · · , where a�, f,M = O(1), which
means that chiral observables are essentially controlled by
the parameter (4π fπ )2 ∼ O(1 GeV2).

This is to be compared with the effects of m.f. with the
confinement interaction betweenq and q̄ , which has the order
of magnitude O

( eB
σ

)
, with the standard string tension σ =

0.18 GeV2. In particular, for neutral pion decay constant fπ0

one obtains,
(

f
π0 (eB)

f
π0 (0)

)
=
√

1 +
(
eq B
σ

)2
.

Moreover, the confinement is the basic interaction which
allows to calculate all coefficients in the ECL including the
orders O(p4) and O(p6) as it is shown in [37].

Therefore one expects that the theory of chiral observ-
ables based on both quark and chiral d.o.f. should provide a
more appropriate set up for the calculation of all quantities
�, f, M for both neutral and charged pions in m.f. are in
good agreement with lattice data [22–32]. As will be seen,
our formalism provides numerical results for all observables
�, f, M without fitting parameters in the few percent agree-
ment with all lattice data.

The paper is organised as follows. In the next section we
start from the ECCL Lagrangian and derive all three chiral

observables �, f, M without m.f. taking into account both
chiral and quark d.o.f. We pay below a special attention to
the separation of purely qq̄ and chiral d.o.f. and discuss also
higher order corrections. In Sect. 3 we discuss the effects of
m.f. on chiral and confinement dynamics and obtain �, f, M
in the presence of m.f. In Sect. 4 we shortly demonstrate
the results of ECCL calculations for �, f, M in m.f. and
compare those with lattice data. In Sect. 5 a short conclusion
and discussion is given.

2 The effective chiral confinement Lagrangian

The main idea of the quark-chiral or Effective Chiral Con-
finement Lagrangian (ECCL), approach [33–37] is to take
into account simultaneously pure chiral d.o.f. and quark d.o.f.
connected first of all with confinement. The corresponding
Lagrangian, called in [37] the Effective Chiral Confinement
Lagrangian was derived in [33–37] in the following form

Lef f (Ms, φ̂) = −Nctr log[i ∂̂ + m̂ + MÛ ]. (5)

where Û = exp(φ̂γ5), and M(x) is a confining kernel,
which represents confinement of the quark with the mass
mi (here m̂ = diag(mi )), in the common Wilson loop of
the qq̄ Green’s function, as shown in Fig. 1. One can take
M(x) = σ |x| as shown in Fig. 1, where it is convenient
to take x = 0 at the midpoint of quark and antiquark. In
what follows one encounters M(x) at the vertex of the qq̄
Green’s function, which we associate with the minimal dis-
tance xmin = λ ∼= 0.1 fm equal to the vacuum correlation
length in the QCD vacuum [33–35], and we introduce at those
vertex new parameter M(0) = M(λ) = σλ = 0.15 GeV as
the only parameter of our Lagrangian, besides σ and current
quark masses mi . Note, that the behavior of M(x) and the
field correlator 〈F(x)F(0)〉 at small x � λ is rather com-
plicated, which precludes a simple zero limit M(0) = 0. It
is understandable that with magnetic field (m.f.) one defines
∂̂ → ∂̂ − ie Â(e).

To proceed and to find the connection with the standard
ECL [1–5], one defines the quark Green’s function

S0 = i

∂̂ + m̂ + M
≡ i
 (6)

and

η = Û+
(∂̂ + m̂)(Û − 1) = ηϕ + ηm (7)

with

ηϕ = Û+
∂̂Û , ηm = Û+
m̂(Û − 1), (8)

so that Lef f acquires the form

Lef f = −Nctr log(1 − η). (9)
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Fig. 1 The effective chiral confining kernel MsÛ comprising confinement in Ms and chiral mesons in Û

As a result the quadratic in ∂̂Û part of Lagrangian is

L(2)
e f f = 1

2
Nctr(Û

+
∂̂Û , Û+
∂̂Û ) ≈ Nc

2
tr(
∂̂ϕ̂
̄∂̂ϕ̂),

(10)

with 
̄ = m̂+M − ∂̂, ϕ̂ = ϕiλi
fi

, fi = fπ , fK are numbers.
Here the sign tr implies summation over flavor, Dirac and

space-time coordinates.
To understand connection of L2)

e f f in (10) with the standard
ECL Lagrangian (4), one can express 
 via the quadratic
quark Green’s function G as


 = (m + M − ∂̂)G. (11)

As a result one obtains

L(2)
e f f =

{
f̂ 2
π

4
(∂μU∂μU

+)

}

, (12)

where the operator f̂ 2
π can be written in terms of Hamiltonian

eigenvalues.
For the latter one can exploit the path integral form, sug-

gested in [42–45] and repeatedly used for all mesons and
baryons. In terms of the n-th wave function ϕn(r) of the
quark a and antiquark b and eigenvalue Mn , as well as

ω
(n)
i = 〈

√
p2 + m2

i 〉n, i = a, b, the chiral decay constant
is [34,37,41–44]

(
f (n)
ab

)2 = Nc(ma + M(0))(mb + M(0))

2ω
(n)
a ω

(n)
b Mnξn

ϕ2
n(0), (13)

where ξn for light quarks is ξn = 1/2.34 [44,45].
The good accuracy of (13), supported by comparison of

calculations in [41–43,45] with experiment [46], allows to
use the chiral quark theory of ECCL in the case of external
m.f.

Note the difference between numbers fi , fk and operators
f̂ 2
ik , which contain derivatives ∂̂ also in Gi ,Gk and hence

can depend on external magnetic field. In absence of m.f. the
expression (13) was used to calculate the decay contains of
fπ , fK , fD in the framework of the path integral Hamiltonian
[47–49]. As a result one obtains the physical eigenvalues of
f̂ 2
ik , which agree well with experimental values as shown in

[42–45]. Finally, choosing these values as parameters fi in ϕ̂,

one accomplishes the standard ECL Lagrangian L(2)
ECL ,where

fi serve as basic dimensional parameters of the theory.
In our case in the ECCL Lagrangian these parameters can

be calculated in terms of basic QCD parameters: string ten-
sion σ, αs and current quark masses mi .

Using M(0) = 0.15 GeV and σ = 0.18 GeV2 one obtains
in [45] for f̄π = √

2 fπ , f̄K = √
2 fK the following values

f̄π = 0.133 GeV, f̄k = 0.165 GeV, (14)

which should be compared with experimental values [46]

f̄ (exp)
π+ = (130.7 ± 0.1 ± 0.36) MeV, (15)

f̄ (exp)
K+ = (159.8 ± 1.4 ± 0.44) MeV. (16)

In a similar way one computes fπ , fK for higher radial
excitations, as it is shown in [45].

First of all one can check the GMOR relations [2] which
follow from the ECCL in the second order O(η2).

L(2)
ECCL = Nctr

(
η + η2

2

)

= Nctr

{

m

ϕ̂2

2
+ 1

2

∂̂ϕ̂
̄∂̂ϕ̂ − 1

2

m̂ϕ̂
̄m̂ϕ̂

}
.

(17)

Taking into account that

Nctr
m̂
ϕ̂2

2
= �amaϕabϕba (18)

one obtains, neglecting O(m2) terms from the last term in
(17),

f 2
π0 M

2
π0 = �1m1 + �2m2 (19)

f 2
π+M2

π+ = f 2
π−M2

π− = �1m1 + �2m2 (20)

f 2
K+M2

K+ = f 2
K−M2

K− = �1m1 + �3m3 (21)

f 2
K 0 M

2
K 0 = �2m2 + �3m3. (22)

Here �a is the quark condensate, �a = Nctr
a , where
1,2,3 refer to u, d, s, and mi are pole quark masses, which
are connected to the current quark masses in MS scheme (see
[46] and [49]). One can see that (19)–(22) coincide with the
standard GMOR relations [2].
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Considering now the quark condensate �a one has

�a = Nc〈tr
a〉
= Nc

〈
Tr

(
1

∂̂ + ma + M
(M + ma − ∂̂)

1

M + ma − ∂̂

)〉

= Nc(ma + M(0))Tr(
a
̄a)

= Nc(ma + M(0))Tr(
aγ5
aγ5). (23)

To proceed one can express �a via the Green’s function
Gaa(0), in [34,35], which was exploited in [38] in the case
of nonzero m.f., so that �a = Nc(ma + M(0))Gaa(0)

Gab(k) =
∫

d4(x − y)eik(x−y)

×〈Tr
a(x, y)γ5
a(y, x)γ5)〉. (24)

Using the spectral decomposition of Gab(k),

Gab(k) =
∞∑

n=0

cn
k2 + M̄2

n

, (25)

one finds

�a = Nc(M(0) + ma)

∞∑

n=0

ϕ2
n(0)

Mn
. (26)

Here ϕn(r), Mn are eigenfunction and eigenvalue of the
Green’s function Gab and the corresponding Hamiltonian,
found in [48–50], which correspond to J PC = 0−+ and do
not contain chiral d.o.f. In a similar way from Gab(k) =
Gab(0) + k2 f 2

π

Nc
+ · · · one obtains as in [34,35] for fab.

f 2
ab = Nc(M(0) + ma)(M(0) + mb)

∞∑

n=0

|ϕn(0)|2
M3

n
(27)

Note, that forms (13) and (27) are equivalent, since for the
PS states ϕn 2ω2

aξn ≈ M2
n , Mn ≈ 2ωa(n).

In what follows we shall mostly use the forms (26), (27).
To proceed one must detalize the Hamiltonian technic, which
produces Mn, ϕn(0) to prepare for the inclusion of m.f. in
this Hamiltonian.

Note, that confinement is separated in 
a = 1
∂̂+m+M(x)

as

the interaction term M(x) = σ |x|, which implies the use of
the instantaneous interaction Vqq̄(x−y) = Mq(x)+ Mq̄(x),
between q and q̄ . This form was useful above to intro-
duce together with confinement the chiral d.o.f. as M(x) →
M(x)U (x).

To calculate effects of confinement and all spin corrections
in our case ofGab(x, y), where chiral d.o.f. do not participate,
it is more convenient to go back to original QCD Green’s
function with confinement, as it is done in [44,45].

Now using the path integral representation in the Euclidean
space-time with the proper time si = T4

2ωi
, T4 = x4 − y4,

one has as in [44,45]

Iab ≡
(

1

(m2
a − D̂2

a)(m
2
b − D̂2

b)

)

xy

= T4

8π

∫ ∞

0

dωa

ω
3/2
a

∫ ∞

0

dωb

ω
3/2
b

(D3za)xy(D
3zb)xye

−A (28)

where

A = Ka(ωa) + Kb(ωb) +
∫ T4

0
dtEV0(r(tE )) (29)

and V0(r) is the result of the instantaneous interaction from
the Wilson loop

V0(r) = Vconf(r) + VOGE (r) + �V, (30)

where �V includes spin-depend part, and

Ki = m2
i + ω2

i

2ωi
T4 +

∫ 4

0
dtE

ωi

2

(
dz(i)

dtE

)2

, i = a, b. (31)

From (28)–(31) one obtains in a standard way the Hamil-
tonian

Iab = T4

8π

∫ ∞

0

dωa

ω
3/2
a

∫ ∞

0

dωb

ω
3/2
b

〈
x, x

∣∣
∣e−H(ωa ,ωb,pa ,pb)T4

∣∣
∣ y, y

〉
,

(32)

and

H =
∑

i=a,b

(p(i))2 + m2
i + ω2

i

2ωi
+ V0(r) = P2

2(ω1 + ω2)

+ p2

2ω̃2 + V0(r) ≡ P2

(2(ω1 + ω2)
+ h, (33)

where ω̃ = ωaωb
ωa+ωb

.

As a result the matrix element 〈|e−HT4 |〉 in (32) can be
written as
∫

d3(x − y)
〈
x, x

∣∣
∣e−HT4

∣∣
∣ y, y

〉
=
∑

n

ϕ2
n(0)e−Mn(ωa ,ωb)T4 ,

(34)

where ϕn, Mn are eigenvalues of h ≡ p2

2ω̃
+ V0(r), hϕn =

Mnϕn .
In the limit T4 → ∞ one can use the stationary point anal-

ysis of the integral
∫
Iabd3(x−y) = ∫∞

0
dωa

ω
3/2
a

∫∞
0

dωb

ω
3/2
b

ϕ2
n(0)

e−Mn(ωa ,ωb)T4 , which finally yields the stationary values
ω

(0)
a , ω

(0)
b from the condition ∂Mn

∂ωi
|
ωi=ω

(0)
0

= 0, i = a, b,

and the final physical eigenvalues M (0)
n = Mn(ω

(0)
i ) and

eigenfunctions ϕ
(0)
n = ϕn(ω

(0)
i , r).

As it was shown in [34,35] the resulting eigenvalues of
the (nonchiral) PS states with confinement, color Coulomb
and spin-spin interactions taken into account, are M0 = 0.4
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GeV, M1 = 1.35 GeV and M2 = 1.85, while |ϕn(0)|2 =
ω

(0)
n

4π

(
σ + 4

3αs〈 1
r2 〉
)

.

Finally, using (27) one obtains the value of f 2
π0

∼= f 2
uū

∼=
f 2
dd̄

= 94 MeV, where the first 3 states of the fast converging
series in (27) are taken into account. This value agrees well
with (14), obtained in [45] in a different way.

For �a the same values of Mn, |ϕn(0)|2 can be taken but
the series is formally diverging and must be renormalized.
We shall not touch this point below, since we shall need the
difference �a(ea B)−�a(0)

�a(0)
, where only few first terms con-

tribute.
In the next section we generalize this derivation imposing

m.f. on our qq̄ system.

3 The qq̄ system in magnetic field

In this case the Hamiltonian can be written as [51,52]

H =
∑

i=a,b

(
(pi − eq Ā(e))2

2ωi
+ m2

i + ω2
i

2ωi
− eiσ iB

2ωi

)

+ V0(R) (35)

and for the neutral systems the relative motion Hamiltonian
is

h = 1

2ω̃

(

− d2

dr2 +
(
eq(r × B)

2

)2
)

+V0(r) +
∑

i=a,b

eiσ iB
2ωi

(36)

An analytic answer for energy eigenvalue and eigenfunc-
tions can be obtained with O(5%) accuracy replacing the lin-
ear confinement by the quadratic form with the subsequent
stationary point analysis of coefficients

V (lin)
conf = σr → σ

2

(
r2γ + 1

γ

)
,

∂M

∂γ

∣
∣∣∣
γ=γ0

= 0, (37)

which yields the final result

Mn = εn + m2
a + ω2

a − eaBσ a

2ωa
+ m2

b + ω2
b − ebBσ b

2ωb
. (38)

Here εn is

εn = 1

2ω̃

(√
e2
q B

2 + σ 2c(2n⊥ + 1) +
√

σ 2c

(
n3 + 1

2

))

+ γ σ

2
, (39)

where n⊥, nz are oscillator quantum numbers, and c = 4ω̃
γ σ

,
while γ → γ0 is defined from the minimum of Mn(γ ).

The index n here denotes n⊥, n3 and two possible relative
orientation of σ a, σ b with respect to B, (+−) and (−+).

The most important role in what follows is played by the
factor |ϕn(0)|2 in (26), (27), which is easily calculated in the
oscillator potential approximation to be

|ϕn(0)|2 = 1

π3/2r2⊥r3
, r2⊥ = 2((eq B)2 + σ 2c)−1/2,

r3 =
(

σ 2c

4

)−1/4

. (40)

Defining c = c+−, c−+ by stationary point analysis one
find that

c+−(B) ≈ 1, c−+(B) ∼=
(

1 + 8eq B

σ

)2/3

(41)

and as a result one has [38]

|ψ(+−)
n⊥=0,n3

(0)|2 ∼=
√

σ
√
e2
q B

2 + σ 2

(2π)3/2 (42)

|ψ(−+)
n⊥=0,n3

(0)|2 = (σ 2c−+)3/4

√

1 +
(
eq B

σ

)2 1

c−+
. (43)

It is interesting, that the energy Mn of the lowest level
with n⊥ = n3 = 0 is very different in the (+−) and (−+)

cases. Indeed M (+−)
0 is slowly changing and tends to the

constant limit, while M (−+)
0 , where the cancellation of the

terms eiσ iB does not take place, is growing with eB:

M (−+)
0 (a, a) ≈ 2

√
2|ea B|, M (+−)

0
∼= const. (44)

We now can write expressions for (�, F, M) in m.f. in a
general form, generalizing Eqs. (26), (27) since now the sum
over n is going over n⊥, n3 and (+−), (−+), so that one has
[39,40]1

f 2
π0 (eq B)

= Nc(M(0) + mi )
2
∑

n⊥,n3

(
1
2 |ψ(+−)

ni (0)|2
(M (+−)

ni )3
+

1
2 |ψ(−+)

ni (0)|2
(M (−+)

ni )3

)

,

(45)

where i = u, d. In the same way �a acquires the form [38,
39]

�i = Nc|〈q̄i qi 〉|

= Nc(M(0) + mi )
∑

n⊥,n3

(
1
2 |ψ(+−)

ni (0)|2
M (+−)

ni

+
1
2 |ψ(−+)

ni (0)|2
M (−+)

ni

)

.

(46)

Finally, it was found in [39], that GMOR relations [2] for
neutral mesons are conserved in m.f., so that we can write

m2
π0 f

2
π0 = m̄M(0)

M(0) + m̄
|〈ūu〉 + 〈d̄d〉|, m̄ = mu + md

2
(47)

1 Note an erroneous dependence of M (+−)(eB) on m.f. in [40] and as a
result a fast growth of fπ0 (eB). In what follows we shall not use these
results.
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and one can use GMOR relations separately for u and d
flavors. In the next section we shall find analytically and
numerically the behavior of �i , fπ0 and mπ0 in m.f.

4 Behavior of chiral observables (�, f, M) in m.f

One can define explicitly the behavior of �, f, M in m.f.
introducing the relative growth coefficients

�a(ea B) − �a(0)

�(0)
≡ ��a, a = u, d. (48)

f 2
π0(ea B)

f 2
π0(0)

= K (a)
f (B) (49)

m2
π0(B)

m2
π0(0)

= Kπ0(B). (50)

One can notice in (45), (46), that masses Mni in the
denominator strongly increase, when one is going from
n⊥, n3 = 0, 0 to higher values and there occurs a signifi-
cant compensation of higher n⊥, n3 terms in the difference
�a(B) − �a(0) etc. Therefore the main contribution to the
coefficients ��a, K f , Kπ is given by the lowest term with
n⊥, n3 = 0, 0, which we retain and compare to the lattice
data.

For ��a(B) one obtains from (46), (42), (43)

��a = 1

2

⎧
⎨

⎩

√

1 +
(
ea B

σ

)2

+
√√√
√1 +

(
ea B

σ

)2 1

c(a)
−+

− 2

⎫
⎬

⎭
,

a = u, d. (51)

For K (a)
f (ea B) one can use (44), (45) and neglect the terms

(−+) in (45), since M (−+)
n is fast growing at large eB. As a

result one obtains a simple estimate

K (a)
f (ea B) ∼=

√

1 +
(
ea B

σ

)2

, ea B >∼ σ (52)

Finally for m2
π0 one has form (47)

m2
π0(ea B)

m2
π0(0)

= �u(eu B)

f 2
π0(eu B)

f 2
π0(0)

�u(0)
= 1 + ��a

K (a)
f (ea B)

. (53)

We start with the quark condensate, Eq. (51) and define
two functions in analogy with [25]:

1

2
(��u + ��d) ≡ K+(eB) (54)

��u − ��d ≡ K−(eB) (55)

In Figs. 2, 3 we show both functions (54), (55) computed
with the help of (51) in comparison with the chiral perturba-
tion theory result (1), and with the lattice calculated ratios in
[25]. One can see a very good agreement of our result with
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Fig. 2 The K+(eB calculated with ECL (solid line) in comparison
with the lattice data from [25] and chiral perturbation theory (dashed
line)
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Fig. 3 The K−(eB calculated with ECL (solid line) in comparison
with the lattice data from [25] and chiral perturbation theory (dashed
line)

lattice data for all measured eB ≤ 1.1 GeV2. One notice two
important distinctions of our and lattice results with the ECL
results

1. ��q is roughly proportional to |eq B| at large eq B >∼ σ ,
and hence ��u ≈ 2��d , while in (1) ��u = ��d , so
that in ChPT K−(eB) ≡ 0.

2. The asymptotic linear behavior of 1
2 (��u + ��d) from

(51), (54) is
( eB

4σ

) = 1.4eB
1GeV2 , and is given by the (+−)

states, which agrees very well numerically with lattice
data [25], while in ChPT K+ ∼= 0.5eB

1GeV2 .

We now turn to the case of f 2
π0 and display in Fig. 4 our

result (53) in comparison with the ChPT result, Eq. (2). One
can see different behavior of these two results. In our case
the asymptotics is given in (52),
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Fig. 4 The decay constants
f 2
π0 (eB)

f 2
π0 (0)

for uū (solid) and dd̄ (dashed)

quark constituents calculated with ECL in comparison with the standard
chiral perturbation theory

K (a)
f

∼= ea B
σ

≈ (3.7, 1.85) eB
1GeV2 , for (u, d) while in ChPT

result (2), this ratio is ln2eB
8π2F2

π

∼= 0.25 eB
1Gev2 .

We finally come to the π0 mass problem, which according
to (53) can be written as

m2
π0(eq B)

m2
π0(0)

= 1 + A

2
(56)

with

A =
⎡

⎢
⎣

1 +
(
eq B
σ

)2
1

c−+

1 +
(
ea B
σ

)2

⎤

⎥
⎦

1/2

. (57)

The resulting curves for q = u, d a shown in Fig. 5,6
together with the lattice data from [31,32] and the ChPT
result Eq. (3) from [10]. One can see a reasonable agreement
of our result with lattice data [31,32] and again a strong
disagreement with Eq. (3 ).

5 Results and discussion

Our results for �, f, M are shown in Figs. 2, 3, 4, 5 and 6 in
comparison with lattice data and results of ChPT, Eq. (1), (2),
(3). One can see a good agreement of our results in Figs. 2,
3, 5, 6 with lattice data from [25] and [31,33] respectively,
while in all Figs. 2, 3, 4, 5 and 6 an apparent disagreement
with the ChPT, Eqs. (1), (2), (3). One should stress that our
equations for (�, f, M) do not contain any fitting parame-
ters and depend only on eq B

σ
, where σ = 0.16 GeV2 is the

standard QCD string tension.
It is understandable, that in our approach the basic effect

is from the quark d.o.f (as it seen in the coefficients eB
σ

),
and the agreement with independent lattice data shows that
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Fig. 5 The pion mass ratio
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e2
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culated with ECL (solid line) in comparison with the lattice data from
[31,32] (dots) and with the standard chiral perturbation theory predic-
tion from [10]

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  0.5  1  1.5  2  2.5  3  3.5  4

P
io

n 
m

as
s 

ra
tio

eB, GeV2

Luschevskaya Lattice d

Bali Lattice d

M2
d(B)/M2

d(0)

M2(B)/M2(0) chiral

Fig. 6 The pion mass ratio
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π0 (eB)

e2
π0 (0)

with dd̄ quark constituents cal-

culated with ECL (solid line) in comparison with the lattice data from
[31,32] (dots) and with the standard chiral perturbation theory predic-
tion from [10]

this effect is properly taken into account. One of the points
is then: where is the contribution from purely chiral d.o.f.?
This point is especially aggravated, when one compares the
coefficient K−(eB), (55) in Fig. 3, which according to ChPT
should be identically zero, while in our and lattice approaches
it is essentially nonzero and is of the same order, as the total
ChPT correction to �(eB).

In our derivation of �a and ��a , Eqs. (26), (48) the chiral
corrections are absent and they appear in ECCL only in higher
orders, in the terms O(
(∂̂ϕ)n), n > 2. The same happens
in the case of fπ0 , Mπ0 , where to the lowest order the terms
(∂μπ±)2 are absent.

As a general feature, one should stress, that the ECCL
is nonlocal in chiral variables and e.g. the pion propagator
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is replaced by the qq̄ Green’s function with pion quantum
numbers, therefore the purely local chiral magnetic effects
can be expected only for very small momenta and m.f.

We have not considered above the charged mesons
π±, K±, where GMOR relations are violated in the low-
est order,as it was found in [39]. The corresponding mass
evolution for Mπ± is given in [41].

One can compare our and lattice results with other
approaches beyond ChPT. In [25] the lattice results for K+
have been compared to the PNJL model of [53], showing a
reasonable agreement for eB <∼ 0.3 GeV, and deviation from
lattice data for larger eB. A better agreement of K+ with
lattice data in the whole interval eB ≤ 1 GeV2 was found
in [54], in the framework of the NJL model with a Gaussian
formfactor. The π0 mass in the NJL model, Mπ0(eB), was
found numerically in [55–57]. One can see in Fig. 2 of [57]
almost the same slope, as in our Figs. 5, 6, slightly different
(within 15%) from the lattice data of [33] and within errors
with data of [31]. A good agreement of [54] Fig. 4, with our
data can be found for f 2

π0(eB) in Fig. 4. These coincidences
support the main outcome of our paper, that the quark d.o.f.,
taken into account also within the NJL model, play the most
important role in the impact of m.f.

It is interesting to identify the explicit mechanism, which
provides the linear growth of �a(eB), and fπ0(eB) with
increasing eB. Indeed, looking at Eqs. (42), (43) and (45),
(46) one can notice, that the main effect of increase comes

from the factor |ϕ(0)|2 ∼
√

1 +
(
eq B
σ

)2
, which is a famil-

iar effect of the qq̄ attraction at small distances in m.f.,
called in [58] the “magnetic focusing effect”. This effect is
present both in relativistic and nonrelativistic systems. One
can notice that it is specially important in the spin-spin inter-
actions, providing collapse of the qq̄ system in the lowest
local approximation of h f interaction in m.f. This point was
treated in [52,59], where it was shown that an effective smear-
ing is necessary for spin-spin forces in m.f., which prevents
collapse and satisfies the positivity conditions for eigenval-
ues. This kind of treatment is also assumed in our case.

It is possible, that the agreement of our results with the
corresponding data from [54,57] is due to the same simple
magnetic focusing effect, discussed above.

Having found that purely chiral ECL Lagrangian, not con-
taining quark d.o.f., does not ensure the correct behavior of
the physical system under the influence of m.f., one may
ask, what happens to the so-called chiral magnetic effects
in similar purely chiral Lagrangians? This question requires
a detailed analysis and a possible extension of these purely
chiral Lagrangians to the quark-chiral form, as it is done in
the extension of LECL to LECCL in [37].
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