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Abstract In this note we study an energy dependent defor-
mation of a time dependent geometry in the background of
Brans–Dicke gravity theory. The study is performed using the
gravity’s rainbow formalism. We compute the field equations
in Brans–Dicke gravity’s rainbow using Vaidya metric which
is a time dependent geometry. We study a star collapsing
under such conditions. Our prime objective is to determine
the nature of singularity formed as a result of gravitational
collapse and its strength. The idea is to test the validity of the
cosmic censorship hypothesis for our model. We have also
studied the effect of such a deformation on the thermaliza-
tion process. In this regard we have calculated the important
thermodynamical quantities such as thermalization temper-
ature, Helmholtz free energy, specific heat and analyzed the
behavior of such quantities.
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1 Introduction

The UV completion of general relativity (GR) such that GR
is recovered in the IR limit has led to the development of
Horava-Lifshitz gravity [1,2]. The concept of different Lif-
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shitz scaling of space and time has been used to analyze type
IIA string theory [3], type IIB string theory [4], AdS/CFT cor-
respondence [5–8], dilaton black branes [9,10], and dilaton
black holes [11,12]. But this is not the only way of achieving
this. There is another alternative theory where the UV com-
pletion of GR is obtained by making the metric depend on the
energy of the test particle. This theory is termed as Gravity’s
Rainbow [13] in literature. Although there are conceptual
differences it is believed that gravity’s rainbow is related to
the Horava-Lifshitz gravity [14]. This is due to the fact that
both gravity’s rainbow and Horava-Lifshitz gravity are based
on the modification of the usual energy–momentum disper-
sion relation in the UV limit. This modification is carried out
keeping in mind that it should reduce to the usual energy–
momentum dispersion relation in the IR limit. We know that
in relativity, the form of the energy–momentum relation is
governed by the Lorentz symmetry. So it is not strange that
gravity’s rainbow will disrespect such a symmetry in the UV
limit. In this connection it must be noted that in spite of
being one of the most important symmetries in nature, there
are various different quantum gravity approaches in litera-
ture which indicates that Lorentz symmetry might only be
valid at low energy scales, and quite obviously it will break-
down in the high energy UV limit [15–19]. Specific mod-
els where this breakdown is expected to occur are discrete
spacetime [20], string field theory [21], spacetime foam [22],
the spin-network in loop quantum gravity (LQG) [23], non-
commutative geometry [24], etc. Now such a deformation
of the standard energy–momentum dispersion relation in the
UV limit of the theory will imply the existence of a maximum
energy scale. Based on the existence of such a maximum
energy scale the idea of doubly special relativity (DSR) [25]
has been conceived. Gravity’s rainbow is simply a general-
ization of DSR applied to curved spacetime [26]. As stated
earlier the geometry of the spacetime in gravity’s rainbow
depend on the energy of the test particles. So it is clear that
due to such dependence each test particle of different energy
will feel a different geometry of spacetime, thus undergo-
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ing motions differently. Thus the geometry of spacetime in
gravity’s rainbow is represented by a family of energy depen-
dent metrics forming a rainbow of metrics. This justifies the
name. The interesting conceptual background of the theory
have generated a lot of research interest in recent times [27–
36]. In this theory the modification in the energy–momentum
dispersion relation is introduced by energy dependent rain-
bow functions, F(E) and G(E), such that

E2F2(E) − p2G2(E) = m2. (1.1)

It may be noted that here E = Es/EP , where Es is the
maximum energy that a probe in that system can take, and
Ep is the Planck energy. By definition Es cannot exceed Ep.
The rainbow functions are chosen in such a way so that they
produce the usual energy–momentum relation of GR in the
low energy IR limit of the theory [37–45], and so they are
required to satisfy

lim
Es/EP→0

F(E) = 1, lim
Es/EP→0

G(E) = 1. (1.2)

The metric in gravity’s rainbow is written as

gμν(E) = ηabeμ
a (E)eν

b(E). (1.3)

In 1961, Brans and Dicke [46] developed an idea which
is considered as a relativistic theory of gravitation parallel to
GR. The theory is known as the Brans–Dicke (BD) theory of
gravitation. In GR the right hand side of the field equations
consists of the stress energy tensor which is the source of
the gravitational field. But in case of BD theory the manner
in which the mass–energy pressure acts is completely dif-
ferent from the way in which it acts in case of GR. In GR
it is the geometric curvature of space-time that completely
controls the motion of bodies in a gravitational field, but in
case of BD theory, due to the use of a contrasting mechanism,
this dependence on geometry is considerably reduced. These
are the basic attributes that differentiate BD theory from the
traditional theories of GR. Hence the theory demands a lot
of research. Being a scalar-tensor theory of gravitation the
most important feature of BD theory is that it consists of an
additional scalar field φ which is absent in GR. The pres-
ence of the scalar field has a strong consequence, making
the effective gravitational constant a function of space coor-
dinates. There is a dimensionless BD coupling constant ω

which can be tuned as per choice so as make the theory con-
sistent with observational evidences. This is a unique feature
of the theory and it is quite obvious that due to this provi-
sion the theory will admit more solutions compared to GR
thus enhancing its universality. Just like GR, BD theory also
predicts gravitational deflection of light and the perihelia pre-
cession of planets that orbit the Sun. But these phenomena
totally depend on the value of the BD parameter ω which

means that it is possible to constrain the possible values of ω

from observations of our solar system and other gravitational
systems. It is thought that GR can be obtained from the BD
theory in the limit ω → ∞ [47].

Here we will be probing the Vaidya space-time [48] in
the energy dependent deformations of BD gravity [49,50].
In Ref. [50], time dependent Vaidya spacetime was studied
in the background of BD gravity theory. In Ref. [51], Rudra
et al studied the rainbow deformations of Vaidya spacetime
in the background of Galileon gravity theory and obtained
interesting results. Galileon gravity is a form of scalar tensor
theory of gravity, where there is a self-interacting term of
the form ∇φ2 φ, so that GR is recovered at high densi-
ties. It contains a scalar field φ and a potential V (φ) in its
action. Since BD gravity also has a similar set-up we are moti-
vated to probe the energy dependent modifications of the time
dependent Vaidya space-time in its background. This will be
done via a gravitational collapse mechanism. Nonetheless,
we will also study the thermodynamical properties of the
system. It may be noted that the gravitational collapse under
different set-ups has been studied previously using gravity’s
rainbow [51–54]. The deformation of the thermodynamics
of black holes (BH) due to gravity’s rainbow has also been
studied [55–57]. The BH thermodynamics will get modified
by the rainbow functions. This is due to the fact that, the
energy E which defines the rainbow functions is basically
the energy of a quantum particle near the event horizon of
the BH, emitted in the Hawking radiation. Now we can obtain
a bound on energy E ≥ 1/�x , using the uncertainty princi-
ple �p ≥ 1/�x . Furthermore, the uncertainty in position of
a particle near the event horizon can be taken to be equal to
the radius of the event horizon radius

E ≥ 1/�x ≈ 1/r+. (1.4)

This energy bound modifies the temperature of the BH, and
this modified temperature of the BH can be used to calculate
the corrected entropy of the BH in gravity’s rainbow. The
energy of a quantum particle near the event horizon is con-
sidered as the energy of the test particle. This is the energy
which is used in defining the rainbow functions that modify
the energy momentum relations. The metric when deformed
by these rainbow functions, quite naturally deforms the BH
thermodynamics. This deformation in the thermodynamics
of a BH predicts the possibility of a BH remnant. Remnants
of BH can have important implications in the detection of
mini BHs at the Large Hadron Collider (LHC) [58]. This
energy which is used in constructing rainbow functions is
dynamical in nature depending on the radial coordinate [14].
Although the explicit dependence of this energy on the radial
coordinate is unimportant for us, yet it is important to note
that the rainbow functions are dynamical in nature, and hence
cannot be gauged away by rescaling the metric.
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Over the years gravitational collapse [59] of stars has been
a problem of great curiosity both in classical GR as well as
modified gravity theories. The reason being that we can get
at least two types of singularities from such a phenomenon.
A singularity covered by an event horizon is a BH whereas
an uncovered singularity is popularly known as a naked sin-
gularity (NS). Now to determine the exact initial conditions
which lead to the formation of BH or NS is a challenging
astrophysical problem. To be more precise, the quest of a
physical initial condition leading to the formation of a NS
[60–62] is a really interesting problem given the validity of
cosmic censorship hypothesis (CCH) laid down by Penrose
[63] which states that the end result of a collapsing scenario
is bound to be a singularity covered by an event horizon,
i.e. a BH. Moreover the NS being local or global (weak and
strong form of CCH) and the strength of the singularity are
also important issues worthy of studying. Here we will study
the chosen geometry focussing ourselves on this problem.

The paper is organized as follows. In Sect. 2, the field equa-
tions for the rainbow deformed Brans–Dicke gravity are gen-
erated. In Sect. 3, the solution of the given system is found.
Section 4 is devoted to the study of gravitational collapse
in the system considered. In Sect. 5, we focus ourselves on
the thermodynamical aspects of the system. Finally the paper
ends with some concluding remarks in Sect. 6.

2 Brans–Dicke gravity’s rainbow

The self-interacting BD theory [46] is described by the fol-
lowing action (choosing 8πG = c = 1)

S =
∫

d4x
√−g

[
φR − ω(φ)

φ
φ,αφ,α − V (φ) + Lm

]

(2.1)

where V (φ) is the self-interacting potential for the BD scalar
field φ and the constant ω is the BD parameter.

The Vaidya metric deformed by gravity’s rainbow in the
background of BD theory can be given by

ds2 = − 1

F2(E)

(
1 − m(t, r)

r

)
dt2

+ 2

F(E)G(E)
dtdr

+ 1

G2(E)
r2d	2

2

= f (t, r)dt2 + 2

F(E)G(E)
dtdr

+ 1

G2(E)
r2d	2

2, (2.2)

where F(E) and G(E) are the rainbow functions.

From the Lagrangian density given by Eq. (2.1) we obtain
the field equations [46]

Gμν = ω(φ)

φ2

[
φ,μφ,ν − 1

2
gμνφ,αφ,α

]

+ 1

φ

[
φ,μ;ν − gμν �φ

]− V (φ)

2φ
gμν + 1

φ
Tμν (2.3)

and

�φ = 1

3 + 2ω
T − 1

3 + 2ω

[
2V (φ) − φ

dV (φ)

dφ

]
(2.4)

where T = Tμνgμν .
Now we consider two types of fluids namely, Vaidya null

radiation and a perfect fluid having the form of the energy
momentum tensor

Tμν = T (n)
μν + T (m)

μν (2.5)

with

T (n)
μν = σ lμlν (2.6)

and

T (m)
μν = (ρ + p)(lμην + lνημ) + pgμν (2.7)

where ρ and p are the energy density and pressure for the
perfect fluid and σ is the energy density corresponding to
Vaidya null radiation. Here T (n)

μν and T (m)
μν are respectively

the contributions from vaidya null radiation and perfect fluid.
In the co-moving co-ordinates (t, r, θ1, θ2, . . . , θn), the two
eigen vectors of energy–momentum tensor namely lμ and ημ

are linearly independent future pointing null vectors having
components

lμ = (1, 0, 0, . . . , 0) and ημ

=
(

1

2

(
1 − m

rn−1

)
,−1, 0, . . . , 0

)
(2.8)

and they satisfy the relations

lλl
λ = ηλη

λ = 0, lλη
λ = −1 (2.9)

Imposing the rainbow deformations in the linearly inde-
pendent future pointing null vectors lμ and ημ we get,

lμ =
(

1

F(E)
, 0, 0, 0

)
and

ημ =
(

1

2F(E)

(
1 − m(t, r)

r

)
,− 1

G(E)
, 0, 0

)
(2.10)

satisfying the following conditions

lμl
μ = ημημ = 0 and lμημ = −1. (2.11)
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Therefore, the non-vanishing components of the total energy-
momentum tensor will be as follows

T00 = σ

F2(E)
+ ρ

F2(E)

(
1 − m(t, r)

r

)
, T01 = − ρ

F(E)G(E)
,

T22 = pr2

G2(E)
, T33 = pr2sin2θ

G2(E)
(2.12)

The (00)-component of the field equation is given as

G(E)
[G(E) (r − m)m′ + F(E)rṁ

]
F2(E)r3

= ω

φ2

[
φ̇2 + 1

2F2(E)

(
1 − m

r

)2
φ′2G2(E)

]
+ φ̈

φ

−φ

[ G(E)m

2F(E)r2 − G(E)m′
2F(E)r

]

−φ′
[

G2(E)m

2F2(E)r2 − G2(E)m2

2F2(E)r3

−G2(E)m′
2F2(E)r

+ G2(E)mm′
2F2(E)r2 + G(E)ṁ

2F(E)r

]

+ 1

F2(E)φ

(
1 − m

r

)
�φ + 1

F2(E)

(
1 − m

r

) V (φ)

2φ

+ 1

F2(E)φ

[
σ + ρ

(
1 − m

r

)]
(2.13)

The (11)-component of the field equation is

ω

φ2 φ′2 + φ′′

φ
= 0 (2.14)

The (10) and (01)-components are

−G(E)m′

F(E)r2 = ω

φ2

[
φ̇′ − 1

2F(E)G(E)

{
φ′2 (1 − m

r

)
G2(E)

}]

+ 1

φ

[
φ̇′ +

( G(E)m

2F(E)r2 − G(E)m′

2F(E)r

)
φ′

− 1

F(E)G(E)
�φ

]
− V (φ)

2φF(E)G(E)
− ρ

φF(E)G(E)
(2.15)

Finally the (22) and (33)-components are given by

1

2
rm′′ = ωr2

2φ2

(
1 − m

r

)
φ′2

− 1

φ

[F(E)r

G(E)
φ̇ + (r − m) φ′ − r2

G2(E)
�φ

]

+ V (φ)r2

2φG2(E)
− pr2

G2(E)φ
(2.16)

where �φ is given by,

�φ = F(E)G(E)φ̇′ + G2(E)

2r

(
1 − m′)φ′

+F(E)G(E)

2r
φ̇ +

(
1 − m

r

)
G2(E)φ′′ (2.17)

Here dot and dash represent derivatives with respect to t and
r respectively.

3 The solution

In this section we will find the solutions of the field equations
given in the previous section. From Eq. (2.14) we get,

φ(r, t) = [r + rω − f1(t)]
1

1+ω f2(t) (3.1)

where f1(t) and f2(t) are arbitrary functions of time. We
assume that the matter field follows the barotropic equation
of state given by,

p = kρ (3.2)

where k is a constant. Using the Eqs. (2.15), (2.16), (2.17),
(3.1) and (3.2) we get the following differential equation for
the graviton mass m,[ G(E)

2krF(E)

]
m′′ +

[ G(E)

2kF(E)r

φ′

φ
+ G(E)

F(E)r2

]
m′

+
[

(k + 1) ωG(E)

2kF(E)r

(
φ′

φ

)2

+ G(E) (k − 2)

2kF(E)r2

φ′

φ

+G(E) (k + 1)

krF(E)

φ′′

φ

]
m +

[(
ω

φ
− 1

k

)
φ̇′

φ

− G(E)

F(E)

(k + 1)

k

φ′′

φ
− ω (k + 1)G(E)

2F(E)k

(
φ′

φ

)2

+G(E) (1 − k)

2kF(E)r

φ′

φ
+
(

1 − k

2kr

)
φ̇

φ
+ 2 − kφ

2kF(E)G(E)

V (φ)

φ2

]
= 0

(3.3)

Unfortunately due to high complexity, a general solution for
the above differential equation cannot be obtained by the
known mathematical methods. So we seek solutions for spe-
cial cases. We see that if we consider φ(r, t) in a form where
the variable r and t can be separated, we can put the equation
in the Cauchy–Euler form from where we can get a solution.
So to facilitate further computations we consider f1(t) = 0
in Eq. (3.1). So the expression for φ takes the form

φ(r, t) = (r + rω)
1

1+ω f2(t) (3.4)

Obviously it must be admitted that this assumption produces
a particular class of solution of the collapsing system and not
the general solution. But this class of solution is of interest
to us as far as the mathematical integrity of the problem
is concerned. Now using Eq. (3.4) in Eq. (3.3) we get the
following differential equation,

r2m′′ +
[

1

1 + ω
+ 2k

]
rm′ +

[
k − 3ω − 2

(1 + ω)2

]
m

=
[
k − 2ω − 1

(1 + ω)2

]
r − 2kF(E)

G(E)

˙f2(t)
f2(t)

×
[

1

1 + ω

{
ω

(1 + ω)
1

1+ω f2(t)
− 1

k

}
+ 1 − k

2k

]
r2
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−
[

2 − k (1 + ω)
1

1+ω f2(t)V (φ)

G2(E) (1 + ω)
2

1+ω ( f2(t))2

]
r3 (3.5)

We solve the above equation and get the following solution
for m,

m(t, r) = f3(t)r
ω1 + f4(t)r

ω2

+ (k − 2ω − 1) r

(1 + ω)2 (1 − ω1) (1 − ω2)

−2kF(E)

G(E)

˙f2(t)
f2(t)

r2

(2 − ω1) (2 − ω2)

×
{

1

1 + ω

(
ω

(1 + ω)
1

1+ω f2(t)
− 1

k

)
+ 1 − k

2k

}

−2 − k (1 + ω)
1

1+ω f2(t)V (φ)

G(E)2 (1 + ω)
2

1+ω { f2(t)}2

r3

(3 − ω1) (3 − ω2)

(3.6)

where ω1 and ω2 are given by,

ω1, ω2 = 1

2 (1 + ω)

[
{−2k + (1 − 2k) ω}

±
√

{2k + ω (2k − 1)}2 − 4 (k − 3ω − 2)

]
(3.7)

From the above relation it is seen that the admissible range
of the barotropic parameter k is given by

k ∈
(

−∞ ,
1 + ω + ω2 − √−7 − 26ω − 30ω2 − 12ω3

2
(
1 + 2ω + ω2

)
]

⋃[
1 + ω + ω2 + √−7 − 26ω − 30ω2 − 12ω3

2
(
1 + 2ω + ω2

) ,∞
)

(3.8)

Using Eq. (3.6) in Eq. (2.2) we get the rainbow deformed
Vaidya metric in BD gravity as follows,

ds2 = − 1

F2(E)

(
1 − f3(t)r

ω1−1 − f4(t)r
ω2−1

− (k − 2ω − 1)

(1 + ω)2 (1 − ω1) (1 − ω2)

+2kF(E)

G(E)

˙f2(t)
f2(t)

r

(2 − ω1) (2 − ω2)

×
{

1

1 + ω

(
ω

(1 + ω)
1

1+ω f2(t)
− 1

k

)
+ 1 − k

2k

}

+
{

2 − k (1 + ω)
1

1+ω f2(t)V (φ)

G(E)2 (1 + ω)
2

1+ω { f2(t)}2

}
r2

(3 − ω1) (3 − ω2)

)
dt2

+ 2

F(E)G(E)
dtdr + 1

G2(E)
r2d	2

2 (3.9)

4 Gravitational collapse

In this section, we use the concept of radial null geodesics
to explore the existence of NS in generalized Vaidya space-
time. We first need to check whether it is possible to have
outgoing radial null geodesics that were terminated in the
past at the central singularity r = 0. The type of the singu-
larity (NS or BH) can be determined by the existence of radial
null geodesics emerging from the singularity. The singularity
is said to be locally naked if there exist such geodesics and
is said to be BH if geodesics do not exist. The catastrophic
gravitational collapse causes two possible types of singular-
ities which could be NS or a BH. Although CCH states that,
a gravitational collapse always results in a BH, yet there is
no rigorous proof for that. We have already seen that inho-
mogeneous dust cloud may result in a NS through a collapse
[64]. Fluids with different equations of state other than dust
also give rise to considerable results [65]. So the validity
of the hypothesis is quite questionable. At least keeping the
above literature in view the censorship hypothesis needs to
get generalized [66].

We assume that R(t, r) is the physical radius at time t of
the shell labelled by r . At the starting epoch t = 0 we should
have R(0, r) = r . In the inhomogeneous case, different
shells could become singular at different times. Now if there
are future directed radial null geodesics emanating out of the
singularity, with a well defined tangent at the singularity dR

dr
must tend to a finite limit in the limit of approach to the sin-
gularity in the past along these trajectories. When reaching
the points (t0, r) = (t0, 0), the singularity R(t0, 0) = 0
occurs which corresponds to the physical situation where
matter shells are crushed to zero radius. This type of singu-
larity (r = 0) is called a central singularity. The singularity
is a NS if there exists future directed non-space like curves in
the space time with their past end points rooted in the singu-
larity. Now if the outgoing null geodesics are traced back so
as they terminate in the past at the central singularity (r = 0
at t = t0) where R(t0, 0) = 0, then along these geodesics we
should have R → 0 as r → 0 [67].

The equation for outgoing radial null geodesics can be
obtained from Eq. (2.2) by putting ds2 = 0 and d	2

2 = 0 as

dt

dr
= 2F(E)

G(E)
(

1 − m(t,r)
r

) . (4.1)

From the above expression it is quite clear that at r = 0, t =
0 there is a singularity of the above differential equation. Sup-
pose we consider a parameter X = t

r . Using this parameter
we can study the limiting behavior of the function X as we
approach the singularity at r = 0, t = 0 along the radial null
geodesic. If we denote the limiting value by X0 then using
L’Hospital’s rule we have
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X0 = lim X
t → 0
r → 0

= lim t
r

t → 0
r → 0

= lim dt
dr

t → 0
r → 0

= lim 2F(E)

G(E)
(

1−m(t,r)
r

)
t → 0
r → 0

(4.2)

Using Eqs. (3.6) and (4.2), we have

2

X0
=

lim
t → 0
r → 0

G(E)

F(E)

⎡
⎣1 − f3(t)rω1−1 − f4(t)rω2−1

− (k − 2ω − 1)

(1 + ω)2 (1 − ω1) (1 − ω2)

+2kF(E)

G(E)

r

(2 − ω1) (2 − ω2)

×
˙f2(t)

f2(t)

{
1

1 + ω

(
ω

(1 + ω)
1

1+ω f2(t)
− 1

k

)
+ 1 − k

2k

}

+
⎧⎨
⎩

2 − k (1 + ω)
1

1+ω f2(t)V (φ)

G(E)2 (1 + ω)
2

1+ω { f2(t)}2

⎫⎬
⎭

r2

(3 − ω1) (3 − ω2)

⎤
⎦

(4.3)

Here we will take the potential V (φ) in the power law form,
i.e., V (φ) = V0φ

n , n and V0 being a real number. Now
choosing f2(t) = γ t , f3(t) = αt1−ω1 , f4(t) = βt1−ω2 and
n = −1 we obtain an algebraic equation for X0 as

αX3−ω1
0 + βX3−ω2

0 + (k − 2ω − 1)

(1 + ω)2 (1 − ω1) (1 − ω2)
X2

0

+
[F(E)

G(E)

{
2 − ω − k (1 + ω) − 1

G(E) (2 − ω1) (2 − ω2) (1 + ω)

}
− 1

]
X0

− (2 − kV0)

G2(E) (1 + ω)
2

1+ω γ 2 (3 − ω1) (3 − ω2)

= 0 (4.4)

where α, β and γ are arbitrary constants. It must be men-
tioned over here that the choices of f2(t), f3(t) and f4(t)
are somewhat self-similar in nature. The choices have been
made depending on the definition of X0 in Eq. (4.2) such that
the ratio t/r can be formed. Non self similar assumptions can
also be made, but that will result in either removal of terms
or creation of mathematically undefined terms. As a result of
this a lot of information about the system will be lost which
is undesirable.

Now if we get only non-positive solution of the equation
we can assure the formation of a BH. Getting a real positive
root indicates a chance to get a NS. Since the obtained equa-
tion is a highly complicated one, it is extremely difficult to
find out an analytic solution of X0 in terms of the variables
involved. So our idea is to find out different numerical solu-
tions of X0, by assigning particular numerical values to the
associated parameters, i.e., α, β, γ , V0, k and ω.

4.1 Numerical analysis

Since there are many parameters to deal with, we have gener-
ated plots for the function X0 by varying a particular parame-

ter and fixing others. This helps in understanding the depen-
dencies effectively. Since the evolution of universe and its
different phases are characterized by the value of the equa-
tion of state k, in Figs. 1, 2 and 3, we have obtained the pro-
files for the variable X0 with respect to the barotropic EoS
parameter k. Motivated from Refs. [68,69], we have used the
following rainbow functions,

F(E) = 1, G(E) =
√

1 − η

(
E1

Ep

)
(4.5)

In the above expressions, Ep is the planck energy given by
Ep = 1/

√
G = 1.221 × 1019 GeV, where G is the gravi-

tational constant and E1 = 1.42 × 10−13 [68,69]. In Ref.
[69], the value of η has been roughly computed as η ≈ 1,
following which we have used η = 1 in our study.

From all the five plots we see that the trajectories for X0

appear in the positive level, thus ruling out the possibility of
formation of BH as an end state of collapse. This is a counter-
example of Cosmic censorship hypothesis. In Fig. 1, k − X0

plots have been obtained for different values of parameter
α. We see that with the increase in the value of α, the tra-
jectories push towards the k-axis, thus exhibiting a reduced
tendency of formation of NS. We get a similar scenario when
β and γ is varied in Figs. 1 and 2 respectively. In Fig. 2,
k − X0 trajectories are obtained for different values of the
field potential parameter V0. Here we see a reversed result.
With the increase in the value of V0 the X0 profiles tend
towards higher positive range, thus decreasing the tendency
of BH formation. Finally in Fig. 3, we obtained plots for vari-
able values of BD parameter ω. Here an increase in the value
of the ω parameter decreases the tendency of NS formation
mimicking the first three cases. We know that in the limit
ω → ∞, GR is recovered from the BD gravity. So here we
can see that in the limit when the theory tends towards GR,
the tendency of formation of BH increase. This shows that
there is a greater tendency of the cosmic censorship hypoth-
esis to be true in case of GR. But as the gravity is modified,
with greater deviations the hypothesis loses its significance
and we get counter-examples as in the present work. As this
is our prime motivation, we have worked with small values of
ω so that we can study the scenarios with greater deviations
from GR.

4.2 Strength of singularity

The strength of singularity is defined as the measure of
its destructive capacity. The prime concern is that whether
extension of space-time is possible through the singularity
or not under any situation. Following Tipler [70] a curvature
singularity is said to be strong if any object hitting it iscrushed
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Figs. 1 and 2 Show the variation of slope X0 of outgoing radial null
geodesic at r = 0 in Penrose diagram as a function of the equation
of state parameter k for different values of α and β respectively in
Brans–Dicke gravity’s rainbow. In Fig. 1 the other parameters are fixed

at β = 0.2, γ = 5, V0 = 0.1, ω = −0.5, η = 1, E1 = 1.42 × 10−13,
Ep = 1.221 × 1019. In Fig. 2 the other parameters are taken as
α = 0.1, γ = 5, V0 = 0.1, ω = −0.5, η = 1, E1 = 1.42 × 10−13,
Ep = 1.221 × 1019

5
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Figs. 3 and 4 Show the variation of slope X0 of outgoing radial null
geodesic at r = 0 in Penrose diagram as a function of the equation
of state parameter k for different values of γ and V0 respectively in
Brans–Dicke gravity’s rainbow. In Fig. 3 the other parameters are fixed

at α = 0.1, β = 0.2, V0 = 0.1, ω = −0.5, η = 1, E1 = 1.42 × 10−13,
Ep = 1.221 × 1019. In Fig. 4 the other parameters are taken as
α = 0.1, β = 0.2, γ = 5, ω = −0.5, η = 1, E1 = 1.42 × 10−13,
Ep = 1.221 × 1019

to zero volume. In [70] the condition for a strong singularity
is given by,

S = lim τ 2ψ

τ → 0
= lim τ 2RμνKμK ν > 0

τ → 0
(4.6)

where Rμν is the Ricci tensor, ψ is a scalar given by
ψ = RμνKμK ν , where Kμ = dxμ

dτ
is the tangent to the

non spacelike geodesics at the singularity and τ is the affine
parameter. In the paper [71] Mkenyeleye et al have shown
that,

S = lim τ 2ψ

τ → 0
= 1

4 X
2
0 (2ṁ0) (4.7)

where

m0 = lim m(t, r)
t → 0
r → 0

(4.8)

and

ṁ0 = lim ∂
∂ t (m(t, r))

t → 0
r → 0

(4.9)

Using Eq. (3.6) in the above relation (4.7) we get

S = lim τ 2ψ

τ → 0
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= 1

2
X2

0

[
α (1 − ω1) X

−ω1
0 + β (1 − ω2) X

−ω2
0

+ 2kF(E)

G(E) (2 − ω1) (2 − ω2)

{
2ω

γ (1 + ω)
2+ω
1+ω

+1 − k

2k
− 1

k (1 + ω)

}
1

X2
0

]
(4.10)

In the paper [71] it has also been shown that the relation
between X0 and the limiting values of mass is given by,

X0 = 2

1 − 2m′
0 − 2ṁ0X0

(4.11)

where

m′
0 = lim ∂

∂ r (m(t, r))
t → 0
r → 0

(4.12)

and ṁ0 is given by the Eq. (4.9). Using Eqs. (3.6), (4.9) and
(4.12) in Eq. (4.11) we get an equation for X0 which can be
solved to check the existence of positive roots. The existence
of such a positive root signifies that the singularity is naked.
Using these positive values of X0 in the Eq. (4.10) we get
the conditions for which S = lim τ 2ψ > 0, which gives the
conditions under which we get a strong naked singularity.

5 Thermodynamics

In this section, we would like to focus on the thermodynam-
ical aspects of Vaidya spacetime in BD gravity’s rainbow.
To investigate the effect of such a spacetime on the ther-
malization process, here we consider the the thermalization
temperature by the following relation [72],

T = 1

4π

d

dr
f (t, r)|r=rh , (5.1)

where rh is the event horizon obtained from the relation
f (t, r) = 0, i.e,

− 1

F2(E)

(
1 − f3(t)rω1−1 − f4(t)rω2−1

− (k − 2ω − 1)

(1 + ω)2 (1 − ω1) (1 − ω2)

+2kF(E)

G(E)

˙f2(t)

f2(t)

r

(2 − ω1) (2 − ω2)

×
{

1

1 + ω

(
ω

(1 + ω)
1

1+ω f2(t)
− 1

k

)
+ 1 − k

2k

}

+
⎧⎨
⎩

2 − k (1 + ω)
1

1+ω f2(t)V (φ)

G(E)2 (1 + ω)
2

1+ω { f2(t)}2

⎫⎬
⎭

r2

(3 − ω1) (3 − ω2)

⎞
⎠ = 0.

(5.2)
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Fig. 5 Show the variation of Slope X0 of outgoing radial null geodesic
at r = 0 in Penrose diagram as a function of the equation of state
parameter k for different values of the Brans–Dicke parameter ω in
Brans–Dicke gravity’s rainbow. In figure, the other parameters are fixed
at α = 0.1, β = 5, γ = 1, V0 = 0.1, η = 1, E1 = 1.42 × 10−13,
Ep = 1.221 × 1019

The real positive root of the above equation describes the
radius of the event horizon. Figure 4 presents the typical
behavior of f (t, r) in terms of r for different values of the
parameter k. Here we have used the values of the other
parameters such as E1, EP , n, F, V0, f2(t), f3(t), f4(t) as
described in Sect. 4. Figure 4a shows the horizon structure of
the Vaidya spacetime in BD gravity’s rainbow and in Fig. 4b
we have shown the zoomed range of outer horizon obtained
from Fig. 4a.These two figures yield rh ≈ 1 for the selected
value of the parameters. In [73] a time dependent geometry
in massive theory of gravity has been analyzed and thermo-
dynamical aspect of such geometry has been studied.

Thermalization temperature given by Eq. (5.1), due to the
Vaidya spacetime in BD gravity’s rainbow, takes the form

T = 1

4πF(E)

[
r−2+ω1 f3(t)(ω1 − 1)

+ 1

G(E) f2(t)2

(
− 2(1 + ω)

−2
(1+ω)

(
2r

(ω1 − 3)(ω2 − 3)

+ k ˙f2(t)ω(1 + ω)
−1+ 1

1+ω

(ω1 − 2)(ω2 − 2)

⎞
⎠

+ f2(t)

⎛
⎝ k(2 + n + 2ω)V0r

n+1 f2(t)n(1 + ω)
n−2−ω

1+ω

(ω1 − 3)(ω2 − 3)

+
˙f2(t)(1 + k + (k − 1)ω)

(1 + ω)(ω1 − 2)(ω2 − 2)

)
+ f4(t)(ω2 − 1)r−2+ω2

)]
.

(5.3)

Setting the BD parameter ω = −0.5 and all the other
parameters as chosen earlier, we have plotted the thermaliza-
tion temperature T against r for four different value of k. It
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(a) (b)

Fig. 6 Show the variation of the metric function f (t, r) against r for dif-
ferent values of the equation of state parameter k in Brans–Dicke grav-
ity’s rainbow. In a the other parameters are fixed at α = 0.1, β = 0.2,

t = 2, n = −1, ω = −0.5 γ = 5, V0 = 0.1, η = 1, E1 = 1.42×10−13,
Ep = 1.221×1019. bRepresents the zoomed range of the outer horizon
obtained in a

is observed that for k = −1/3, k = 1/3 and k = 2 at first
the temperature is increasing function of r . The maximum
temperature will occur in the region (rh − 0.5, rh + 0.5)

(rh ≈ 1) and the temperature is decreasing for the radius
r > rh . For k = −3, the temperature is increasing function
of r . In Fig. 6a, T is plotted against the BD parameter ω for
rh ≈ 1. It is observed that for the case of ω < 0, T increases
as ω increases and for ω > 0, T decreases as ω increases.
The entropy is given by

S = π2r2
h , (5.4)

where we take πG = 1. Consequently the total energy can
be obtained from the relation

U =
∫

TdS. (5.5)

Using Eqs. (5.3) and (5.4), Eq. (5.5) yields the expression of
total energy as follows

U = π

12F(E)

[
6rω1 (ω1 − 1)

ω1
− r3(1 + ω)

− 1
1+ω

G (E) f2(t)2

(ω1 − 3)(ω2 − 3)

(
− 6kV0 f2(t)n+1(2 + n + 2ω)rn(1 + ω)

n
1+ω

(3 + n + 3ω)

− 3(ω1 − 3)(ω2 − 3)(−2kω + (1 + ω)
1

1+ω (1 + k − (1 − k)ω f2(t)))

r(1 + ω)(ω1 − 2)(ω2 − 2)

˙f2(t) + 8(1 + ω)
− 1

1+ω

)
+ 6 f4(t)(ω2 − 1)rω2

ω2

]
. (5.6)

Figures 5b and 6b display the typical behavior ofU against r
and ω respectively for four different values of k. Here we find
that for ω > 0, the internal energy decreases as ω increases.

Another important thermodynamical quantity is the
Helmholtz free energy, which reads

F1 = U − T S. (5.7)

Exploiting Eqs. (5.3), (5.4) and (5.6), Eq. (5.7) yields

F1 = π

12F(E)

[
− 3

ω2
(ω2 − 1)(ω2 − 2)rω2 f4(t)

− 1

G(E)(ω1 − 3)(ω2 − 3)

(
− 4

f2(t)2 r
3(1 + ω)

−2
1+ω

+3kV0 f2(t)n−1rn+3(1 + ω)
−1+ (n−1)

1+ω
(1 + n + ω)(2 + n + 2ω)

(3 + n + 3ω)

)

−3rω1 f3(t)(ω1 − 2)

(
1 − 1

ω1

)]
. (5.8)

Figures 5c and 6c represent the typical behavior of F1 in
terms of r and BD parameter ω respectively considering dif-
ferent era of the evolution of the universe. Finally we have
considered the specific heat in constant volume

C =
(
dU

dT

)
V

. (5.9)

The above expression yields

C = 2π2(1 + ω)2 f2(t)
2(ω1 − 3)(ω2 − 3)

G(E)

[
rω1−1 f3(t)(ω1 − 1) + rω2−1 f4(t)(ω2 − 1)
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(b)(a)

(d)(c)

Fig. 7 a–d Show the variation of the thermalization temperature T ,
Total energy U , Helmholtz free energy F1 and specific heat in constant
volume C against r respectively for different values of equation of state

parameter k in Brans–Dicke gravity’s rainbow. The other parameters
are fixed at α = 0.1, β = 0.2, t = 2, n = −1, ω = −0.5 γ = 5,
V0 = 0.1, η = 1, E1 = 1.42 × 10−13, Ep = 1.221 × 1019

− r

G(E) f2(t)2

(
2(1 + ω)

−2
1+ω

(
3r

(ω1 − 3)(ω2 − 3)

+kω ḟ2(t)(1 + ω)−1+ 1
1+ω

(ω1 − 2)(ω2 − 2)

)

− f2(t)

(
(1 + k + (k − 1)ω) ḟ2(t)

(1 + ω)(ω1 − 2)(ω2 − 2)

+kV0rn+1(2(1 + ω) + n)(1 + ω)−1+ n−1
1+ω

(ω1 − 3)(ω2 − 3)

))]

[
kV0(1 + ω + n)(2(1 + ω) + n) f2(t)

n+1rn(1 + ω)
n−1
1+ω

−4(1 + ω)
2ω

1+ω + G(E) f2(t)
2(ω1 − 3)(ω2 − 3)(1 + ω)2

(
f3(t)(ω1 − 2)(ω1 − 1)rω1−3

+ f4(t)(ω2 − 2)(ω2 − 1)rω2−3) ]−1

(5.10)

In Figs. 5d and 6d, we can observe the variation of specific
heat against the radius r and BD parameter ω respectively. It
is observed that the specific heat is taking positive and neg-
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(b)(a)

(d)(c)

Fig. 8 a–d Show the variation of the thermalization temperature T ,
Helmholtz free energy F1, total energy U and specific heat in constant
volume C against the Brans–Dicke parameter ω respectively for differ-
ent values of the equation of state parameter k in Brans–Dicke gravity’s

rainbow. The other parameters are fixed at rh ≈ 1, α = 0.1, β = 0.2,
t = 10−1, n = −1, γ = 5, V0 = 0.1, η = 1, E1 = 1.42 × 10−13,
Ep = 1.221 × 1019

ative values like any other thermodynamical system. These
thermal fluctuations lead to some instability in the system
with possible phase transition. Such instabilities get corrected
due to the presence of thermal fluctuations. A lot of studies
have been done in this direction [74–79]. Also from Fig. 6d
we can conclude that specific heat is an increasing function
of the BD parameter ω in the region ω > 0 for almost all
chosen values of k .

6 Conclusions and discussions

In this note we have studied an energy dependent modifi-
cation of a time dependent geometry in the background of
Brans–Dicke gravity theory. The time dependent Vaidya met-
ric representing a realistic star was modified by rainbow func-
tions in Brans–Dicke gravity. The necessary field equations
were formed and a solution was found. We studied a gravita-
tional collapse phenomenon under such conditions to char-
acterize the system. The concept of the existence of outgoing
radial null geodesics was used to explore the nature of the
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gravitational singularity formed due to the collapse. The exis-
tence of such outgoing geodesics from the central singularity
confirms the singularity to be a naked one. The absence of
such geodesics would indicate that the singularity is a black
hole. In our analysis we have considered the effects of both
the graviton mass as well as the rainbow deformations for the
given time dependent system. We have performed numerical
simulations and checked the nature of singularity by setting
different initial conditions. In all such cases we performed
our analysis in the late universe (k < −1/3), i.e. a universe
driven by dark energy. In our study we have seen that under
various scenarios the singularity formed is a naked one. This
is a significant counter-example of the cosmic censorship
hypothesis. We have also checked the strength of singularity
and obtained the conditions under which the singularity can
be called a strong singularity.

Lastly we have studied the thermodynamical behavior of
this system considering some important thermodynamical
quantities. It is observed that BD parameter ω affect those
thermodynamic quantities. For the case of ω < 0, thermal-
ization temperature T increases as ω increases and for ω > 0,
T decreases as ω increases. The internal energy and specific
heat have also been studied and it is found that for ω > 0, the
internal energy decreases as ω increases. For some special
values of k we have seen some instability with possible phase
transition.
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