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Abstract We study the propagation of a probe massless
nonminimally coupled scalar field in a fixed gravitational
background of a cloud of strings in (2 + 1) dimensions. We
obtain exact analytical expressions for the reflection coef-
ficient, the absorption cross section, the decay rate as well
as the quasinormal frequencies. The impact of the nonmini-
mal coupling is investigated in detail. Our results show that
universality is not respected in general, and that scalar per-
turbations are stable.

1 Introduction

Black holes (BHs hereafter), a generic prediction of Ein-
stein’s General Relativity, are objects of paramount impor-
tance both for classical and quantum gravity. Greybody fac-
tors and quasinormal modes are two topics related to black
hole physics of particular interest. On the one hand, Hawking
radiation [1-3], since it is as a manifestation of a quantum
effect in curved spacetime, has always attracted a lot of inter-
est although it has not been detected in the Universe yet. The
emitted particles feel an effective potential that back scat-
ters part of the emitted radiation back into the black hole.
The greybody factor is a frequency dependent quantity that
measures the deviation from the original black body radi-
ation spectrum, and provides us with valuable information
about the black hole horizon structure [4]. The propagation
and relativistic scattering of fields has been investigated both
in asymptotically flat spacetimes and in background with a
non-vanishing cosmological constant. For a partial list see
e.g. [5-24] and references therein.
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On the other hand, LIGO historical direct detection of
gravitational waves [25-27] from black hole mergers has
opened a completely new window to our Universe, and allows
us to test gravity and probe strong gravitational fields. Con-
sequently, lately there is an increasing interest in black hole
perturbations [28—33] and quasinormal modes of black holes,
intimately related to the ring down phase after the formation
of the distorded object during the merging of two black holes.
When a black hole is perturbed the geometry of spacetime
undergoes dumped oscillations, which are characterized by
the quasinormal modes with a non-vanishing imaginary part.
Chandrasekhar’e monograph provides us with a comprehen-
sive overview of black hole perturbations [34]. Quasinormal
modes of black holes have been extensively studied, and for
excellent reviews see e.g. [35-37].

The Baifiados, Teitelboim and Zanelli (BTZ) black hole
solution [38-40] in (1 + 2) dimensions marked the birth
of the interest in lower-dimensional gravity. The absence of
propagating degrees of freedom as well as its deep connec-
tion to the Chern—Simons term only [41-43] make three-
dimensional gravity special, and at the same time a frame-
work which allow us to get insight into realistic black holes in
four dimensions by studying a mathematically simpler three-
dimensional system. The BTZ black hole is sourced by a
negative cosmological constant, but other possibilities, such
as scalar or electromagnetic fields [44-47], also exist. What
is more, looking for a complete theory of quantum gravity,
black hole solutions that admit scale-dependent couplings,
have been recently investigated. For an incomplete list see
[48-57] and references therein.

One option less studied in the literature, which leads to
a black hole solution alternative to the BTZ one, is a cloud
of strings [58]. The matter contribution is described by the
Nambu—Goto action, which is well-known both from string
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theory [59] and from the study of topological defects [60].
For recent studies on the topic see e.g. [61-65]. The black
hole solution was obtained in [61], while in [65] the grey-
body factors as well as the quasinormal modes for a mass-
less canonical scalar field in this particular background were
studied.

The relevance of a nonminimal coupling to gravity from a
theoretical point of view is well-known. Quantum loop cor-
rections will give rise to a nonminimal coupling, even if it is
absent at tree level. Its role, however, in this particular con-
text, to the best of our knowledge, has not been investigated
yet. In the present article we extend the work of [65] regard-
ing the propagation of a test massless scalar filed into a fixed
gravitational background of a cloud of strings considering
also a non-vanishing nonminimal coupling to gravity. Note,
however, that here we assume Einstein’s General Relativ-
ity, although in [65] the authors assumed a modified f(R)
gravitational theory. Our work is organized as follows: In the
next section we present the model and the equation for scalar
perturbations, while in section three we solve the full radial
equation exactly in terms of hypergeometric functions. The
reflection coefficient, the greybody factor, the decay rate and
the quasinormal spectrum are discussed in section four, and
finally we summarize our work in the fifth section. We adopt
the mostly positive metric signature (—, +, 4), and we work
in geometrical units where the universal constants are set to
unity, i =c =kp =8xGy = 1.

2 Gravitational background and wave equation

We consider a model described by the action [61,62,65]
S = SG + Sstrings (1)

where the gravitational part Sg is given by the Einstein—
Hilbert term

Sg = %/d%/_—g R )

with R being the Ricci scalar and g being the determinant of
the metric tensor g,,, while the second contribution due to
a cloud of strings is given by

Sstrings = M f V=hd\%ax! (3)
X

where 2.0, A! are the string parameters, and 7 = det(h4p)
with hap being the string metric. Varying with respect to
g, we obtain Einstein’s field equations
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with R, being the Ricci tensor. Adopting the coordinate
system x* = (¢, r, 0) the energy-momentum tensor corre-
sponding to a cloud of strings takes the form [62]

1 = Ydiag(1,1,0) )

with n being the coupling constant of the cloud of strings.
Assuming a static and circularly symmetric line element of
the form

ds? = — f(r)de? + f(r)"dr? + r2de? (6)
the metric function f () is found to be [61,65]

fry=—-M+2nr (N
with M being the mass of the black hole. In order to avoid a
naked singularity the coupling constant n must be positive,

and the horizon radius is computed tobe ry = M /(2n). The
metric function may be written down equivalently as

fr)=2n(r —rpy) ®)

where we trade the mass for the horizon radius. In the rest of
the article we shall study the propagation of a probe massless
nonminimally coupled scalar field in a fixed gravitational
background of a cloud of strings in (2 + 1) dimensions.

2.1 Scalar perturbations: the wave equation

Let us consider a probe scalar field @ with a non-vanishing
nonminimal coupling to gravity & described by the action

Slgyuw. ] = % / P[990, + RO )

The corresponding wave equation is given by the classical
Klein—Gordon equation which reads [17-19]

1
—— (/28" 0,)P = ER3D 10
Ner p(v—88" 3P =ER3 (10)

where the nonminimal coupling is taken to be positive in
order to maintain BH solutions (otherwise we will have naked
singularity), and Rz = —4n/r is the Ricci scalar of the cloud
string background. Applying the usual separation of variables

D(t,r,¢) = e “' R(r)e'™? (11)
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where m is the quantum number of angular momentum, we
obtain an ordinary differential equation for the radial part

" 1 f/ /
R +<;+7)R -

or rewritten it explicitly we have

po (L o (@8 g
() e (G Jr=o

—————)R:O (12)

In order to read-off the effective potential barrier that the
probe scalar field feels, we define new variables as follows

rR= YV (14)

ﬁ
‘o dr
) ofo

where x is the so-called tortoise coordinate given by

15)

X = L In(r —rg) (16)
2n

and recast the equation for the radial part into a Schrodinger-
like equation of the form

a2y 5

—— T @ =Vu)y =0 a7
dx

Therefore we obtain for the effective potential barrier the
expression

(18)

r r2 2r 452

2 /
Vi) = £(r) (_4775 m= f'r) f(r))

The effective potential as a function of the radial distance can
be seen in Fig. 1 for three different values of the coupling
&. The effective potential vanishes at r = rp, it reaches
a maximum value Vj,.x, and tends to a constant Vj when
r— oo
2m? + ryn
’
m? 4 4kryy "
2
n m”+ A —48)run
Vmax = P (20)
ry 2m* +rgn

V() — n*(1 — 8&) = W,

19)

"max =

r — o0 21

Since the effective barrier potential vanishes at the horizon,
close to the horizon @w? > V(x), and the solution for the
Schrodinger-like equation is given by

Y(x) = A_e 1 4 A elF (22)

Requiring purely ingoing solution [4,8,21] we set AL = Oin
the following. Furthermore, when » — oo the wave equation

admits plane wave solutions of the form ¥ ~ e$* when

w? — Vo > 0, with 2 = /w? — V being the modified
frequency.

3 Solution of the radial equation

Given the metric function, we observe that in the far field
region, r > rp, it takes the simple form f(r) ~ 2nr. In
addition, the angular momentum term is subdominant com-
pared to the other two terms, and thus the differential equation
for the radial part takes the form

PR'(r) + 2rR'(r) + kR(r) = 0 @3

where the parameter k is defined according to

r= (e 8 24

Thus, the algebraic equation (which is Euler’s equation)
admits power-law solutions of the form R(r) ~ r”. The
algebraic equation for p satisfies

o2 +p+k=0 (25)

The roots of the above equation are given by

oy = % (—1 + m) (26)

which are real when 1 — 4k > 0 and complex when 4k > 1.
In the following we shall consider the case of complex roots,
and therefore the far field solution is given by

r P— r P+
Rrrp = D_ <—> + Dy <—> 27
rH H

where D_, D are two arbitrary coefficients, while the roots
are given by

1 | w?
pi=§<—1:l:1 ?—i—Sé—l) (28)

To find the solution of the full radial equation we introduce
the dimensionless parameter z which is defined as follow

z=1—-— (29)

and it takes values between 0 and 1. Then the new differential
equation with respect to z becomes

Z(I=2) Rz +(1-2)R; + <A +

s —C>R:0(30)
Z

—14z
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Fig. 1 Effective potential V (r) as a function of the radial coordinate
r assuming three different values of the parameter m. The panels in the
first (left), second (center) and third (right) show V (r) for: (1) m = 0
(case 1), (2) m = 1 (case 2) and (3) m = 2 (case 3), respectively. In all

where the three constants are given by

602
=0 31)
B=—A—2¢ (32)
m2
= S (33)

The last differential equation can be recast in the form of the
Gauss’ hypergeometric equation by removing the poles in
the last term through the ansatz

R=7z"(1-2fF (34)
where now F satisfies the following differential equation
(1 =) F; +[1 420 — (1 + 20 + 26)z]F;

A B _ (35)
+<—+ —C)F:O

z —1+z

and the new constants are given by

A=A+d? (36)
B=B+p—p (37)
C=C+(a+p)? (38)

Demanding that A = 0 = B, we determine the parameters
o and B as follows

=42 (39)
o = 12]7

1 ) w?
B=z|1%i/-1+— +8 (40)
2 n?

and finally we obtain the hypergeometric equation
z1—=2)F,;+[c—(0+4+a+b)z]F, —abF =0 41)
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three figures we fix ry = 2 and n = 0.25. In each figure we show three
different curves corresponding to: (1) & = 0.100 (solid black line), (2)
& = 0.125 (dashed blue line) and (3) & = 0.150 (dotted-dashed red
line)

with parameters a, b, ¢ given by

c=1+42« (42)
a=a+p+iVC (43)
b=a+p—ivC (44)

Note that the parameters a, b, ¢ satisfy the condition ¢ —a —
b = 1—2p. Therefore the general solution for the radial part
is given by [21]

R@) =2"(1 =2\ F(a,bic:2)
45)
LG Fla—c+1,b—c+ 1;2—c;z)]

where C1, C; are two arbitrary coefficients, and the hyper-
geometric function can be expanded in a Taylor series as
follows [66]

ab
Flabie=1+-—z4 (46)

Setting C> = 0 and for the choice for « = —iw/(2n) we
recover the purely ingoing solution close to the horizon, R ~
(r —rg)®%, or Y ~ e~i®% Therefore in the following we
consider the first solution only, namely

R(z) = Dz*(1 — )P F(a, b; ¢; 7) (47)

where now we have replaced C by D. The sign in the expres-
sion for B does not really matter, and in the following we
consider the plus sign.
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In order to match with the far field solution obtained earlier
(where now z — 1) we use the transformation [66]

I'(c)I'(c—a—>b)
I'(c—a)l'(c—Db)

x Fla,b;a+b—c+1;1—-2)
Z)cfafbl“(c)l"(a—i—b—c)

F(a,b;c;z) =

1 —
+( I'(a)I"(b)
x Flc—a,c—b,c—a—b+1;1—-72)
(48)
and therefore the radial part as z — 1 reads
N D —2)Pr( +2w)r (1 —2p)
T TI'U4+a—-B—ivOTI'(14+a—B+iV0) 49)

D(1 =)' Ar 4 2a)I(—1428)
F(@+p—ivO)I(a+p+i0)

Note that —8 = p_and 8 — 1 = p4, and since z = | —
(rg /r) the radial part R(r) for » > ry can be written down
as follows

r O\ P- PN
R~D_ (-) + Dy (-) (50)
rH rH

where we have introduced D_, D in terms of D as follows

DI (1+2a)I"(1—28)

_ = (51)
F'l+a—B—ivOI'(l+a—p+id0C)
DI'(1+20)(—1+2
D, — (1+ 207 (-1 +28) )
Fa+pB—ivVOrI(a+p+iv0)
4 Greybody factors and quasinormal modes
4.1 Absorption cross section and decay rate
First we compute the reflection coefficient defined by
_ o.utg(?ing wave |? (53)
ingoing wave

and therefore it is computed by R = |D,./D_|?. Using the
following identities for the I" function [8]
b4

riy))P? = ———— 54
[T (y)l ysinh(y) (54)
r(len)f=— (55)
2 Y "~ cosh(my)
we obtain the final expression
. cosh(ryr)cosh(mwyr) (56)

"~ cosh(rry3)cosh(rrys)

where y; are given by the following expressions

V/m2+8 -1 _ o  _Im]

-T2 TN o7
2 _
_V/m +8 -1 o  |m| (58)
2 2n  /2rgn
_V/m*+8—1 o Im|
y3 = > + E + ﬁ 59)
_V/mr+8—1 o Im|
ya = 3 + E - N (60)

We see that one may consider two sectors in the problem
separated by the critical value £, = 1/8. Therefore, in the
rest of the discussion we shall consider two separate cases,
namely the case of weak nonminimal coupling, 0 < & < &,
and strong coupling, & > &.. The reflection coefficient as
a function of the frequency can be seen in Fig. 2 for weak
(left) and strong (right) nonminimal coupling, respectively.
Notice that in the weak regime there is for @ a minimum
allowed value that depend on the nonminimal coupling,
Omin = 2+/21n+/E; — E. The reflection coefficient is a mono-
tonically deceasing function of the frequency, it starts at
Rini = 1 and eventually it tends to zero. Furthermore, we
see that when & increases the curves are shifted downwards.

Then, the absorption cross section is given by the simple
formula [8,67]

1-R
Oabs (@) = % (61)

which is the three-dimensional version of the optical the-
orem [4]. In [67] it was shown that for a generic spheri-
cally symmetric black hole the absorption cross section of a
minimally coupled massless scalar field for vanishing angu-
lar momentum in the low energy regime tends to a constant
that coincides with the area of the horizon. It is not obvious
that this still holds for a massive or a nonminimally coupled
scalar field. In fact in [7] it was found that Universality was
respected under certain conditions, while in [17] it was shown
that for a four-dimensional nonminimally coupled scalar field
the absorption cross-section in the low energy regime tends
to zero like w?. In this work we find that as a function of @
for m = 0 the absorption cross-section starts from a constant
and eventually goes to zero, but this constant does not neces-
sarily coincide with the area of the horizon Ay = 27ry. We
found very similar results in a previous work of ours [22]. We
define the dimensionless parameter 0,5 /Ay and we plotitas
a function of the frequency in Fig. 3. The constant increases
with the coupling and finally acquires a limiting value when
the coupling becomes sufficiently large.

In the weak coupling regime as well as in the strong cou-
pling regime, for m > 0, the greybody factor reaches a
maximum value, and then it tends to zero decreasing mono-
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1.0h=im,

0.8r

0.0-

0.5

Fig. 2 Reflection coefficient R as a function of w for two different
regimes regarding the non-minimal coupling: (1) when 0 < § < &.
(left) and (2) when & > &, (right). Left panel: reflection coefficient ver-
sus frequency for & = 0.04 (solid black line), £ = 0.08 (dashed blue

0.6 T T T T

0.5F

0.4r

o(w)Ag

0.3F

02f s

0.20

o (w)/Ag

0.05

0.00

Fig. 3 oubs/.An as afunction of w for two different regimes regarding
the non-minimal coupling: (1) when 0 < & < &. (left) and (2) when
& > &, (right). Left panel: oans/ Ay versus frequency for & = 0.04
(solid black line), & = 0.08 (dashed blue line), and & = 0.12 (dotted-
dashed red line). Right panel: o,/ Ap versus frequency for & = 0.15

tonically. What is more, the maximum value increases with
&, which shifts the curves upwards. In the strong coupling
regime for m = 0, however, the greybody factor is a mono-
tonically decreasing function tending to zero starting from its
maximum value at the origin. Similarly to the weak coupling
regime, when £ increases the curves are shifted upwards.
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line), and & = 0.12 (dotted-dashed red line). Right panel: reflection
coefficient versus frequency for & = 0.15 (solid black line), £ = 0.16
(dashed blue line) and, & = 0.17 (dotted-dashed red line). In both fig-
ures we fixm = 1, ryg =2 and n = 0.25

0.20

o (w)/Ag

0.05

0.00 . . .
0.0 0.5 1.0 1.5 2.0

(solid black line), & = 0.16 (dashed blue line), and & = 0.17 (dotted-
dashed red line). In all four figures we fix ry = 2 and n = 0.25. In the
first row (first two figures) we assume m = 0, while in the second row
(last two figures) we assume m = 1

Since the spectrum emitted by the black hole (in three
spatial dimensions) is given by [17]

dN (w) or(w) &k
N Z e?/Tn — 1 27)3

(62)
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Fig. 4 Decay rate I'gecay as a function of  for two different regimes,
weak and strong nonminimal coupling: (1) when 0 < & < §&. (left)
and (2) when & > &. (right). Left panel: I'yecay versus frequency
for & = 0.10 (solid black line), & = 0.11 (dashed blue line), and

0.0 0.5 1.0 1.5 2.0

Fig. 5 Quasinormal frequencies w, vs non-minimal coupling. Left
panel: Re(wy,) versus & for four different cases: (1) m = 2 = n (solid
black line), (2) m = 2, n = 1 (blue short dashed line), 3)m = 1,n =0
(dotted-dashed red line) and (4) m = 1 = n (magenta long dashed line).

we define the decay rate of the black hole Igecay by [8]:

Oabs (@)
Tecay () = gCU/aTZ—_l

(63)
where the Hawking temperature of the cloud string black
hole is given by Ty = n/2m.

The decay rate as a function of frequency can be seen in
the Fig. 4 for low and large nonminimal coupling (left and
right figures), respectively. Our figures are consistent with
those of [8] in the high energy regime: the curves asymp-
totically go to zero. As before, when & increases the curves
are shifted upwards. In the weak coupling regime the decay
rate reaches a maximum value, while in the strong coupling
regime the decay rate is a monotonically decreasing function
going eventually to zero.

4.2 Quasinormal spectrum

Finally, to obtain the quasinormal modes we apply the quasi-
normal boundary condition, according to which at infinity

0 1 T
0.00 0.05 0.10 0.15 0.20 0.25

& = 0.12 (dotted-dashed red line). Right panel: [gecay versus fre-
quency for & = 0.15 (solid black line), £ = 0.16 (dashed blue line),
and £ = 0.17 (dotted-dashed red line). In both figures we fix m = 1,
rg =2and n =0.25

0.0 0.5 1.0 1.5 2.0

Right panel: Im(w, ) versus & for four different cases: (1)m =0 =n
(solid black line), (2) m = 0,n = 1 (blue short dashed line), (3)
m = 1,n = 0 (dotted-dashed red line) and (4) m = 1 = n (magenta
long dashed line). In both figures we fix ry = 2 and n = 0.25

purely outgoing solution is required. Therefore we require
that D_ = 0 which is satisfied when the Gamma functions
in the denominator have a pole

l4+a—B+ivC=-n (64)

wheren = 0, 1, 2, . .. is the overtone number. Given the time
dependence of the scalar field, ~ e 1" the mode is unstable
(exponential growth) when w; > 0 and stable (exponential
decay) when w; < 0. In the latter case the real part deter-
mines the frequency of the oscillation, wg /(27), while the
inverse of |w;| determines the dumping time, tBl = |wj|.
The real part (left panel) and the imaginary part (right
panel) of the quasinormal frequencies as a function of the
nonminimal coupling are shown in Fig. 5. We see that the
slope decreases both with m and with n. The real part van-
ishes for m = 0, while for m > 0 it is initially positive,
but eventually it becomes negative when & becomes suffi-
ciently large. Since it is a monotonically decreasing function
of the nonminimal coupling, the frequency of the oscillation
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decreases with £. In particular, the period of the oscillation
in the case of a non-vanishing £ is larger than the period
corresponding to a canonical scalar field (§ = 0).

Due to the emission of gravitational waves the spacetime
undergoes dumbed oscillations, and this is encoded into the
non-vanishing imaginary part. The latter is always negative,
and therefore the scalar perturbations studied here are stable.
Since the imaginary part is a monotonically decreasing func-
tion of the nonminimal coupling, a certain mode for given
(m, n) decays faster as & increases.

5 Conclusion

In the present article we have studied the propagation of a
test massless nonminimally coupled scalar field into a fixed
gravitational background of a cloud of strings, extending a
previous work where the probe field was a scalar field with
a canonical kinetic term minimally coupled to gravity. We
have obtained the expression for the effective potential, and
we have solved the full radial equation exactly in terms of
hypergeometric functions. We thus have obtained exact ana-
lytical expressions for the reflection coefficient, the absorp-
tion cross section as well as the decay rate. Finally, applying
the quasinormal boundary condition we have obtained the
expression for the quasinormal spectrum. The impact of the
nonminimal coupling has been investigated in detail. Our
results show that Universality is not respected in general,
and that scalar perturbations are stable.
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