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Abstract We study the application of our recent holo-
graphic entanglement negativity conjecture for mixed states
of adjacent subsystems in conformal field theories with
a conserved charge. In this context we obtain the holo-
graphic entanglement negativity for zero and finite tempera-
ture mixed state configurations in d-dimensional conformal
field theories dual to bulk extremal and non extremal charged
AdSd+1 black holes. Our results conform to quantum infor-
mation theory expectations and constitute significant consis-
tency checks for our conjecture.

1 Introduction

In recent times quantum entanglement has emerged as an
important facet of modern fundamental physics, relating
diverse fields ranging from many body theory to issues of
quantum gravity and black holes. In this context the mea-
sure of entanglement entropy has played a crucial role in
the characterization of quantum entanglement for bipartite
pure states. In quantum information theory the entangle-
ment entropy is defined as the von Neumann entropy of
the reduced density matrix for the corresponding subsystem.
Significantly, the entanglement entropy may be computed
through a replica technique for bipartite states in (1 + 1)-
dimensional conformal field theories (CFT1+1) as described
in [1,2]. Interestingly Ryu and Takayanagi in a seminal
work [3–5] proposed an elegant holographic entanglement
entropy conjecture for bipartite states of dual d-dimensional
conformal field theories (CFTd ) in the framework of the
AdS/CFT correspondence. The Ryu-Takayanagi conjec-
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ture inspired extensive investigations in various aspects of
entanglement in holographic CFT s [5–11] (and references
therein). A proof of this conjecture from a bulk perspective
was subsequently developed in a series of communications,
first for the AdS3/CFT2 scenario and later extended to a
generic AdSd+1/CFTd framework [12–17].

It is well known however in quantum information theory
that entanglement entropy fails to characterize mixed state
entanglement as it receives contributions which are irrele-
vant to the entanglement of the configuration in question.
Hence characterization of mixed state entanglement was a
complex and subtle issue which required the introduction of
suitable measures. In a seminal work Vidal and Werner [18]
addressed this critical issue and proposed a computable mea-
sure for characterizing the upper bound on the distillable
entanglement for bipartite mixed states, termed as entangle-
ment negativity. It could be shown that this measure is non
convex and an entanglement monotone [19]. Interestingly,
in a series of communication the authors in [20–22] com-
puted the entanglement negativity for several bipartite mixed
state configurations inCFT1+1s employing a suitable replica
technique.

The above discussion naturally leads to the issue of a
holographic characterization for the entanglement negativity
of bipartite pure and mixed states in dual CFT s, in terms
of the bulk geometry through the AdS/CFT correspon-
dence. There were several attempts in the literature [23,24]
to address this issue and despite significant progress a clear
elucidation of a holographic characterization for the entan-
glement negativity remained a crucial open problem. In the
recent past, two of the present authors (VM and GS) in the
collaboration [25–27] (CMS), proposed a holographic entan-
glement negativity conjecture for bipartite states in the dual
CFT s. According to their conjecture, the holographic nega-
tivity characterizing the entanglement of a simply connected
single subsystem with the rest of the system, is described by
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a specific algebraic sum of the areas of co dimension two
bulk static minimal surfaces (lengths of space like geodesics
in the AdS3/CFT2 scenario) anchored on appropriate sub-
systems. In the AdS3/CFT2 context [25] their conjecture
could exactly reproduce the universal part of the correspond-
ing CFT1+1 replica technique results, in the large central
charge limit. Furthermore their analysis was strongly con-
firmed through a large central charge analysis of the entan-
glement negativity in CFT1+1 employing the monodromy
technique in [28]. The corresponding higher dimensional
extension of the conjecture was substantiated through strong
consistency checks involving applications to specific exam-
ples [26]. Interestingly, this reproduced certain universal fea-
tures of the holographic entanglement negativity for the cor-
responding AdS3/CFT2 scenario [25]. However we should
mention here that a formal bulk proof for their conjecture
along the lines of [17] remains a non trivial open issue which
needs to be addressed.

Recently, in a subsequent communication [29] the present
authors proposed an independent holographic entanglement
negativity conjecture for a bipartite mixed state configura-
tion of adjacent intervals in a dual CFT1+1. The conjecture
involved a specific algebraic sum of the lengths of space
like geodesics in the dual bulk AdS3 configuration which are
anchored on appropriate intervals. Interestingly, this reduced
to the holographic mutual information between the two inter-
vals upto a numerical constant. 1 Remarkably, as earlier [25–
27], in this case also the holographic entanglement negativity
exactly reproduced the universal part of the corresponding
CFT1+1 results in the large central charge limit.

A higher dimensional extension of the above conjec-
ture for the mixed state of adjacent subsystems in a holo-
graphic CFTd was proposed subsequently in [32]. As earlier
this involved a specific algebraic sum of the areas of co-
dimension two bulk static minimal surfaces anchored on the
respective subsystems in the dual CFTd . This extension was
substantiated through applications to specific higher dimen-
sional examples constituting strong consistency checks for
the holographic conjecture. These involved the computa-
tion of the holographic entanglement negativity for mixed
states of adjacent subsystems described by rectangular strip
geometries in CFTds dual to bulk pure AdSd+1 geometry
and AdSd+1-Schwarzschild black hole. Quite interestingly,
for the finite temperature case involving the dual AdSd+1-
Schwarzschild black hole, the holographic entanglement
negativity scales as the area of the entangling surface in a
high temperature approximation. Note that this is unlike the
case of entanglement entropy which scales as the volume of

1 Note that this matching between the universal. part of the entangle-
ment negativity and the mutual information for the case of adjacent
intervals has also been reported for time dependent situations following
both local and global quenches in a CFT1+1 [30,31].

the subsystem at high temperatures [33]. For the holographic
entanglement negativity on the other hand, all volume depen-
dent thermal terms cancel out leading to a purely area depen-
dent expression. This conforms to the standard quantum
information theory expectations for the entanglement neg-
ativity measure. Interestingly, the area law for entanglement
negativity has also been reported for condensed matter sys-
tem such as the finite temperature quantum spin model and
the two dimensional harmonic lattice [34,35]. Subsequently,
a covariant version of the holographic entanglement negativ-
ity conjecture described in [29], was proposed in [36] for
time dependent mixed state configurations of adjacent inter-
vals in a dual CFT1+1.

In this article we further substantiate the higher dimen-
sional AdSd+1/CFTd extension of the holographic entan-
glement negativity conjecture described above, with addi-
tional non trivial consistency checks involving the applica-
tion to distinct examples. This involves zero and finite tem-
perature mixed state configurations of adjacent subsystems
with rectangular strip geometries in holographicCFTds with
a conserved charge, dual to bulk extremal and non extremal
RN-AdSd+1 black holes. Unlike for the case of CFTds dual
to AdSd+1-Schwarzschild black holes [32], the holographic
entanglement negativity for the present case necessitates per-
turbative expansions involving non trivial limits of the rele-
vant parameters (see, also [8,37] for the corresponding case
of entanglement entropy). In order to illustrate this we ini-
tially consider the AdS4/CFT3 examples for simplicity and
subsequently describe the more general AdSd+1/CFTd sce-
nario.

In this context we first compute the holographic entangle-
ment negativity for bipartite mixed states of adjacent sub-
systems in CFT3s dual to bulk non-extremal and extremal
RN-AdS4 black holes. We demonstrate that the holographic
entanglement negativity following from our conjecture in the
various limits of the relevant parameters conform to quan-
tum information expectations. Hence these serve as signifi-
cant consistency checks for the universality of our conjecture
although a bulk proof remains an outstanding open issue. The
corresponding AdSd+1/CFTd case necessitates the pertur-
bative description of the holographic entanglement negativity
involving various limits of a distinct set of parameters. How-
ever the results of this exercise are similar to the previous
case of AdS4/CFT3 and lead to identical conclusions in the
appropriate limits for the relevant parameters.

The article is organized as follows. In Sect. 2 we
describe our holographic entanglement negativity conjec-
ture for mixed state configurations of adjacent subsystems
characterized by a rectangular strip geometry in CFTds dual
to bulk AdSd+1 configurations. Subsequently, in Sect. 3 we
compute the holographic entanglement negativity for mixed
states of adjacent subsystems in the AdS4/CFT3 scenario.
In Sect. 4 we obtain the holographic entanglement negativity
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for the required mixed states in the AdSd+1/CFTd scenario.
In the final Sect. 5 we present a summary of our results and
conclusions.

2 Holographic entanglement negativity conjecture

In this section we briefly review the holographic entangle-
ment negativity conjecture for a bipartite mixed state config-
uration of adjacent subsystems in dualCFT s. To this end we
first describe the holographic entanglement negativity con-
jecture for the mixed state configuration above in the context
of the AdS3/CFT2 scenario [29]. Following this we briefly
discuss the extension of our conjecture to a generic higher
dimensional AdSd+1/CFTd scenario [32].

The entanglement negativity for a bipartite mixed state
configuration in a CFT1+1 may be obtained through a suit-
able replica technique as described in [20–22]. This involves
the spatial tripartition of the CFT1+1 into the intervals A1

and A2 such that A = A1 ∪ A2, and the rest of the system
is Ac = (A1 ∪ A2)

c. The entanglement negativity is then
defined as

E = lim
ne→1

ln Tr(ρT2
A )ne , (1)

where ρ
T2
A is the partial transpose with respect to the interval

A2 for the reduced density matrix ρA and the replica limit
described as ne → 1 is an analytic continuation for even
sequences of ne to ne = 1.

For the specific mixed state configuration of adjacent inter-
vals A1 and A2 it could be shown that the quantity Tr(ρT2

A )ne

in Eq. (1) may be expressed as a three point twist correla-
tor on the complex plane which is fixed by the conformal
symmetry as

Tr(ρT2
A )ne = 〈Tne(z1)T

2
ne (z2)Tne (z3)〉

= c2
n

CTnT
2
nTn

|z12|ΔT 2
ne |z23|ΔT 2

ne |z13|2ΔTne −ΔT 2
ne

, (2)

where |zi j | = |zi − z j |, and Δτ 2
ne

and Δτne
are the scaling

dimensions of the twist fields τ 2
ne and τne respectively. In the

large central charge limit this three point twist correlator Eq.
(2) may be expressed in terms of the lengths of bulk space
like geodesics anchored on the appropriate intervals, through
the standard AdS/CFT dictionary as follows [29]

〈Tne (z1)T
2
ne(z2)Tne(z3)〉

= exp

[−ΔTneL13 − ΔT ne
2

(L12 + L23 − L13)

R

]
.

(3)

The holographic entanglement negativity for the mixed
state configuration in question may then be expressed in
terms of a specific algebraic sum of the lengths of the bulk
space like geodesics as follows

E = 3

16G3
N

(L12 + L23 − L13), (4)

where we have employed the Brown–Henneaux formula c =
3R

2G3
N

[38]. In the context of the AdSd+1/CFTd scenario

the corresponding holographic entanglement negativity for a
mixed state of adjacent subsystems A1 and A2 in the CFTds
dual to bulk AdSd+1 geometries is given as [32]

E = 3

16G(d+1)
N

(
A1 + A2 − A12

)
, (5)

where Ai ’s are the areas of co-dimension two bulk static
minimal surfaces anchored on the respective subsystems Ai .
It may be shown that the above expression reduces to the
holographic mutual information I(A1, A2) between the two
intervals (see footnote 1) on utilizing the Ryu-Takayanagi

conjecture
(
SAi = Ai

4G(d+1)
N

)
as follows

E = 3

4
(SA1 + SA2 − SA1∪A2) = 3

4
I(A1, A2). (6)

We emphasize here that entanglement negativity and mutual
information are completely distinct quantities in quantum
information theory. Entanglement negativity provides an
upper bound on the distillable entanglement of the bipar-
tite system whereas the mutual information characterizes
the total amount of correlations for the same. However, for
the specific case of the adjacent subsystems our conjecture
states that the holographic entanglement negativity is pro-
portional to the holographic mutual information which is a
result valid only in the holographic (large central charge)
limit. Note that this does not hold for more generic bipar-
tite configurations for example a single simply connected
subsystem as described in [25] for the AdS3/CFT2 sce-
nario and its corresponding higher dimensional generaliza-
tion for the AdSd+1/CFTd [26]. Interestingly, even for such
generic configurations the holographic entanglement nega-
tivity may be expressed as certain specific algebraic sum
of the holographic mutual information between appropri-
ate subsystems. As discussed in the introduction, this rela-
tion between entanglement negativity and mutual informa-
tion has also been demonstrated for time dependent sce-
narios involving the global and the local quenches in a
CFT1+1 [30,31].
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3 Holographic entanglement negativity for CFT3 dual
to RN-AdS4

As mentioned earlier it is instructive to first examine the
application of our holographic entanglement negativity con-
jecture to a CFT3 with a conserved charge dual to the bulk
AdS4 configurations. This exercise will elucidate the non
trivial structure of the perturbative expansion for the holo-
graphic entanglement negativity for various limits of the
charge and the temperature of the dual CFT3. In this context
we describe the application of our conjecture to compute the
holographic entanglement negativity for the bipartite mixed
state configuration of adjacent subsystems with rectangular
strip geometries in the CFT3s dual to bulk non extremal and
extremal RN-AdS4 black holes.

3.1 Area of minimal surface for RN-AdS4 black holes

We first briefly review the perturbative computation of the
area of a co-dimension two bulk static minimal surface
anchored on a subsystem of rectangular strip geometry in
the dual CFT3 [11,33] which will be required for the subse-
quent calculations. The metric for the RN-AdS4 black hole
with a planar horizon (with the AdS radius R = 1) is given
as

ds2 = −r2 f (r)dt2 + 1

r2 f (r)
dr2 + r2(dx2 + dy2), (7)

f (r) = 1 − M

r3 + Q2

r4 . (8)

The lapse function f (r) vanishes at the horizon (r = rh)
resulting in the following relation between the mass, charge
and radius of the horizon as

f (rh) = 0 ⇒ M = r4
h + Q2

rh
. (9)

One may now express the lapse function Eq. (8) in terms of
the charge Q and the horizon radius rh as follows

f (r) = 1 − r3
h

r3 − Q2

r3rh
+ Q2

r4 . (10)

The Hawking temperature for the RN-AdS4 black hole is
given as

T = f ′(r)
4π

∣∣∣∣
r=rh

= 3rh
4π

(
1 − Q2

3r4
h

)
. (11)

We now proceed to the computation the area of a co-
dimension two static minimal surface anchored on a sub-
system described by a rectangular strip geometry on the dual

CFT3 to the RN-AdS4 black hole. The subsystem A of rect-
angular strip geometry on the dual CFT3 is specified as fol-
lows

x ∈
[
− l

2
,
l

2

]
, y ∈

[
− L

2
,
L

2

]
. (12)

The areaAA of the co-dimension two bulk static minimal sur-
face anchored on the subsystem A in the holographic CFT3

may the be expressed as

AA = 2L
∫ ∞

rc

dr√
f (r)(1 − r4

c
r4 )

. (13)

The turning point rc of the minimal surface in the bulk, is
related to the length of the rectangular strip in the x direction
as

l

2
=
∫ ∞

rc

r2
c dr

r4

√
f (r)

(
1 − r4

c
r4

) . (14)

In order to evaluate these integrals we perform a coordinate
transformation from r to u = rc

r and the Eqs. (10), (13) and
(14) may then be expressed as

f (u) = 1 − rh3u3

rc3 − Q2u3

rc3rh
+ Q2u4

rc4 , (15)

A = 2Lrc

∫ 1

0

f (u)− 1
2

u2
√

1 − u4
du, (16)

l = 2

rc

∫ 1

0

u2 f (u)− 1
2√

1 − u4
du. (17)

We obtain the area of the minimal surface in question through
a perturbative evaluation of the above integrals for different
limits of the parameters, charge Q and the temperature T of
the CFT3.

In what follows, we compute the holographic entangle-
ment negativity for mixed states of adjacent subsystems
described by rectangular strip geometries, in CFT3s dual to
RN-AdS4 non-extremal and extremal black holes. The rect-
angular strip geometries corresponding to these subsystems
denoted as A1 and A2, are specified by the coordinates:

x ∈
[
− l1

2 , l1
2

]
, y ∈ [− L

2 , L
2

]
, (18)

x ∈
[
− l2

2 , l2
2

]
, y ∈ [− L

2 , L
2

]
, (19)

respectively, as depicted in Fig. 1. Note that the areas and the
turning points of the corresponding co-dimension two bulk
static minimal surfaces anchored on the subsystems A1 and
A2, may therefore be obtained from Eqs. (17) and (16), by
replacing l in Eq. (17) by l1 and l2 respectively.
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3.2 Non-extremal RN-AdS4 black holes

We first consider the finite temperature mixed state configu-
ration of adjacent subsystems with rectangular strip geome-
tries as depicted in Fig. 1, in the CFT3 dual to a bulk non-
extremal RN-AdS4 black hole. To compute the holographic
entanglement negativity utilizing our conjecture it is required
to evaluate the corresponding areas of the bulk static mini-
mal surfaces perturbatively for various limits of the relevant
parameters described above.

3.2.1 Small charge and low temperature

The non extremality condition may be obtained in terms of
the horizon radius for the bulk RN-AdS4 black hole by setting
T > 0 in Eq. (11) as follows

rh >

√
Q

3
1
4

. (20)

In the limit of small charge and at low temperatures it may
be shown from Eq. (20) that rh � rc and Q/r2

h ∼ 1. Hence,

the function f (u)− 1
2 is Taylor expanded around rh

rc
= 0 to

the leading order in O[( rhrc u)3] as follows [11]

f (u)−
1
2 ≈ 1 + 1 + α

2

(
rh
rc

)3

u3, (21)

where f (u) is the lapse function Eq. (15) for the black hole

metric and α = Q2

r4
h

. Employing the Eqs. (21), (17) and (16),

the area of the co-dimension two minimal surface anchored
on the subsystem A of rectangular strip geometry, may be
expressed as follows [11]

Fig. 1 Schematic of the bulk static minimal surfaces that are anchored
on the subsystems A1, A2 and A1 ∪ A2 on the boundary CFT3 dual to
the RN-AdS4 black hole

AA = Adiv
A + A f ini te

A , (22)

where the divergent part Adiv
A and the finite part A f ini te

A of
AA are as follows

Adiv
A = 2

( L
a

)
, (23)

A f ini te
A = k1

L

l
+ k2r

3
h (1 + α)l2 + O(r4

h l
3). (24)

Here the constants in the above equation are given as

k1 = −4πΓ ( 3
4 )2

Γ ( 1
4 )2

, (25)

k2 = Γ ( 1
4 )2

32Γ ( 3
4 )2

. (26)

The holographic entanglement negativity in the limit of
small charge and low temperature, for the mixed state of
adjacent subsystems in question may now be obtained from
our conjecture using Eq. (5) as follows:

E = 3

16G3+1
N

[(
2L

a

)
+ k1

(
L

l1
+ L

l2
− L

l1 + l2

)

−2k2ML l1l2] + · · · , (27)

where the ellipses represent sub leading corrections in this
limit. In the above equation note that the second term on the
right hand side is identical to the holographic entanglement
negativity for the zero temperature mixed state of adjacent
subsystems in theCFT3 dual to the bulk pure AdS4 geometry
and the third term describes the correction arising from the
charge and the temperature.

3.2.2 Small charge—high temperature

We next consider the limit of small charge and high temper-
ature given by the conditions rh � 1, and δ = Q√

3r2
h

� 1

where as earlier rh represents the horizon radius. In this limit

the function f (u)− 1
2 is Taylor expanded around δ = 0 as

follows [11]

f (u)−
1
2 ≈ 1√

1 − rh3u3

rc3

+ 3

2

(
rh
rc

)3 δ2u3
(

1 − rhu
rc

)
(

1 − rh3u3

rc3

)3/2 . (28)

Employing the above expression for the lapse function and
Eqs. (17) and (16), the finite part of the area of the co-
dimension two bulk minimal surface AA may be expressed
as

A f ini te
A = Llr2

h + Lrh(k1 + δ2k2)

+Lrhε

[
k3 + δ2(k4 + k5 log ε)

]
+ O[ε2], (29)
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where the constants k1, k2, k3, k4 and k5 in the above equation
are listed in the Appendix (A.1) in Eqs. (78), (79), (80), (81)
and (82), respectively. The parameter ε in the Eq. (29) is
given as

ε = 1

3
exp
(
−√

3(lrh − c1 − c2δ
2)
)

, (30)

where the constants in the above equations are listed in the
Appendix (A.1) in Eqs. (83) and (84). The holographic entan-
glement negativity in this limit for the mixed state in question
may then be computed from our conjecture as follows

E = 3

16G3+1
N

[
2L

a
+ Lrh

{
(k1 + δ2k2) + k3(ε1 + ε2 − ε12)

+ δ2k4(ε1 + ε2 − ε12) + δ2k5
(

log ε1 + log ε2

− log ε12
)}]+ · · · , (31)

where the subscript i in εi (i = 1, 2, 12) refers to the subsys-
tems A1, A2 and A1∪A2, respectively. Interestingly it may be
noted that the holographic entanglement negativity described
by the above expression depends only on the length L shared
between the adjacent subsystems of rectangular strip geome-
tries (note that this is equivalent to the area of the entangling
surface which in the AdS4/CFT3 scenario reduces to the
length). This is unlike the holographic entanglement entropy
which scales as the volume (area in the AdS4/CFT3 sce-
nario) in this limit described in [11]. For the holographic
entanglement negativity on the other hand all volume (area in
AdS4/CFT3) dependent thermal contributions cancel leav-
ing a purely area (length in AdS4/CFT3) dependent expres-
sion as expected from quantum information theory. Note that
this cancellation is similar to that for the AdS3/CFT2 case
described in [25,29] indicating that the elimination of the
thermal contribution is possibly a universal feature of the
holographic entanglement negativity in CFT s.

3.2.3 Large charge—high temperature

For the corresponding large charge and high temperature
limit we have the conditions rc ∼ rh and u0 = rc

rh
∼ 1

as a consequence of the turning point of the co dimension
two static minimal surface extending close to the horizon in
the bulk. In this case the Taylor expansion for the function

f (u)− 1
2 around u0 is given as [11]

f (u) ≈
(

3 − Q2

r4
h

)(
1 − rh

rc
u
)
. (32)

The finite part of the area of the bulk static minimal surface
in this case may be expressed as

A f ini te
A = Llr2

h + Lrh

2
√

δ

[
K ′

1 + K ′
2ε + O(ε2)

]
, (33)

where ε is given by the Eq. (30), and the constants K ′
1 and

K ′
2 are listed in the Appendix (A.2) in the Eqs. (85) and (86).
The holographic entanglement negativity for the mixed

state configuration of adjacent subsystems in this limit may
then be obtained from our conjecture as follows

E = 3

8G3+1
N

[( L
a

)
+ Lrh√

δ

{
K ′

1 +K ′
2(ε1 +ε2 −ε12)

}]
+· · · ,

(34)

where the subscript i in εi (i = 1, 2, 12) refers to the subsys-
tems A1, A2 and A1 ∪ A2 respectively. Note that as earlier
the volume (area in AdS4/CFT3) dependent thermal terms
cancel and the entanglement negativity scales as the area
(length in AdS4/CFT3) of the entangling surface as expected
from quantum information theory. Once again the elimina-
tion of thermal contribution is similar to the corresponding
AdS3/CFT2 case indicating that it is an universal feature for
the holographic entanglement negativity for CFT s.

3.3 Extremal RN-AdS4 black holes

Having described the holographic entanglement negativity
for the required mixed state in the CFT3 with a conserved
charge, dual to the bulk non extremal RN-AdS4 black hole,
we now turn our attention to the corresponding extremal case.
To this end we consider the zero temperature mixed state
configuration of adjacent subsystems with rectangular strip
geometries in the CFT3 dual to the bulk extremal RN-AdS4

black hole . Here we describe the computation of the holo-
graphic entanglement negativity from our conjecture, pertur-
batively in the limits of small and large charge.

3.3.1 Small charge—extremal

In the limit of small charge, the function f (u)− 1
2 may be Tay-

lor expanded around rh
rc

= 0 to the leading order inO[( rhrc u)3]
as follows [11]

f (u)−
1
2 ≈ 1 + 2

r3
h

r3
c
u3, (35)

Now employing Eqs. (35), (17) and (16) it is possible to
express the finite part of the area of the bulk co-dimension
two static minimal surface anchored on the subsystemA as

123



Eur. Phys. J. C (2018) 78 :908 Page 7 of 15 908

A f ini te
A = k1

L

l
+ k2r

3
h Ll

2 + O(r4
h l

3), (36)

where the constants are given as follows

k1 = −4πΓ ( 3
4 )2

4Γ ( 1
4 )2

,

k2 = 4Γ ( 1
4 )2

32Γ ( 3
4 )2

.

The holographic entanglement negativity of the mixed state
in question may then be obtained from our conjecture as
follows

E = 3

16G3+1
N

[(
2L

a

)
+ k1

(
L

l1
+ L

l2
− L

l1 + l2

)

−2k2r
3
h Ll1l2

]
+ · · · . (37)

The first two terms in the above equation describe the holo-
graphic entanglement negativity for the zero temperature
mixed state of adjacent subsystems in the CFT3 dual to the
bulk pure AdS4 geometry and the third term describes the
correction arising from the conserved charge of the extremal
RN-AdS4 black hole.

3.3.2 Large charge

As explained in the earlier sections, in the limit of large
charge for the bulk extremal RN-AdS4 black hole we have

the ratio u0 = rc
rh

∼ 1. In this case the function f (u)− 1
2 may

be Taylor expanded around u = u0 as follows [11]

f (u) ≈ 6
(

1 − rh
rc
u
)2

. (38)

Now utilizing the Eqs. (38), (17) and (16), the finite part
of the area of the co dimension two static minimal surface
anchored on the subsystem with rectangular strip geometry
in theCFT3 dual to the bulk extremal RN-AdS4 black hole in
the large charge limit, may then be expressed as entropy [11]

A f ini te
A = Llr2

h + Lrh
(
K1 + K2

√
ε + K3ε +O(ε

3
2 )
)
, (39)

where the constants K1, K2 and K3 appearing in the above
expression are listed in the Appendix (A.3) in the Eqs. (87),
(88) and (89).

The holographic entanglement negativity for the mixed
state of adjacent subsystems with rectangular strip geome-
tries in the dual CFT3 may then be obtained from our con-
jecture in the large charge limit as follows:

E = 3

16G3+1
N

[(2L

a

)
+ Lrh

{
K1 + K2(

√
ε1 + √

ε2 − √
ε12)

+K3(ε1 + ε2 − ε12)
}]

+ · · · , (40)

where the subscripts in εi (i = 1, 2, 12) refer to the subsys-
tems A1, A2 and A1 ∪ A2, respectively.

Interestingly even for the extremal case in the large charge
limit we once again observe that the holographic entangle-
ment negativity for the zero temperature mixed state, fol-
lowing from our conjecture is purely dependent on the area
(length in the AdS4/CFT3 scenario). As earlier for the non
extremal case the volume (area for the AdS4/CFT3 case)
dependent contributions arising from the counting entropy
of the degenerate CFT3 vacuum in this case cancel leaving a
purely area dependent expression as in specific earlier cases
described in previous sections.

The above results for the holographic entanglement neg-
ativity of the mixed state configurations of adjacent subsys-
tems in the dual CFT3 for various limits of the relevant
parameters, conform to quantum information expectations.
It is observed that in the large charge and/or large temper-
ature regimes where the holographic entanglement entropy
is dominated by volume dependent thermal contributions,
the corresponding entanglement negativity depends purely
on the area of the entangling surface in the CFT . This arises
from the exact cancellation of the volume dependent ther-
mal terms between the appropriate combinations of the con-
tributions from the adjacent subsystems. As remarked ear-
lier this cancellation is similar to that observed for certain
AdS3/CFT2 examples and seems to be a universal feature
of CFT s. Naturally, these results constitute strong consis-
tency checks substantiating the higher dimensional extension
of our conjecture.

Having obtained the holographic entanglement negativity
for the mixed state of adjacent subsystems with rectangular
strip geometries in the AdS4/CFT3 scenario and illustrating
the non trivial structure of the limits associated with the per-
turbative expansion we now turn our attention to the generic
AdSd+1/CFTd scenario in the next section.

4 Holographic entanglement negativity for CFTd dual
to RN-AdSd+1

In this section following our earlier analysis for the holo-
graphic entanglement negativity of mixed states of adjacent
subsystems in the AdS4/CFT3 scenario, we now proceed to
examine the corresponding case for the AdSd+1/CFTd sce-
nario. As earlier this case also involves a perturbative evalua-
tion of the areas of the corresponding bulk static minimal sur-
faces anchored on the respective subsystems in various limits
of the appropriate parameters of the RN-AdSd+1 black hole
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which in this case are the temperature T and the chemical
potential μ conjugate to the charge Q. Note however that for
the AdSd+1/CFTd scenario it is convenient to describe the
holographic entanglement negativity in terms of an effective
temperature Teff and another parameter ε which is a function
of the temperature and the chemical potential, describing the
total energy of the dual CFTd . The parameter ε is therefore
related to the expectation value of the T00 component of the
energy momentum tensor [37].

4.1 Area of minimal surfaces in RN-AdSd+1

The metric for the RN − AdSd+1 (d ≥ 3) black hole with
the AdS length scale R = 1 is given as

ds2 = 1

z2

(
− f (z)dt2 + dz2

f (z)
+ dx2

)
,

f (z) = 1 − Mzd + (d − 2)Q2

(d − 1)
z2(d−1),

At = Q(zd−2
H − zd−2),

(41)

where M and Q are the mass and charge of the black hole,
respectively. The location of the horizon zH is given by the
smallest real root of the lapse function f (z) = 0. The corre-
sponding chemical potential μ conjugate to the charge Q is
defined as follows:

μ ≡ lim
z→0

At (z) = Qzd−2
H , (42)

and the Hawking temperature is

T = − 1

4π

d

dz
f (z)

∣∣∣∣
zH

= d

4π zH

(
1 − (d − 2)2Q2z2(d−1)

H

d(d − 1)

)
. (43)

The lapse function, chemical potential and the temperature
may now be expressed as follows:

f (z) = 1 − ε

(
z

zH

)d

+ (ε − 1)

(
z

zH

)2(d−1)

, (44)

μ = 1

zH

√
(d − 1)

(d − 2)
(ε − 1), (45)

T = 2(d − 1) − (d − 2)ε

4π zH
. (46)

Here ε is a dimensionless quantity with limits 1 ≥ ε ≥
2(d−1)
d−2 , that describes the energy of the system [37], as fol-

lows

ε(T, μ) = b0 − 2n

1 +
√

1 + d2

2π2b0b1

(
μ2

T 2

) , (47)

where the constants b0 and b1 are given as

b0 = 2(d − 1)

d − 2
, b1 = d

d − 2
. (48)

The effective temperature Tef f describing the number of
microstates for a given temperature and chemical potential
may be defined as [37]

Teff(T, μ) ≡ d

4π zH
= T

2

⎡
⎣1 +

√
1 + d2

2π2b0b1

(
μ2

T 2

)⎤⎦ .

(49)

We now proceed to compute the area of a co dimension
two bulk static minimal surface anchored on a subsystem
with rectangular strip geometry in the dual CFTd . The strip
geometry of the subsystem in question may then be specified
as follows

x ≡ x1 ∈
[
− l

2
,
l

2

]
, xi ∈

[
− L

2
,
L

2

]
, i = 2, . . . , d−2,

(50)

where L → ∞. The area A of the co-dimension two bulk
extremal surface anchored on the subsystem in the boundary
may be expressed as

A = 2Ld−2zd−1∗
∫ l/2

0

dx

z(x)2(d−1)

= 2Ld−2zd−1∗
∫ z∗

a

dz

zd−1
√

f (z)[z2(d−1)∗ − z2(d−1)]
, (51)

where a is the UV cut off of the CFTd . The turning point z∗
of the extremal surface in the bulk is related to l, the length
of the strip in the x1 direction as

l

2
=
∫ z∗

0

dz√
f (z)[(z∗/z)2(d−1) − 1] . (52)

The authors in [37] demonstrated that the above integral may
be expressed as a double sum as

l = z∗
d − 1

∞∑
n=0

n∑
k=0

Γ
[ 1

2 + n
]
Γ
[
d(n+k+1)−2k

2(d−1)

]
εn−k(1 − ε)k

Γ [1 + n − k]Γ [k + 1]Γ
[
d(n+k+2)−2k−1

2(d−1)

]

×
(
z∗
zH

)nd+k(d−2)

. (53)

The area of the static minimal surface may also be expressed
as a double sum as follows [37]

A = 2

d − 2

(
L

a

)d−2

+ 2
Ld−2

zd−2∗

⎡
⎣

√
πΓ

(
− d−2

2(d−1)

)

2(d − 1)Γ
(

1
2(d−1)

)
⎤
⎦
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+ Ld−2

(d − 1)zd−2∗

⎡
⎣ ∞∑
n=1

n∑
k=0

Γ
[ 1

2 + n
]
Γ
[
d(n+k−1)−2k+2

2(d−1)

]
εn−k(1 − ε)k

Γ [1 + n − k]Γ [k + 1]Γ
[
d(n+k)−2k+1

2(d−1)

]

×
(
z∗
zH

)nd+k(d−2)
]

. (54)

The area and the turning point of the corresponding static
minimal surface are expressed in terms of the specified
parameters Tef f and ε as a perturbation expansion, for vari-
ous limits of the chemical potential μ and the temperature T
of the dual CFTd . We now proceed to describe these evalua-
tions and utilize them to obtain the holographic entanglement
negativity for the mixed states in question, from our conjec-
ture.

In what follows, we compute the holographic entangle-
ment negativity for mixed states of adjacent subsystems
described by rectangular strip geometries in CFTds dual
to RN-AdSd+1 non-extremal and extremal black holes. The
rectangular strip geometries corresponding to these subsys-
tems denoted as A1 and A2, are specified by the coordinates

x1 ∈
[
− l1

2
,
l1
2

]
, xi ∈

[
− L

2
,
L

2

]
, (55)

x1 ∈
[
− l2

2
,
l2
2

]
, xi ∈

[
− L

2
,
L

2

]
, (56)

respectively, as depicted in Fig. (1) (with L now denoting the
length of the strip in the remaining (d − 2) directions). Note
that the areas and the turning points of the corresponding
co-dimension two bulk static minimal surfaces anchored on
the subsystems A1 and A2, may therefore be obtained from
Eqs. (51) and (52), by replacing l in Eq. (52) by l1 and l2,
respectively.

4.2 Non-extremal RN-AdSd+1

We first consider the non-extremal RN − AdSd+1 black
holes and compute the holographic entanglement negativity
for the finite temperature mixed state of adjacent subsystems
described by rectangular strip geometries in the dual CFTd
fr various limits of the chemical potential μ and the temper-
ature T .

4.2.1 Small chemical potential—low temperature

The limit of small chemical potential and low temperature is
defined by the conditions T l � 1 and μl � 1. Notice that
apart from the chemical potential μ and the temperature T ,
the area of the static minimal surface depends on the length
of the rectangular strip along the x1 direction provided we
keep the lengths in all the other xi direction to be the con-
stant L . Hence, the limit of small chemical potential and low
temperature has to be fixed by specifying another condition
which is chosen to be T � μ or T � μ as described in [37].

Below we compute the holographic entanglement negativity
of the required mixed state for both of the above mentioned
limits.
(i) Tl � µl � 1
We first consider the limit defined by the conditions T l � 1,
μl � 1 and T � μ which may be re-casted as T l � μl �
1. In the limit T � μ, the parameters Teff(T, μ) and ε(T, μ)

described by Eqs. (49) and (47) may be approximated by
Taylor expanding them around T

μ
= 0 to the leading order

as follows [37]

Teff ≈ 1

2

(
μd

π
√

2b0b1
+ T

)
, (57)

ε ≈ b0 − 2nπ
√

2b0b1

d

(
T

μ

)
. (58)

Now from the other two conditions T l � 1 and μl � 1 it
may be shown that the turning point of the static minimal
surface is far from the horizon i.e., z∗ � zH . Hence the
expression for the turning point may be obtained by expand-
ing Eq. (53) to the leading order in ( l

zH
)d as

z∗ =
l Γ
[

1
2(d−1)

]

2
√

πΓ
[

d
2(d−1)

]

×
[

1 − 1

2(d + 1)

2
1

d−1 −dΓ
(

1 + 1
2(d−1)

)
Γ
(

1
2(d−1)

)d+1

π
d+1

2 Γ
(

1
2 + 1

d−1

)
Γ
(

d
2(d−1)

)d

ε

(
l

zH

)d

+ O
(

l

zH

)2(d−1) ]
. (59)

Similarly, the area of the minimal surface may be obtained
by Eq. (54) to the leading order in ( l

zH
)d and is re-expressed

in terms of Teff and ε as follows [37]

AA =
[

2

d − 2

(
L

a

)d−2

+ S0

(
L

l

)d−2

+εS0S1

(
4πTeff

d

)d

Ld−2l2
]

+ O
(
Teff l

)2(d−1)

.

(60)

The holographic entanglement negativity for the mixed state
in question, is then given as

E = 3

16Gd+1
N

[
2

d − 2

(
L

a

)d−2

+ S0L
d−2

(
1

ld−2
1

+ 1

ld−2
2

− 1

(l1 + l2)d−2

)

− εS0S1

(
4πTeff

d

)d

Ld−22l1l2

]
+ · · · . (61)

In the above expression for the holographic entanglement
negativity for the finite temperature mixed state the first two
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terms are identical to those in the holographic negativity for
the zero temperature mixed state of adjacent subsystems in
the CFTd which is dual to the bulk pure AdSd+1 geometry.
The other term describes the correction due to the chemical
potential and the temperature of the black hole.
(i i) µl � Tl � 1
We consider the limit T l � 1 , μl � 1 and T � μ which
may be recast as μl � T l � 1. In this limit the parameters
Teff(T, μ) and ε(T, μ) described by Eqs. (49) and (47) may
be Taylor expanded around μ

T = 0 to the leading order as
follows [37]

Teff = T

[
1 + d(d − 2)2

16π2(d − 1)

(μ

T

)2 + O
(μ

T

)4
]

, (62)

ε = 1 + d2(d − 2)

16π2(d − 1)

(μ

T

)2 + O
(μ

T

)4
. (63)

Once again from the conditions T l � 1 and μl � 1 it is clear
that z∗ � zH . The expressions for the turning point may be
obtained by expanding Eq. (53) to the leading order in ( l

zH
)d

and is same as the one given in Eq. (59). The area of the co
dimension two minimal surface anchored on the subsystem
A of rectangular strip geometry in the dual CFTd , is once
again determined by expanding Eq. (54) to the leading order
in ( l

zH
)d as: [37]

AA =
[

2

d − 2

(
L

a

)d−2

+ S0

(
L

l

)d−2

+εS0S1

(
4πTeff

d

)d

Ld−2l2
]

+ O
(
Teff l

)2(d−1)

,

(64)

where the numerical constants S0 and S1 are listed in the
Appendix (B.1) in the Eqs. (90) and (91), respectively. Note
that although the area of the static minimal surface given
in Eqs. (60) and (64) have identical forms for both T l �
μl � 1 and μl � T l � 1, the expressions for the effective
temperature Teff and the parameter ε, for this case are distinct
as given by Eqs. (62) and (63), respectively.

The holographic entanglement negativity for the required
finite temperature mixed state of adjacent subsystems with
rectangular strip geometries, in the limit of small charge and
low temperature may then be given from our conjecture as
follows:

E = 3

16Gd+1
N

[
2

d − 2

(
L

a

)d−2

+ S0L
d−2

(
1

ld−2
1

+ 1

ld−2
2

− 1

(l1 + l2)d−2

)

− εS0S1

(
4πTeff

d

)d

Ld−22l1l2

]
+ · · · . (65)

Once again it may observed that the holographic entangle-
ment negativity for the finite temperature mixed state con-
tains three terms. The first two terms are identical to the
holographic negativity for the zero temperature mixed state
of adjacent subsystems in theCFTd which is dual to the bulk
pure AdSd+1 geometry. The third term describes the correc-
tion due to the chemical potential and the temperature of the
black hole.

4.2.2 Small chemical potential—high temperature

Having computed the holographic entanglement for the
mixed state in question in the limit of small chemical and
low temperature, we now proceed to obtain the same in the
limit of small chemical potential and high temperature. This
limit is defined by the conditions μ � T and T l � 1 as
described in [37]. As explained in the previous subsection
for μ � T , the parameter Teff and ε may be approximated
by Taylor expanding them around μ

T = 0, to the leading order
in μ

T as given by Eqs. (62) and (63). However, in contrast to
the previous case, the other condition T l � 1 implies that the
turning point of the minimal surface is close to the horizon
i.e., z∗ ∼ zH . Hence, the area of the static minimal surface
may be obtained perturbatively from Eqs. (54) by expanding
it around z∗

zH
= 1 as follows

AA =
[

2

d − 2

(
L

a

)d−2

+ V

(
4πTeff

d

)d−1

+Ld−2
(

4πTeff

d

)d−2

γd

(μ

T

) ]
, (66)

where V = Ld−2l is the volume of the strip, and the function

γd

(
μ
T

)
in the above expression is perturbative in μ

T as given

in the Appendix (B.2) in the Eq. (92).
The holographic entanglement negativity for the mixed

state in question may then be obtained from our conjecture
as follows

E = 3

16Gd+1
N

[
2

d − 2

(
L

a

)d−2

+Ld−2
(

4πTeff

d

)d−2

γd

(μ

T

) ]
. (67)

Note that in the above equation the leading contribution to
the holographic entanglement negativity for the mixed state
in this limit is purely dependent on the area of the entangling
surface between the adjacent subsystems with rectangular
strip geometries. As earlier for the AdS4/CFT3 case the
volume dependent thermal contributions cancel leaving an
expression that is purely area dependent. This once again
conforms to the standard quantum information expectations
for the negativity and serves as a strong consistency check
for our conjecture.
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4.2.3 Large chemical potential—low temperature

The limit of large chemical potential and low temperature
is described by the conditions μl � 1 and T � μ. As
explained earlier utilizing the condition T � μ, the param-
eters Teff(T, μ) and ε(T, μ) may be approximated by Taylor
expanding them around T

μ
= 0 as given by Eqs. (57) and

(58), respectively. Employing the other condition μl � 1
implies that the turning point of the minimal surface is close
to the horizon i.e., z∗ ∼ zH . Hence, the area of the static
minimal surface may once again be obtained perturbatively
from Eqs. (54) by expanding it around z∗

zH
= 1 as follows

[37]

AA =
[

2

d − 2

(
L

a

)d−2

+ V

(
4πTeff

d

)d−1

+Ld−2
(

4πTeff

d

)d−2 (
N0 + N1(b0 − ε)

)

+O
(
T

μ

)]
, (68)

where V = Ld−2l is the volume of the strip, and the numer-
ical constant in the above expression N0 and N1 are listed in
the Appendix (B.3) in the Eqs. (94) and (95), respectively.

The holographic entanglement negativity for the finite
temperature mixed state of adjacent subsystem in question
may then be obtained from our conjecture as follows

E = 3

16Gd+1
N

[ 2

d − 2

(
L

a

)d−2

+Ld−2
(

4πTeff

d

)d−2 (
N0+N1(b0−ε)

)]
+· · · . (69)

We observe from the above expression that in the limit
of large chemical potential and low temperature, the holo-
graphic entanglement negativity obtained from our conjec-
ture is purely dependent on the area of the entangling sur-
face between the adjacent subsystems with rectangular strip
geometries. As earlier this indicates the cancellation of the
volume dependent thermal contributions conforming to the
usual quantum information theory expectations and consti-
tutes yet another fairly strong consistency check for our con-
jecture.

4.3 Extremal RN-AdSd+1

Having obtained the holographic entanglement negativity for
the finite temperature mixed state in the CFTd dual to the
bulk non extremal RN-AdSd+1 black hole, we now turn our
attention to the zero temperature mixed state dual to a bulk
extremal RN-AdSd+1 black hole. The relevant parameters in
this case are given as [37]

Q2 = d(d − 1)L2/(d − 2)2z2(d−1)
H , (70)

ε = b1, (71)

μ = 1

zH

√
b0b1

2
= 1

zH

√
d(d − 1)

(d − 2)2 , (72)

Teff = μd

2π
√

2b0b1
. (73)

Here Q represents the charge of the extremal RN-AdSd+1

black hole and Tef f is the effective temperature as earlier.
Using the parameters as given above we now proceed to
obtain the area of a co-dimension two bulk minimal surface
anchored on a subsystem with rectangular strip geometry
in a perturbative expansion for various limits of the charge
Q. The area expression may then be utilized to obtain the
holographic entanglement negativity for the mixed state in
question from our conjecture.

4.3.1 Small chemical potential

Note that in the small chemical potential limit defined by
the condition μl � 1 the turning point of the static minimal
surface is far away from the horizon z∗ � zH . Hence the
Eq. (52) may be solved for z∗ and at leading order in (l/zH )d

which once again leads to Eq. (59) [37]. The area of the
minimal surface anchored on the subsystem-A of rectangular
strip geometry may then obtained perturbatively expanding
Eq. (54) to the leading order in (l/zH )d . Upon re-expressing
the area of the static minimal surface in terms of μ, it is
possible to show that [37]

AA =
[

2

d − 2

(
L

a

)d−2

+ S0

(
L

l

)d−2

+S0S1
2(d − 1)

d − 2

(
(d − 2)μ√
d(d − 1)

)d
Ld−2l2

+O[(μl)2(d−1)]
]
, (74)

where the constants S0, S1 are identical to earlier cases and
given in the Appendix. The holographic entanglement nega-
tivity for the mixed state of the adjacent subsystem of rect-
angular strip geometries, in the small charge limit may then
be obtained utilizing our conjecture as follows

E = 3

16Gd+1
N

[
2

d − 2

(
L

a

)d−2

+ S0L
d−2

(
1

ld−2
1

+ 1

ld−2
2

− 1

(l1 + l2)d−2

)

− S0S1
2(d − 1)

d − 2

(
(d − 2)μ√
d(d − 1)

)d
Ld−22l1l2

]
+ · · · .

(75)
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Observe that the first two terms in the above expression cor-
respond to the holographic entanglement negativity for the
zero temperature mixed state of adjacent subsystems with
rectangular strip geometries in the CFTd dual to the bulk
pure AdSd+1 geometry. The other term along with the sub
leading higher order terms describe the correction due to the
chemical potential of the CFTd .

4.3.2 Large chemical potential

For the case of extremal RN − AdSd+1 black hole , the limit
of the large chemical potential is specified by the condition
μl � 1. Hence, it may be observed from Eq. (70) that the
horizon radius is large and the turning point of the static
minimal surface is therefore close to the horizon i.e., z∗ →
zH . The area of the static minimal surface anchored on the
subsystem-A of rectangular strip geometry may be obtained
by evaluating the integral in Eq. (54) perturbatively around
z∗/zH = 1 as follows

AA =
[

2

d − 2

(
L

a

)d−2

+ Vμd−1
(

d − 2√
d(d − 1)

)d−1

+Ld−2N (b0)

(
d − 2√
d(d − 1)

)d−2

μd−2
]
, (76)

where V = Ld−2l is the volume of the strip and N (b0) is
the value of N (ε) at ε = b0. The holographic entanglement
negativity for the mixed state of the adjacent subsystem of
rectangular strip geometries, in the large charge limit may
then be obtained utilizing our conjecture as follows

E = 3

16Gd+1
N

[
2

d − 2

(
L

a

)d−2

+Ld−2N (b0)

(
d − 2√
d(d − 1)

)d−2

μd−2
]
. (77)

We observe from the above equation that in the limit of large
chemical potential also the holographic entanglement nega-
tivity obtained from our conjecture is purely dependent on
the area of the entangling surface shared by the adjacent
subsystems with rectangular strip geometries. As earlier for
the extremal case in the AdS4/CFT3 scenario, the volume
dependent contributions arising from the counting entropy of
the degenerate CFTd vacuum, cancel leaving a purely area
dependent expression in conformity with quantum informa-
tion expectation.

5 Summary and conclusion

To summarize, we have applied our holographic entangle-
ment negativity conjecture for bipartite mixed state con-
figurations of adjacent subsystems to specific examples of

CFTds dual to bulk non extremal and extremal RN-AdSd+1

black holes. Our conjecture involves a specific algebraic sum
of the areas of co-dimension two bulk static minimal surfaces
anchored on the appropriate subsystems in the dualCFTd . In
this context we have considered mixed state configurations
of adjacent subsystems with rectangular strip geometries in
the holographic CFTd .

In this exercise we have first studied the above exam-
ples in the AdS4/CFT3 scenario to elucidate the non trivial
structure of the perturbative expansion for the holographic
entanglement negativity involving various limits of the rel-
evant parameters. For the finite temperature mixed states of
adjacent subsystems in the CFT3 dual to bulk non extremal
RN-AdS3+1 black hole, we observe the following behav-
ior for the holographic entanglement negativity. In the small
charge and low temperature limit the leading part of the holo-
graphic entanglement negativity includes a contribution from
the zero temperature mixed state of adjacent subsystems in
the CFT3 which is dual to the bulk pure AdS4 geometry and
a correction term involving the charge and the temperature.
This is because in this limit the bulk static minimal surfaces
are located far away from the black hole horizon and the
leading contribution to the holographic entanglement nega-
tivity arises from the near boundary pure AdS4 geometry.
On the other hand in the limits of large charge and low tem-
perature and vice versa the leading part of the holographic
entanglement negativity depends purely on the area of the
entangling surface (length in AdS4/CFT3) and the volume
(area in AdS4/CFT3) dependent thermal terms cancel. This
is in conformity with quantum information expectation for
the entanglement negativity, as the dominant contribution
arises from the entanglement between the degrees of free-
dom at the entangling surface (line for the AdS4/CFT3 sce-
nario) shared between the adjacent subsystems. For the case
of the zero temperature mixed state of the CFT3 dual to the
bulk extremal RN-AdS3+1 black hole, the leading contribu-
tion to the holographic entanglement negativity in the small
charge limit consists of two parts. These involve the contri-
bution from the zero temperature mixed state in the CFT3

dual to the bulk pure AdS4 geometry and a correction term
involving the charge. In contrast, in the limit of large charge
the leading part of the holographic entanglement negativity
depends only on the area of the entangling surface (length
in AdS4/CFT3). This is due to the cancellation of the vol-
ume (area in AdS4/CFT3) dependent terms arising from the
counting entropy of the degenerate CFT3 vacuum.

Following the above exercise for the AdS4/CFT3 sce-
nario to clarify the non trivial limits associated with the
perturbation expansion, we have subsequently described
the holographic entanglement negativity in the general
AdSd+1/CFTd case. To this end the relevant perturba-
tive expansion of the holographic entanglement negativity
requires the introduction of distinct parameters described by
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the energy and an effective temperature of the CFTd . The
leading contribution to the holographic entanglement nega-
tivity following from our conjecture exhibits identical behav-
ior to that of the corresponding AdS4/CFT3 case for the
appropriate limits of the relevant parameters.

Our results for the applications described above, conform
to the standard quantum information expectations. This may
be observed from the fact that for the small chemical poten-
tial and low temperature, the contribution to the holographic
entanglement negativity arises from that of the zero temper-
ature mixed state of the CFTd dual to the bulk pure AdSd+1

geometry and corrections due to the chemical potential and
the temperature. This conforms to the fact that in this limit the
mixed state in question of the CFTd dual to the non extremal
bulk RN-AdSd+1 is dominated by the quantum correlations.
For the extremal black hole on the other hand, in this limit
the holographic entanglement negativity arises from that of a
distinct zero temperature mixed state of theCFTd dual to the
bulk pure AdSd+1 geometry (this mixed state is obtained by
tracing over the pure vacuum state of the CFTd ) and correc-
tions due to the chemical potential. Once again this indicates
that the mixed state above is dominated by the quantum cor-
relations in this limit.

Furthermore our results also demonstrate the exact can-
cellation of the volume dependent thermal terms for the holo-
graphic entanglement negativity of the mixed state in the limit
of large chemical potential and/or high temperature. Inter-
estingly for the zero temperature mixed state of the CFTd
dual to the extremal RN-AdSd+1 black holes the cancellation
involves the volume dependent counting entropy of the corre-
sponding degenerate CFTd vacuum. Our results seemingly
indicates that this is a universal feature of the holographic
entanglement negativity for CFT s. In both these cases the
holographic entanglement negativity depends purely on the
area of the entangling surface shared between the adjacent
subsystems in conformity with quantum information theory
expectations.

These constitute important consistency checks for the
universality of our conjecture which should find interest-
ing applications in diverse areas such as condensed mat-
ter physics and issues of quantum gravity. We should how-
ever mention here that a bulk proof for our conjecture along
the lines of [17] is a critical open issue which needs atten-
tion. Note also that our conjecture is applicable to the spe-
cific mixed state configuration involving adjacent subsystems
only. The more general case involving the mixed state of dis-
joint subsystems remains an interesting open problem which
is not expected to be a straightforward generalization of the
construction described here. This is because the correspond-
ing CFT1+1 results obtained through the replica technique
requires the evaluation of a four point twist correlator which
involves a non universal arbitrary function. Very recently we
have addressed this issue in [39] where we have proposed

a holographic construction for the mixed state configuration
of two disjoint intervals in a dual CFT1+1 and substantiated
this with specific examples. We hope to address other related
fascinating issues and further applications in the near future.
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Appendix A: Non-extremal and extremal RN-AdS4

A.1 Non-extremal RN-AdS4 (Small charge - high
temperature)

The constants k1, k2, k3, k4 and k5 in the Eq. (29) are given
as follows

k1 =
∞∑
n=1

(
1

3n − 1

Γ (n + 1
2 )

Γ (n + 1)

Γ ( 3n+3
4 )

Γ ( 3n+5
4 )

− 2

3
√

3n2

)

+ π2

9
√

3
+

√
πΓ (− 1

4 )

Γ ( 1
4 )

, (78)

k2 = 3π

8
− 3Γ ( 3

2 )Γ ( 7
4 )

Γ ( 9
4 )

+3
∞∑
n=1

(
1

3n + 2

Γ (n + 3
2 )

Γ (n + 1)

Γ ( 3n+6
4 )

Γ ( 3n+8
4 )

− 1

3
√

3n

)

−3
∞∑
n=1

(
2

3n + 3

Γ (n + 3
2 )

Γ (n + 1)

Γ ( 3n+7
4 )

Γ ( 3n+9
4 )

− 2

3
√

3n

)
, (79)

k3 = −2√
3

+ π2

9
√

3
, (80)

k4 = 2√
3

− 2√
3

log[3] + 3
√

πΓ ( 3
2 )Γ ( 7

4 )

Γ ( 9
4 )

, (81)

k5 = −2√
3
. (82)

The constants c1 and c2 appearing in the Eq. (30) are given
as follows

c1 =
√

π

2

Γ ( 3
4 )

Γ ( 5
4 )

+
∞∑
n=1

(
Γ (n + 1

2 )

2Γ (n + 1)

Γ ( 3n+3
4 )

Γ ( 3n+5
4 )

− 1√
3n

)
,

(83)
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c2 = 1√
3

− 3

2

∞∑
n=0

(
Γ (n + 3

2 )

Γ (n + 1)

Γ ( 3n+6
4 )

Γ ( 3n+8
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− 2√
3

)

+3

2
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(
Γ (n + 3

2 )

Γ (n + 1)

Γ ( 3n+7
4 )

Γ ( 3n+9
4 )

− 2√
3

)
. (84)

A.2 Non-extremal RN-AdS4 (large charge—high
temperature)

The constants K ′
1 and K ′

2 in the Eq. (33) are given as follows

K ′
1 = −2

√
πΓ ( 3

4 )

Γ ( 1
4 )

+ log[4] − 10

8

+1

2

∞∑
n=2

(
1
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Γ (n + 1
2 )

Γ (n + 1)

Γ ( n+3
4 )

Γ ( n+5
4 )

− 2

n2

)
+ π2

6
,

(85)

K ′
2 = π2

6
− 3

2
. (86)

A.3 Extremal RN-AdS4 (large charge )

The constants K1, K2 and K3 in the Eq. (39) are given as
follows

K1 = 2√
6

[
− 2

√
πΓ ( 3

4 )

Γ ( 1
4 )

+ log[4]
4

−1 + 2
√

π

2
+ √

πζ

(
3

2
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√

π

2
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(
1

n − 1

Γ ( n+3
4 )

Γ ( n+5
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− 2

n
√
n
)

]
, (87)

K2 = − 2π√
6
, (88)

K3 = 2√
6

[
1 − √

π + √
πζ

(
3

2

)]
. (89)

Appendix B: Non-extremal and extremal RN-AdSd+1

B.1 Non-extremal RN-AdSd+1 (Small chemical
potential—low temperature)

The constants S0 and S1 appearing in the Eq. (64) are given
as follows

S0 =
2d−2π

d−1
2 Γ

(
− d−2

2(d−1)

)

(d − 1)Γ
(

1
2(d−1)

)
⎛
⎝Γ

(
d
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Γ
(

1
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, (90)

S1 =
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√
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⎞
⎠ .

(91)

B.2 Non-extremal RN-AdSd+1 (small chemical
potential—high temperature)

The function γd

(
μ
T

)
appearing in the Eq. (66) is given as

follows

γd

(μ

T

)
= N (1) + d2(d − 2)

16π2(d − 1)

(μ

T

)2
∫ 1

0
dx

×
(
x
√

1 − x2(d−1)

√
1 − xd

)(
1 − xd−2

1 − xd

)
+ O

(μ

T

)4
,

(92)

where the numerical constant N (ε) is given as

N (ε) = 2

⎡
⎣

√
πΓ

(
− d−2

2(d−1)

)

2(d − 1)Γ
(

1
2(d−1)

)
⎤
⎦+ 2

∫ 1

0
dx

×
( √

1 − x2(d−1)

xd−1
√

f (zH x)
− 1

xd−1
√

1 − x2(d−1)

)
. (93)

B.3 Non-extremal RN-AdSd+1 (large chemical
potential—low temperature)

The numerical constants N0, N1 in the Eq. (68) are given as
follows

N0 =2

⎡
⎣

√
πΓ

(
− d−2

2(d−1)

)

2(d − 1)Γ
(

1
2(d−1)

)
⎤
⎦+ 2

∫ 1

0
dx

( √
1 − x2(d−1)

xd−1
√

1 − b0xd + b1x2(d−1)

− 1

xd−1
√

1 − x2(d−1)

)
, (94)

N1 =
∫ 1

0
dx

(
x
√

1 − x2(d−1)√
1 − b0xd + b1x2(d−1)

)

(
1 − xd−2

1 − b0xd + b1x2(d−1)

)
. (95)
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