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Abstract We modify the first law of thermodynamics of
regular black hole of the non-minimal Einstein–Yang–Mill
theory with gauge field of magnetic Wu–Yang type and a
regular black hole which is associated with the cosmological
constant by the surface tensions. The corresponding Smarr
relations are also satisfied for them. We calculate the Gibbs
free energy to discuss the global stability of the black holes. It
is found that Gibbs free energy exhibits the positive behavior
in most of the cases which leads to globally thermodynami-
cally stability of both black holes.

1 Introduction

In modern theoretical physics, black hole (BH) is an interest-
ing subject. At all times, BH is associated with a singularity
inside it. Einstein’s theory of space, time and gravity empow-
ers the existence of singularities. According to the General
Relativity (GR), a singularity is a definite point in the space-
time where explicit quantities even the curvature of space-
time is infinite. The problem of singularities is one of the
exceptional problems and GR made the prediction about the
singularities in the interior of BHs. Firstly, it was anticipated
that the both of these singularities does not naturally exist
but occurs as a result of the preparative procedure of finding
the harmony in the solutions. Penrose and Hawking’s theo-
rems of singularities lead us to believe that they are inevitable
[1–6]. As the initial exact BH solutions in GR predicts the
singularity in the interior of an event horizon.

Sakharov [7,8] and Gliner [9] proposed that for the sources
like matter which have a de-Sitter core in the heart of the
space-time its singularities could have been avoided and then
Bardeen availed this theory to put forward the initial solution
of the static spherically symmetric regular black hole (RBH),
called “Bardeen BH”. Bronnikov and Melnikov particularize
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the detail of the many types of the RBH [10], explained the
geometries of RBH in a nutshell and revealed the actuality of
the black-universe (BU) solutions in GR in agreement with
the minimally coupled phantom fields. By coupling the GR
to non-linear electrodynamics (NED) many different kinds of
RBH solutions have been derived [11–15]. It is mention here
that RBHs asymptotically behave like an ordinary charged
Reissner–Nordstrom BH solutions and all fields and curva-
ture invariants are regular everywhere instead of usual sin-
gularities at their center. These solutions and singularity the-
orems have no contradiction at all between them.

Ayon-Beato and Garcia, in GR, introduced a proposal of
exact nonsingular BH solution fulfilling the weak energy con-
dition (WEC), which is produced by the new NED combined
to gravity [11]. Bambi and Modesto proposed the solutions
for the rotating RBH [16]. The spherically symmetric radi-
ating and rotating solutions have been proposed by using the
Newman–Janis algorithm [17]. Fan and Wang, in the gravity
model composed those solutions of BHs which bear magnetic
charge on them. Strategy of formulating the solutions of the
electrically charged BHs has been illustrated and the ther-
modynamical possessions has been studied along with the
formulation of the first law of thermodynamics. Also gener-
alization of the construction of AdS BH solutions has been
done [18].

Hawking and Penrose, during the late 1960s, put into
practical a new complicated mathematical model which led
to both proposing and proving the numerous theorems of
singularity [3]. There is a parallelism between the ordinary
2nd law (OSL) of thermodynamics, which is stated as “the
entropy of the closed system never decreases” and Hawk-
ing’s theorem, whose statement is that “the surface area of
BH never decreases” [19,20], and Bekenstein was the first to
analyzed the resemblance between these two [21]. Then in the
1972, Hawking-Bekenstein debate started until 1974, when
Hawking discovered the radiation of BH near event horizon
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produced by it’s quantum effects and named it, Hawking’s
radiation [22].

The discovery about the area of the event horizon is irre-
ducible lead towards a successful conclusions in GR and
made up an essential demonstration that the BHs have ther-
modynamical properties. Thermodynamical properties of the
space-times proved to be very important and grasped the
worthwhile attentions [23]. They investigated the properties
for the magnetically charged regular black hole (MCRBH).
Phase transitions is another well-known phenomenon which
is based on the fundamental principles of thermodynamics.
In the succeeding work, the phase transitions and the ther-
modynamical stabilities has been studied for many different
BHs [24].

Kastor, Ray and Traschen, for the anti de Sitter (AdS) BH,
treated the cosmological constant associated with the pres-
sure such as P = − �

8π
, while treated its conjugate quantity as

thermodynamic volume. The expanded first law of thermo-
dynamics presented which has the new term in the format of
effective volume times change in pressure, which indicates
that the mass of AdS BH should be seen as the enthalpy
of BH [25]. Kubiznak and Mann acquired this concept and
investigated the thermodynamics of the charged AdS BH in
the extended phase space [26]. In this way, the investiga-
tion on thermodynamics of the many BHs has been made
and many significative critical phenomena were found in
[15,27–41,43–51]. Hansen et al. modified the first law of
thermodynamics by using the radial Einstein’s equation at the
Kerr BH by the surface tension [52]. Chen and Zeng, modify
the first law of thermodynamics of the Schwarzschild dS-
BH at the BH horizon and the cosmological horizon. They
have also derived the apparent horizon of the Friedmann–
Robertson–Walker cosmology by the surface tension [53]. In
recent work, for the dS and AdS space-times, Chen, Qingyu
and Tao, modified the first law of thermodynamics by the
surface tension at the BH horizon and cosmological horizon
[54].

In this paper, our aim is to investigate the thermodynamics
at the BH horizon of the two BHs (the non-minimal MCRBH
and the RBH with cosmological constant in NED). In Sect. 2,
we modify the first law of thermodynamics for the non-
minimal MCRBH. We treat the cosmological constant to be
fixed and drive the modified first law in the presence of the
surface tension at the horizon. The correlated Smarr relation
will be evaluated. Cosmological constant will be associated
with the pressure as P = − �

8π
and get modified laws for non-

minimal MCRBH in the stretched out phase space. In Sect. 3,
we modify the first law of thermodynamics at the BH hori-
zon treating the cosmological constant as fixed by the surface

tension and as associated with the pressure (P = −r2+�

8π(q2+r2+)
)

of the RBH with cosmological constant in NED. Sect. 4 is
devoted for conclusions.

2 Modification of First Law of Thermodynamics for
non-minimal RBH

The establishment of the BH thermodynamics came into
being in between the 1960’s to 1970’s. The discoveries of
Bekenstein and Hawking break the grounds for BH thermo-
dynamics [22] and [55]. Recently, Astorino examined the
conserved charges and the thermodynamics of the accelerat-
ing (RN-BH), where he used the phase space technique for
evaluating the mass which satisfies the standard first law of
thermodynamics and the corresponding Smarr relation [56].
In the mean while, Chen, Qingyu and Tao make great efforts
in modifying the first law of thermodynamics with fixed and
varied cosmological constant � for RN-AdS and dS BHs
[54].

2.1 Fixed Cosmological Constant

Consider the line-element of non-minimal MCRBH whose
new exact regular spherically symmetric solution was pre-
sented by Balakin, Lemos and Zayats [57], which is given
by

ds2 = −�dt2 + 1

�
dr2 + r2(dθ2 + sin2 d�2), (1)

with the metric function �(r),

�(r) = 1 +
(

r4

r4 + 2Q2
mλ

)(
−2M

r
+ Q2

m

r2 − �r2

3

)
, (2)

where λ, Qm , M , � and r are non-minimal parameter of
the theory, magnetic charge of the Wu–Yang gauge field,
asymptotic mass of the object which appears to be the con-
stant of integration, cosmological constant and radial vari-
able of MCRBH, respectively. For our study, we consider
λ > 0, � > 0, � ≤ 0, Q2

m > 0 and M ≥ 0. The limit-
ing case λ = 0 gives the minimal coupled magnetized RN
solution along with the cosmological constant as

�(r) = 1 − 2M

r+
+ Q2

m

r2+
− �r2+

3
. (3)

Since, there exist a curvature singularity at r+ = 0 for this
MCRBH solution. Also, for λ < 0 at finite positive r+, there
exists space-time curvature singularity, therefore, we are only
considering the case when λ > 0.

Balakin, Lemos and Zayats, analyzed the horizons as func-
tions of the parameters [57]. Equation (2) manifest explicitly
a four parameter family of exact solutions, which contains
solutions along with horizons, based on the corresponding
values of these four parameters. Furthermore, for the hori-
zons, all possible solutions depend on the value and sign of
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the �. Generally, Cauchy horizon, event horizon and cosmo-
logical horizon become apparent, in few cases these horizons
can occur simultaneously with each other or three altogether.

Using Eq. (2), we can obtain the mass of the non-minimal
MCRBH in horizon radius as follows

2M = r+ + 2Q2
mλ

r3+
+ Q2

m

r+
− �r3+

3
, (4)

For � > 0, which is the asymptotically dS, the MCRBH
appears to have three horizons, Cauchy, event and cosmo-
logical horizons, based on the values above mentioned four
parameters. In order to find the number of horizons, an aux-
iliary function f (r+, λ,�, Qm) is introduced and Eq. (8)
takes the form as,

2M = f (r+, λ,�, Qm), (5)

and

f (r+, λ,�, Qm) = r+ + 2Q2
mλ

r3+
+ Q2

m

r+
− �r3+

3
(6)

In [57], Fig. 1 illustrate four cases for the function
f (r+, λ,�, Qm), where the horizontal mass line y = 2M
intersects with plot of function f (r, λ,�, Qm) which implies
that �(r+) takes zero values and represents the spheres r+,
which are the horizons of the MCRBH. Panels, (a) illustrate
the model with one simple horizon, (b) illustrate the model
with one or three simple horizons, or one simple and one
double horizons depending on the values of mass M , (c)
depicts the case in which only one horizon appears which is
the triple one and (d) demonstrate zero, one double or two
simple horizons in Fig. 1 of [57].

In [57], Eqs. (43) and (44) are the critical masses which
come into the view of the analysis of horizons for eight
different cases. The cases, when M < Mc1 and M = 0,
the cosmological horizon appears. When M = Mc1, there
exists a double horizon which is the result of the Cauchy and
event horizons. When Mc1 < M < Mc2, there exists three
individual, Cauchy, event and cosmological horizons. When
M > Mc2 and Mc1 = Mc2, Cauchy, event and cosmological
horizons appear altogether, coinciding with one another.

For � = 0, that is, when all space-times are asymptot-
ically flat. In this case, cosmological horizon doesn’t exist,
only Cauchy and event horizons become apparent. To sum it
up, MCRBH solution can have three horizons, Cauchy, event
and cosmological horizons for the positive values of cosmo-
logical constant and for � = 0, only Cauchy and event hori-
zons. Thus, we want to calculate the thermal quantities on
the outer horizon and we refer it by r+. The event horizon of
the non-minimal MCRBH is obtained by setting �(r) = 0
in Eq. (2), which is located at the outer horizon r+.
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Fig. 1 Plot of temperature versus horizon radius at the fixed values of
magnetic charge of the non-minimal MCRBH

In order to carry out the analysis of the thermodynamical
properties of the non-minimal MCRBH, we use the definition
of Misner–Sharp mass [58]. For the non-minimal MCRBH,
the Misner–Sharp mass on the horizon can be obtained as

E = M − Q2
mλ

r3+
− Q2

m
2r+ − r3+

2l2
. By representing the mass M in

E , we can find

E = r+
2

. (7)

The non-minimal MCRBH entropy and temperature are

S = A

4
= πr2+. (8)

T = �′(r+)

4π

= −�r9+ + 3Mr6+ + 6Q4
mqr

2+ − 18MQ2
mλr2+ − (6λ� + 3)Q2

mr
5+

6π(r4+ + 2Q2
mλ)2

,

(9)

respectively, where �′(r+) = ∂�
∂r |r=r+ . The value of T is

determined by r+, Qm and �. Figure 1 illustrates the behav-
ior of the temperature T with respect to r+ for specific val-
ues of Qm and �. The temperature shows the fluctuations
between negative and positive values with the passage of
horizon radius. For example, when � = 0.01, the temper-
ature exhibits the negative behavior for 0.55 ≤ r+ ≤ 0.9,
however, it is positive and attains maximum value at r+ = 1.9
while approaches to zero for higher values of horizon radius
(r+ ≥ 1). When � = 0, the temperature is negative for
the small values of horizon radius, positive for the higher
values and approaches to T = 0.01. For � = − 0.01, the
temperature approaches to T = 0.15. We observe that the
temperature is higher for positive cosmological constant as
compare to the negative cosmological constant and � = 0.
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From Eq. (9), we have the expression for physical mass as

M = −�r6+ + 3Q2
mr

2+ + 3r4+ + 6Q2
mλ

6r3+
. (10)

By using Eqs. (9) and (10), the temperature leads to

T = r4+ − �r6+ − Q2
mr

2+ − 6Q2
mλ

4πr+(r4+ + 2Q2
mλ)

. (11)

For obtaining real positive temperature, the restrictions are
made to the other parameters and the conditions are as fol-
lows: (1) For � > 0, Qm = 1 and λ = 0.1, implies
r+ > 0.9. (2) � = 0, Qm = 2 and λ = 0.1, implies
r+ > 1.4. (3) � < 0, Qm = 3 and λ = 0.1, implies
r+ > 1.9.

The concept of horizon thermodynamics emerged from
the discovery that Einstein’s equations on the BH horizon
can be interpreted as a thermodynamical identity. The radial
Einstein equation at the horizon is needed to be evaluated
essentially in order to investigate the thermodynamics and
the surface tension

Gr
r |r+ = 8πT r

r |r+ = r+�′(r+) − 1

r2+
. (12)

By inserting Eq. (12) into the Eq. (9), the non-minimal
MCRBH temperature can be rewritten as follows

T = 8πr2+T r
r |r+ + 1

4πr+
. (13)

Since the entropy of a non-minimal MCRBH which is related
to the area of the BH horizon is S = πr2+. Furthermore, the
partial derivative of S is δS = 2πr+δr+. Multiplying the
both sides of Eq. (16) by δS, we get

T δS = 2r+T |rrδS + δr+
2

. (14)

The first term on the R.H.S in above equation is depend on
the matter while the second term can be identified as the
differential form of the Misner–Sharp mass. T r

r |r+ can be
obtained from the Eq. (13) as,

T r
r |r+ = 1

8πr2+

[
(r4+ − �r6+ − Q2

mr
2+ − 6Q2

mλ)

r4+ + 2Q2
mλ

− 1

]
.

(15)

Also, Eq. (14) can also be written as,

δE = T δS − σδA. (16)

The above equation is the modified first law of thermody-
namics at the non-minimal MCRBH horizon. Where σ =
r+T r

r |r+
2 = 1

16πr+ [ (r4+−�r6+−Q2
mr

2+−6Q2
mλ)

r4++2Q2
mλ

− 1] describes the

surface tension at the horizon and δA can be identified as the
differential form of the horizon area, whereas horizon area is
A = 4S. The surface tension σ depends upon three factors
such as magnetic charge Qm , non-minimal parameter λ and
cosmological constant �. The surface tension approaches

to zero for r6+ = − (r2+−8λ)Qm
�

. If r6+ > − (r2+−8λ)Q2
m

�
then

it yields positive surface tension and if r6+ < − (r2+−8λ)Q2
m

�

then the surface tension will be negative. The corresponding
Smarr relation takes the following form

E = 2T S − 2σ A. (17)

It is found that this relation is satisfied for the values
of E, T, S, A. It is also mentioned here that the modi-
fied first law of thermodynamics in Eq. (16) is different from
the Eq.(3.8) in [26]. Conventional thermodynamics analysis
requires an application of the first law of thermodynamics,
known as energy analysis. In Conventional thermodynamics,
in accordance with the specifications of stable equilibrium,
we calculate the thermodynamic variables, such as, the heat
capacity at the constant pressure and volume and the Gibbs
free energy in order to analyze the local and global ther-
modynamic stability of the BHs in GR. Moreover, the free
energy in the grand canonical ensemble, also called Gibbs
free energy. The expression for the Gibbs free energy is

G = E − T S + σ A, (18)

G = r+
2

−
(
r4+ − �r6+ − Q2

mr
2+ − 6Q2

mλ

4πr+(r4+ + 2Q2
mλ)

)
πr2+ + σ4πr2+.

(19)

We get G = r+
4 , using the expressions for E, T, S, σ and A.

Carrying out the differential on the Gibbs free energy yields,

δG = −SδT + Aδσ. (20)

As the effective temperature represents the temperature of a
black body that would emit the same total amount of radia-
tion, consider the effective temperature be Tef f = T −4σ =

1
4πr+ , and using the effective temperature in Eq. (19) which
leads to δE = Tef f δS. The Gibbs free energy in terms of
effective temperature will be Gef f = E − Tef f S which
behaves in accordance with δGef f = −SδTef f . In Fig. 2,
for − 0.002 ≤ σ ≤ 0.002, we obtain the highest trajectory
of the Gibbs free energy for positive cosmological constant.
In Fig. 3, for the � = 0, the Gibbs free energy increases
for positive values of temperature. At T = 0.015, the curve
bounces back and the energies for σ = 0 and σ = 0.002
is positive but for σ = − 0.002, the Gibbs free energy is
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Fig. 2 Plot of Gibbs free energy versus temperature in the presence
of surface tension for first case when cosmological constant is positive
and Qm = 1 of the non-minimal MCRBH
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Fig. 3 Plot of Gibbs free energy versus temperature in the presence of
surface tension for second case when the cosmological constant is zero
and Qm = 2 of the non-minimal MCRBH

negative. Figure 4 shows that the effective Gibbs free energy
decreases with the increase of the effective temperature.

The Pressure

Here, we discuss the pressure at the horizon of MCRBH.
Horizon thermodynamics takes a different approach to the
problem of pressure in the BH thermodynamics. Since tem-

perature with surface gravity yields T = κ
2π

= �′(r+)
4π

, hori-
zon thermodynamics is based upon the approach that the
energy-momentum tensor on the horizon is interpreted as

P = Tr
r |r+ = 1

8πr2+

[(
r4+ − �r6+ − Q2

mr
2+ − 6Q2

mλ

r4+ + 2Q2
mλ

)
− 1

]
.

(21)

The area and the volume are inter-linked as V = Ar+
3 which

generates σδA = PδV . By using Eq. (21), the modified law
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Fig. 4 Plot of effective Gibbs free energy versus effective temperature

of thermodynamics in the presence of pressure can be written
as follows

δE = T δS − PδV . (22)

The pressure and surface tensions are directly proportional
to each other, thus if pressure is positive, negative or zero
then it will be in accordance with positive, negative or zero
surface tension, respectively. Using the pressure, P = T r

r |r+
in the Eq. (13), we get,

P = T

2r+
− 1

8πr2+
, (23)

which leads to

P = r4+ − �r6+ − Q2
mr

2+ − 6Q2
mλ

8πr2+(r4+ + 2Q2
mλ)

− 1

8πr2+
. (24)

The Van der Waals equation correlate with state variables the
pressure P , the volume V , the number of particles N and the
temperature T , which can be written as

P = kT

ν − b
− a

ν2 , (25)

where k is the Boltzmann constant, ν is the specific volume,
b is the size of molecules of the system and a is a constant
which represents the attraction between the molecules of the
system. By comparing the Eqs. (23) and (25), we get a = 1

2π

, b = 0 and ν = 2r+. Hence the above expression of pressure
takes the following form

P = T

ν
− 1

2πν2 . (26)
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Fig. 5 Plot of Gibbs free energy versus temperature for first case when
� = 0.01, Qm = 1 of the non-minimal MCRBH

The Gibbs free energy is

G = E − T S + PV = r+
2

−
(
r4+ − �r6+ − Q2

mr
2+ − 6Q2

mλ

4πr+(r4+ + 2Q2
mλ)

)
πr2+

+ P

(
4πr3

3

)
, (27)

which behave in accordance with

δG = −SδT + V δP, (28)

varying the horizon equation of state by treating the pres-
sure P and temperature T as independent thermodynamics
quantities then horizon equation of state established a new
horizon first law in [59], which is same as Eq. (22) where
temperature T , volume V and pressure P were specified and
the horizon entropy S and the Gibbs free energy G were the
derived concepts. By applying a degenerate Legendre trans-
formation on Eq. (25), first law can be easily regained. This
condition prevail over the mystery between the heat and the
work terms. In Fig. 5, we observe the behavior of Gibbs
free energy for different values of temperature and fixed val-
ues of pressure. For the first case, when the cosmological
constant is positive, diagram illustrates that the Gibbs free
energy values are lower for the high temperatures. As tem-
perature decreases, the Gibbs free energy increases for all the
fixed values of pressure. In Fig. 6, when � = 0, the Gibbs
free energy remains the same with the increase in tempera-
ture. When T = 0.016, curves bounce back and Gibbs free
energy increases for the lower values of temperature. For the
negative value of pressure, the Gibbs free energy approaches
to zero while for positive value of pressure and P = 0, the
Gibbs free energy increases.
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Fig. 6 Plot of Gibbs free energy versus temperature for second case
when � = 0, Qm = 2 of the non-minimal MCRBH

In Eq. (14), the first term on the R.H.S can be rewritten as

2r+T r
r |r+δS =

(
− Q2

m

4πr3+
− Q2

mλ

πr5+

)
δS +

(
−�r+

4π

)
δS.

(29)

By taking the differential on the entropy S, horizon area A
and the volume V , we get,

2r+T r
r |r+δS =

(
− Q2

m

16πr3+
− Q2

mλ

4πr5+

)
δA +

(
− �

8π

)
δV .

(30)

which leads to

δE = T δS − σe f f δA − PδV, (31)

here, the coefficient of δA depends upon the magnetic charge

Qm , P = − �
8π

and σe f f = − Q2
m

16πr3+
− Q2

mλ

4πr5+
(effective surface

tension). Moreover, one can get enthalpy (Eo) as follows

Eo = E + PV = M − Q2
m

2r+
− Q2

mλ

r3+
. (32)

By using the transformation P(δV ) = δ(PV ) − V δP and
differential of the Eq. (31), we obtain

δEo = T δS − σe f f δA + V δP. (33)

Thus, Eq. (33) is also the modified first law of thermodynam-
ics of the non-minimal MCRBH. The corresponding Smarr
relation leads to

Eo = 2(T S − σeffA − PV ). (34)
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3 RBH with Cosmological Constant

3.1 Modifying Laws for RBH with Cosmological Constant

Mo Wen-Juan, Rong-Gen Cai and Su Ru-Keng [60] pre-
sented a new kind of RBH solution associated with the cos-
mological constant in NED. The �(r) of this metric has the
following form

�(r+) = 1 − 2

⎛
⎜⎜⎝

Mr3+
(r2++q2)

3
2

− q2r3+
2(r2++q2)2 + �r3+

6

r+

⎞
⎟⎟⎠ . (35)

By using �(r) = 0, we attain the BH horizon. The expression
for mass M is ,

M = (r2+ + q2)
3
2

2r2+
+ q2

2(r2+ + q2)
1
2

− �(r2+ + q2)
3
2

6
. (36)

The q represent the electric charge of the given RBH. As
we are considering the definition of the Misner–Sharp mass
for investigating the thermodynamic properties of our RBH,

therefore, the expression for mass is E = Mr3+
(r2++q2)

3
2

−
q2r3+

2(r+2+q2)2 + �r3+
6 . By using the expression of mass M from

Eq. (36), we have get a very brief expression as E = r+
2 . The

temperature of this RBH with cosmological constant is,

T = −2q6 + 3q4r2+ + q2r4+ − r6+ + r4+(q2 + r2+)2�

4πr+(q2 + r2+)3
. (37)

Figure 7 illustrates the behavior of the temperature and
horizon radius at the fixed values of q and �. We have
considered the three cases of � in Fig. 7. For the posi-
tive cosmological constant, the temperature is increasing for
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Fig. 8 Plot of G versus T of the RBH with cosmological constant in
NED

0.1 ≤ r ≤ 0.4 but it starts decreasing when r ≥ 0.4. In the
absence of cosmological constant, the temperature increases
for 0.3 ≤ r ≤ 0.5 but when it reaches at r = 0.5 it bounces
back and starts decreasing. For negative cosmological con-
stant, the temperature is increasing for the small values of
horizon radius while it starts decreasing when r ≥ 1.0.
The temperatures almost approach to the same value when
r = 2.0 but not for r ≥ 2.0.

When we rewrite Eq. (14) as Eq. (22), which is the modi-
fication of the first law of thermodynamics at horizon of the
RBH with cosmological constant, the surface tension at the
horizon becomes

σ = −3q6 + 6q4r2+ + 4q2r4+ + r4+(q2 + r2+)2�

16πr+(q2 + r2+)3
. (38)

The surface tensionσ depends on the electric chargeq and the

cosmological constant �. When r4+ = − (3q6+6q4r2++4q2r4+)l2

�(q2+r2+)2 ,

the surface tension is zero, r4+ > − (3q6+6q4r2++4q2r4+)l2

�(q2+r2+)2 , the

surface tension is positive while negative surface tension is

obtained for r4+ < − (3q6+6q4r2++4q2r4+)l2

�(r2++q2)2 . The corresponding

Smarr relation is same as Eq. (17). The Gibbs free energy
turns out to be

G = E − T S + σ A

= r+
2

+
(

2q6 + 3q4r2+ + q2r4+ − r6+ + r4+(q2 + r2+)2�
)

× πr2+
4πr+(q2 + r2+)3

+ 4πr2+σ. (39)

Figure 8 represents the behavior of Gibbs free energy for
the different values of surface tension, three cases will be
discussed, i.e. the surface tension is positive, negative and
zero. When the temperature is low, Gibbs free energy is
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Fig. 9 Plot of G versus T of the RBH with cosmological constant in
NED

increasing at slow rate. When T = 0.16, the Gibbs free
energy increasing rapidly and temperature bounces back for
the − 0.02 ≤ σ ≤ 0.02. The effective temperature for
the RBH with cosmological constant is also found to be
Tef f = T − 4σ = 1

4πr+ . Now we will discuss the pres-
sure for the RBH with cosmological constant at the horizon.
Since the thermodynamic pressure is P = T r

r |r+, therefore,
the expression for the pressure is evaluated as

P = −3q6 + 6q4r2+ + 4q2r4+ + r4+(q2 + r2+)2�

8πr2+(q2 + r2+)3
. (40)

In the presence of pressure, the Gibbs free energy is,

G = E − T S + PV

= r+
2

+
(

2q6 + 3q4r2+ + q2r4+ − r6+ + r4+(q2 + r2+)2�
)

× πr2+
4πr+(q2 + r2+)3

+ P

(
4πr3

3

)
. (41)

Figure 9 represents the behavior of the Gibbs free energy
varying along with the temperature at the fixed values of pres-
sures. We observe that when P < 0, the Gibbs free energy
increases for higher values of temperature, after certain value
it bounces back and temperature decreases. Once the Gibbs
free energy reaches its maximum value, it starts decreasing.
Both red and green curves follows this behavior. But when
P ≥ 0, the Gibbs free energy increase for the different values
of temperature.

Now, we will consider the cosmological constant, which is
correlated with pressure and investigate the thermodynamics
of the RBH with the cosmological constant. The first term
on the R.H.S of Eq. (14) can be rewritten as

2r+T r
r |r+δS =

(
−3q6 + 6q4r2+ + 4q2r4+

4πr+(q2 + r2+)3

)
δS

+ −r3+�

4π(q2 + r2+)
δS, (42)

2r+T r
r |r+δS =

(
−3q6 + 6q4r2+ + 4q2r4+

16πr+(q2 + r2+)3

)
δA

+ −r2+�

8π(q2 + r2+)
δV . (43)

By using the relations between the entropy, horizon area and
volume, we obtain the equal sign in the above equation. It
is clear that the first term depends on the electric charge
and second term depends on the cosmological constant. Let

σeff = − 3q6+6q4r2++4q2r4+
16πr+(q2+r2+)3 and P = −r2+�

8π(q2+r2+)
, then also for

RBH with cosmological constant, Eq. (14) takes the form of
the Eq. (31), which further can be rewritten as Eq. (33). In
these equations Eo = E + PV is identified as the enthalpy
and its expression is evaluated as

Eo = Mr3+
(r2+ + q2)

3
2

−
r+

(
3q6 + 9q4r2+ + 7q2r4+ + r2+(q2 + r2+)2(2q2 + 3r2+)�

)

6(q2 + r2+)3
.

(44)

After making analysis on the Eo, we have seen that it is the
Misner–Sharp mass for the RBH with cosmological constant
and by taking into account the expressions of T, S, σ, A, P
and V the corresponding Smarr relation is same as the
Eq. (34), that we have obtained for the non-minimal RBH.

We obtain the expression for the corresponding Gibbs free
energy as

G = E − T S + σeffA + PV

= r+
2

+
(

2q6 + 3q4r2+ + q2r4+ − r6+ − 8πr4+(q2 + r2+)2P

4πr+(q2 + r2+)3

)

×πr2+ + 4πr2+σeff + 4πr3+P

3
. (45)

In Fig. 10, we observe the behavior of Gibbs free energy
at different temperatures and fixed values of σeff. When
0.01 ≤ T ≤ 0.17, the Gibbs free energy increases along
with the increase in temperature and give us a characteristic
cusp for the fixed values of surface tension. At T = 0.17
the curves bounces back, and Gibbs free energy increases
for the lower values of temperatures. For σeff = − 0.01 the
Gibbs free energy start decreasing for the certain value of
temperature and becomes negative. When the surface ten-
sion σeff ≥ − 0.0001, the Gibbs free energy have higher
values. Equations (35) and (36) are found to be same for the
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Fig. 10 Plot of G versus T of the RBH with cosmological constant in
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RBH with cosmological constant. Thus, for the lower neg-
ative values of surface tension, the Gibbs free energy have
positive higher values. But To is,

To = T − 4σeff

= −5q6 + 9q4r2+ + 5q2r4+ − r6+ + r4+(q2 + r2+)2�

4πr+(q2 + r2+)3
.(46)

The corresponding Gibbs free energy is evaluated as,

G = E − ToS + PV

= r+
2

+
(

−5q6 + 9q4r2+ + 5q2r4+ − r6+ − 8πr4+(q2 + r2+)2P

4πr+(q2 + r2+)3

)

×πr2+ + P

(
4πr3+

3

)
. (47)

Figure 11 illustrate the behavior of the Gibbs free energy at
different values of To and fixed pressure. When To = 0.112,
the curve bounces back and the Gibbs free energy increases
along with the decrease in temperature at fixed values of
pressure. When P = 0, the Gibbs free energy increases. We
conclude that when 0 ≤ P ≤ 0.5, the Gibbs free energy
increase for the positive values of temperature.

4 Conclusion

The radial Einstein’s equation at the BH event horizon and
cosmological horizon has been used in this paper in which we
have obtained the modified first laws of thermodynamics for
two BHs: (1) The non-minimal MCRBH and (2) RBH with
cosmological constant, for which all the correlated Smarr
relations are also satisfied. We treated the cosmological con-
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Fig. 11 Plot of G versus To of the RBH with cosmological constant in
NED

stant � in two ways, firstly it has been adopted as fixed and
then secondly, as the variable which is correlated to the pres-
sure. The surface tension σ can be negative, zero and posi-
tive which value is ascertained by using the horizon radius
r+, magnetic charge Qm , non-minimal parameter λ, elec-
tric charge q and the cosmological horizon �. The first law
of thermodynamics has been modified in the presence of σ

for MCRBH. For � > 0, plot of Gibbs free energy versus
temperature in the presence of surface tension (for any value)
shows that for the increasing values of temperature, the Gibbs
free energy approaches to the same value, but for � = 0 and
negative surface tension, the Gibbs free energy and temper-
ature, both are negative except for σ ≥ 0, the Gibbs free
energy increase with increasing temperature.

We have obtained the expression for effective Gibbs free
energy by modifying the temperature into effective temper-
ature, also analyzed that the effective Gibbs free energy
decreases along with increasing effective temperature. We
have also discussed pressure at horizon of MCRBH. For
fixed values of pressure, negative, positive and zero, behav-
ior of Gibbs free energy has been studied. For � > 0, the
Gibbs free energy decreases and approaches to the same value
with increase in temperature for all fixed values of pressure.
For � = 0, we have analyzed that, the Gibbs free energy
increases when P = 0 and p > 0, after bouncing back at
T = 0.016 but for P < 0, it decrease to negative values.

• For RBH with cosmological constant, the first law of
thermodynamics has also been modified as Eq. (22) in
the presence of σ , which expression is given by Eq. (38).
For � = 0.01, we have analyzed that the Gibbs free
energy increases for all, negative, zero and positive val-
ues of σ along with the increase in temperature, after
bouncing back at T = 0.16. We have also obtained the
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expression for Gibbs free energy in the presence of pres-
sure for RBH with cosmological constant. We have ana-
lyzed that for � = 0.01, the Gibbs free energy decreases
and approaches to negative values for negative pressure
whereas, for positive pressure, the Gibbs free energy
increases.

• We have obtained the modified temperature To by using
the relation between the Bekenstein entropy area rela-
tion. The first law of thermodynamics could have taken
the possession of the differential form based on the above
replacement for which the corresponding Smarr relation
is not obeyed. This type of situation was also explained
in [61]. When the surface effects of the curved surface
are taken into the consideration then the pressures are
generally unsteady. The cosmological constant has been
treated as the thermodynamic pressure such as P = − �

8π

which has been accounted for exploring the thermody-
namics. To make further investigation for the RBH with
cosmological constant �, we treated the cosmological

constant as the pressure P = −r2+�

8π(q2+r2+)
. For RBH with

cosmological constant, we have analyzed that, when the
� is correlated with the pressure, the Gibbs free energy
in the presence of effective surface tension increases for
lower negative values of σeff. For positive fixed values
of pressure, we have also analyzed that the Gibbs free
energy increases for the increasing values of modified
temperature, for the RBH with cosmological constant.
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