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Abstract We show that two-dimensional JT gravity, the
holographic dual of the IR fixed point of the SYK model,
can be obtained from the consistent Kaluza–Klein reduc-
tion of a class of EMD theories in general D dimensions.
For D = 4, 5, the EMD theories can be themselves embed-
ded in supergravities. These exact embeddings provide the
holographic duals in the framework of strings and M-theory.
We find that a class of JT gravity solutions can be lifted to
become time-dependent charged extremal black holes. They
can be further lifted, for example, to describe the D1/D5-
branes where the worldsheet is the Milne universe, rather
than the typical Minkowski spacetime.
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1 Introduction

The AdS/CFT correspondence [1,2] serves as a bridge that
connects some conformal field theory (CFTd ) in d dimen-
sions and gravity in the anti-de Sitter (AdSD) background in
D = d + 1 dimensions. This holographic duality was best
studied between the N = 4 D = 4 superconformal field
theory and type IIB string in the AdS5 × S5 background.
The duality is however expected to be applicable for wider
classes of theories, possibly even beyond conformal field the-
ories. The duality remains largely conjectural, and the sim-
plest examples to prove this duality may be associated with
the integrable models that can be solved completely. How-
ever, such models with conformal symmetries are hard to
come by.

Recently, Sachdev–Ye–Kitaev (SYK) model [3–5], which
describes random all-to-all interactions between N Majorana
fermions in 0 + 1 dimension, has drawn a large amount of
attentions due to its integrability in the large N limit. The
SYK model exhibits approximate conformal symmetry in
the infrared (IR) limit, suggesting that the SYK model may
be a CFT1 at low energy. It was shown to be maximally
chaotic [4–6] in the sense that its out-of-time order correlators
exhibit Lyapunov exponents and butterfly effects [7] and they
saturate [8] the chaos bound established by black holes [7].
Therefore, the IR limit of the SYK model may have an AdS2

bulk gravity dual.
However, the naive CFT1 interpretation of the SYK model

is not appropriate. For the standard CFT1 interpretation,
the SYK model should encode the full Virasoro algebra in
the IR limit and exhibit the time reparametrization invari-
ance. Instead the time reparametrization symmetry is spon-
taneously broken into its SL(2,R) subgroup, giving rise to
Goldstone zero modes [5]. The effective theory is described
by a Scwharzian action. This fact demonstrates that the model
deviates from the standard CFT1 and becomes the 0 + 1
dimensional “nearly conformal field theory” (NCFT) [5].
Many properties of SYK1 and NCFT1 have been explored, in
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e.g. [6,9–22]. The supersymmetric generalizations [23–27]
and higher dimensional generalizations [28–30] were also
constructed.

The NCFT1 property is related to the fact that the bulk
theory can not be Einstein gravity in D = 2 dimensions.
Specifically, the Einstein–Hilbert action

S = 1

16π

∫
d2x

√−gR. (1.1)

is simply a topological constant and thus gives no dynamics.
Thus nontrivial D = 2 gravity must non-minimally couple to
a matter field. The simplest example is perhaps the Jackiw–
Teitelboim (JT) gravity [31,32]

S = 1

16π

∫
d2x

√−g�(R − 2�0) . (1.2)

When �0 is negative, the JT model admits the AdS2 vacuum;
however, the full AdS2 symmetry is broken by the nontrivial
dilaton � [33]. JT gravity may thus provide a gravity dual
of the IR limit of the SYK model [34] (see Appendix A for
details), and the SYK/AdS2 duality can thus be addressed in
the context of JT gravity [15,33–40].

In fact, one may consider more complicated dilaton gravi-
ties in two dimensions, which were extensively studied in the
last century for addressing basic problems of quantum grav-
ity (see, e.g. [41] for a review.) Two-dimensional gravities
received new attention in the light of holography. Almheiri
and Polchinski (AP) recently introduced a general family of
dilaton-gravity models [42]

S = 1

16π

∫
d2x

√−g
(
�̃2R + λ(∂�̃)2 −U (�̃)

)
. (1.3)

For appropriate potentialU , the theory admits AdS2 vacuum
with constant �̃2 = �0. One can now perform a perturbation,

�̃2 = �0 + �, � � �0 , (1.4)

the effective action for the linear perturbation is then pre-
cisely the JT gravity [43].

The AP class of models can be obtained from higher
dimensional theories such as strings and M-theory via
Kaluza–Klein reductions. This provides an understanding
of SYK models from the higher dimensional point of view.
Indeed, many higher dimensional extremal black holes has
near horizon geometries as an AdS2 × M [44–47,49–52],
and the near horizon region can be effectively described by
D = 2 dilaton gravities (1.3) in many situations [43–48].

However, the above embeddings of JT gravity is at the lin-
ear perturbation level. From the higher-dimensional point of
view, AdS2 spacetimes typically arise from the near-horizon
geometry of some extremal black holes. Thus JT gravity as

a linear perturbation of the AP class describes the leading-
order approximation away from the extremality. Since JT
gravity itself only captures the IR behavior of SYK models,
these embeddings have to deal with the subtleties associ-
ated with these two competing approximations. In this paper
we seek exact embeddings of JT gravity in higher dimen-
sions so that the leading-order approximation away from
the extremality has a broader range of validity. The simplest
example is perhaps Einstein gravity with a cosmological con-
stant in three dimensions, with the reduction ansatz being
ds2

3 = ds2
2 + �2dz2 [14,53–56]. Since AdS3 emerges natu-

rally in strings and M-theory, the reduction ansatz provides
a direct link between SYK and string theories. Ref. [53] also
obtained JT gravity coupled to a Maxwell field from the STU
supergravity model in four dimensions [57] by the Kaluza–
Klein reduction on S2.

In this paper, we present an alternative exact embedding
of JT gravity in higher dimensions. We construct a class
of Einstein–Maxwell–Dilaton (EMD) theories in general D
dimensions with appropriate dilaton couplings and scalar
potential. We demonstrate that JT gravity can be obtained
from the EMD theories via consistent Kaluza–Klein reduc-
tions. It turns out that for D = 4 and D = 5, the EMD
theories without the scalar potential can be embedded in
supergravities, which themselves can be obtained from the
Kaluza–Klein reduction of strings and M-theory.

The paper is organized as follows. In Sect. 2, we present
a class of EMD theories in D dimensions and express them
in the f (R)-frame where the manifest kinetic term of the
dilaton vanishes. We then perform consistent Kaluza–Klein
reductions and show that JT gravity can indeed emerge. In
Sect. 3, we consider solutions in JT gravity and oxidize them
to become solutions in the EMD theories in higher dimen-
sions. We find that a class of JT gravity solutions are related to
the previously-known time-dependent extremal black holes.
In Sect. 4, we consider the EMD theories in four and five
dimensions and show they are consistent truncations of the
bosonic sector of supergravities and/or gauged supergravi-
ties. This allows to embed the solutions in strings and M-
theory. We conclude the paper in Sect. 5. In the appendix,
we give some detail review of how JT gravity can give rise
to the Schwarzian action.

2 An EMD embedding of JT gravity

2.1 A class of EMD theories

We begin with a class of EMD theories considered in [58].
The theories consist of the metric, a scalar φ, and two U (1)

gauge fields A and A. The Lagrangian in the Einstein frame
is given by
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L = √−g
(
R− 1

2 (∂φ)2−V (φ)− 1
4e

aφF2− 1
4e

bφF2
)
, (2.1)

where F = d A, F = dA and the dilatonic coupling con-
stants satisfy

ab = −2(D − 3)

D − 2
. (2.2)

The scalar potential V is inspired by those in gauge super-
gravities, given in terms of a super-potential W [58]

V =
(dW
dφ

)2 − D − 1

2(D − 2)
W 2 ,

W =
√

2(D − 2)2a

(D − 2)a2 + 2(D − 3)
g

(
be− 1

2 a φ − a e− 1
2 bφ

)
.

(2.3)

For reasons that will become apparent, in this paper, we are
particularly interested in the case with

a =
√

2(D−3)2

(D−1)(D−2)
, b = −

√
2(D−1)
D−2 . (2.4)

The potential is thus

V = −(D − 1)g2
(
e
− 2(D−3)φ√

2(D−1)(D−2) + (D − 3)e
2φ√

2(D−1)(D−2)

)

= −(D − 1)g2
(
e−aφ + (D − 3)e− 1

2 (a+b)φ
)
. (2.5)

Note that if we set A = 0 and also turn off the scalar potential,
the remainder of the theory is simply the Kaluza–Klein the-
ory withA being the Kaluza–Klein vector. The EMD theories
were inspired by gauged supergravities. In D = 4 and 5, the
Lagrangians are the consistent truncations of the bosonic sec-
tor of the respective gauged STU models. Their embeddings
in M-theory and type IIB strings via Kaluza–Klein sphere
reductions were given in [59].

We now make a constant shift of φ, and redefine

φ = φ̃ + c , Aμ = Ãμe
− 1

2 ac , Aμ = Ãμe
− 1

2 bc ,

g2e−ac = g2
2 , e− 1

2 (a+b)cg2 = g2
1 . (2.6)

Dropping the tilde, the Lagrangian takes the same form as
(2.1), but with V now given by

V = −(D − 1)
(
g2

2e
−aφ + (D − 3)g2

1e
− 1

2 (a+b)φ
)
. (2.7)

This allows us to set the parameter g1 and g2 to zero inde-
pendently.

2.2 Conformal transformation

We now make a conformal transformation [60]

gμν = e
−

√
2

(D−1)(D−2)
φ
g̃μν, (2.8)

the Lagrangian, after dropping the tildes, becomes

L = √−g
(
�

(
R + (D − 1)(D − 3)g2

1

) − 1
4�−1F2

+�3((D − 1)g2
2 − 1

4F2)). (2.9)

where

� = e
−

√
D−2

2(D−1)
φ
. (2.10)

The conformal transformation (2.8) is such that the dila-
ton’s kinetic term is absent and the equation of motion for �

becomes algebraic. This can be generally done in supegrav-
ities or gauged supergravities and such a conformally trans-
formed theory was referred as the f (R)-version of supergrav-
ity in [60]. In this paper we shall also refer (2.9) as gravity
in the f (R)-frame.

In order to make contact with JT gravity through dimen-
sional reduction, we take A = 0 and g2 = 0, the resulting
EMD theory in the f (R)-frame is

L = √−g
(
�

(
R+ (D−1)(D−3)g2

1

)− 1
4�−1F2

)
. (2.11)

In four and five dimensions, the theories can be obtained
from taking appropriate limit of the bosonic sector of the
STU gauged supergravity models. When g1 = 0, they can
be truncated consistently from supergravities and hence can
be embedded in string and M-theory.

2.3 JT gravity from Kaluza–Klein reduction

In this subsection, we show that JT gravity can be obtained
from this EMD theory (2.11) by the consistent Kaluza-
Klein reduction. The internal space is taken to be (D − 2)-
dimensional Einstein-space d	2

D−2,k with Ri j = (D −
3)k gi j , where k = −1, 0, 1. The corresponding Ricci scalar
is given by

Rk = (D − 2)(D − 3)k. (2.12)

In order for the reduction to be consistent, we take all the sin-
glet of the isometry group of the internal space. The reduction
ansatz is thus given by

ds2
D =ds2

2 +ϕ(x)2d	2
D−2,k , Aμ = Aμ(x) , �=�(x),

(2.13)

where μ = 0, 1 and xμ are respectively the indices and
coordinates of the metric ds2

2 . The Kaluza–Klein reduction
in the Einstein frame down to dimensions higher than or
equal to three was obtained in [61]. We find that the reduced
Lagrangian from (2.11) in two dimensions is
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L2 = √−g�ϕD−2
(
R + ϕ−2Rk

−(D − 2)(D − 3)ϕ−2(∂ϕ)2 − 2(D − 2)ϕ−1�ϕ

+(D − 1)(D − 3)g2
1 − 1

4�−2F2
)
. (2.14)

The equation of motion associated with A is

∇μ

(
�−1ϕD−2Fμν

) = 0 , (2.15)

which can be solved by

F = λ�ϕ−(D−2)ε(2), (2.16)

where λ is an integration constant associated with the electric
charge and ε(2) is the volume 2-form of ds2

2 . The variations
associated with � and ϕ yield

0 = R + ϕ−2Rk − (D − 2)(D − 3)ϕ−2(∂ϕ)2

−2(D − 2)ϕ−1�ϕ

+(D − 1)(D − 3)g2
1 + 1

4�−2F2 , (2.17)

0 = 4Rk�
2 + (D − 2)

(
ϕ2F2

+4�(−�ϕ�ϕ + ϕ2��

+(D − 3)(ϕ∇μϕ∇μ� − �(∂ϕ)2))
)
. (2.18)

Finally, the equation of motion associated with the variation
of gμν , when (2.17) and (2.18) are applied, is given by

�2ϕRμν + �
(
ϕ�� + (D − 2)∇ρϕ∇ρ�

)
gμν

+ 1
4ϕ(F2gμν − 2FμρF

ρ
ν )

−�
(
ϕ∇μ∇ν� + (D − 2)�∇μ∇νϕ

) = 0. (2.19)

Taking the trace yields

�ϕR + ϕ�� + 2(D − 2)∇ρ�∇ρϕ − (D − 2)��ϕ = 0.

(2.20)

This equation, together with the two scalar equations (2.17)
and (2.18), imply that we can take ϕ = ϕ0 to be constant,
provided that the charge parameter λ is

λ2 = (D − 1)(D − 3)(k + g2
1ϕ2

0)ϕ
2(D−3)
0 . (2.21)

The remainder equations can be summarized as

R − 2�0 = 0 , Rμν� + gμν�� − ∇μ∇ν� = 0. (2.22)

where

�0 = − 1
4 (D − 3)

(
k(D − 3)ϕ−2

0 + (D − 1)g2
1

)
. (2.23)

It is now straightforward to see that the Eq. (2.22) can be
derived from the action of JT gravity (1.2). In Appendix A,

we review how the JT action, together with the bounary terms
of the Gibbons–Hawking type and the holographic countert-
erm, give rise to the Schwarzian action in the appropriate
AdS2 background. (A more general argument for how the
Schwarzian action arises from AP models was presented in
[53].)

To conclude, JT gravity with (2.23) can be obtained from
the Kaluza–Klein reduction of the D-dimensional EMD the-
ory (2.11) and the consistent reduction ansatz is

ds2
D = ds2

2 + ϕ2
0d	2

D−2,k ,

F =
√

(D − 1)(D − 3)(k + g2
1ϕ2

0) ϕ−1
0 �ε(2). (2.24)

In the case of D = 3, nontrivial results require the absorbing
of the (D− 3) factor into g2

1. It is instructive simply to intro-
duce g̃2

1 = (D − 3)g2
1 and declare that g̃2

1 is non-vanishing
in D = 3. To be specific, we see that the D = 3 theory in
the Einstein frame is

L3 = √−g
(
R − 1

2 (∂ϕ)2 + 2g̃2
1e

ϕ − 1
4 F

2). (2.25)

In the f (R)-frame, it becomes

L3 = √−g
[
�(R + 2g̃2

1) − 1
4�−1F2

]
. (2.26)

The reduction ansatz from D = 3 to D = 2 is

ds2
3 = ds2

2 + ϕ2
0 dz

2 , F = √
2g̃1�ε(2). (2.27)

The resulting two-dimensional theory is then the JT theory
(1.2) with �0 = − 1

2 g̃
2
1. Note that equations of motion of the

resulting JT gravity are independent of the constant parame-
ter ϕ0.

The D = 3 case perfectly illustrated the difference
between our embedding of JT gravity in higher dimensions
and those discussed previously in literature. In [14], (also see
[53–56],) the higher-dimensional theory is pure AdS gravity
and the scalar in JT gravity arises as the radius of the com-
pactifying circle z. The running of the JT scalar is driven by
this breathing mode of the internal space. On the other hand,
in our embedding, the internal radius is fixed consistently
by the equations of motion to be a constant. The JT scalar
is a direct descendant of the dilaton in higher dimensions.
Both embeddings are possible due to the fact that JT gravity
is not conformal in that it has a running dilaton, which may
arise directly from the higher-dimensional theory or from the
modulus parameter of the compactifying space in a theory
that has no scalar.
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3 Oxidations and time-dependent black holes

In the previous section, we demonstrate that JT gravity in
two dimensions can be obtained from the consistent Kaluza–
Klein reduction of the EMD theory (2.11) on an internal Ein-
stein space. This allows us to oxidize all the two-dimensional
solutions to higher dimensions. In particular, we find that
some special two-dimensional solutions become the decou-
pling limit of time-dependent extremal black holes.

3.1 Oxidation of the solutions

The two-dimensional metric is Einstein with a negative cos-
mological constant. We can thus take the metric to be

ds2 = − f (r)dt2 + 1

f (r)
dr2. (3.1)

Then Eq. (2.22) of JT gravity admit the locally AdS2 solution

f = −�0r
2 , � = α

r
+ (β + γ t − �2

0αt
2)r, (3.2)

where α, β, γ are integral constants. The theory also admits
the black hole solution

ds2 = 1

z2

(
dz2

f
− f dt2

)
, f = 1 − z2

z2
0

� = −2c2z2
0

z

(
1 − √

f
)
+

√
f

z

(
z0

(
c1 sinh( t

z0
) − 2c2z0

)

+
(

2c2z
2
0 + c0

)
cosh

(
t
z0

) )
. (3.3)

For g1 = 0, correspondingV = 0 in D dimensions, it follows
from (2.23) that we must require k = 1, and hence

�0 = − 1
4 (D − 3)2ϕ−2

0 . (3.4)

In this case, the two-dimensional solutions can be lifted to
become D-dimensional ones. In the Einstein frame, they take
the form

dŝ2 = �
2

D−2
(

− f dt2 + 1

f
dr2 + ϕ2

0d	2
D−2

)
,

F = √
(D − 1)(D − 3) ϕ−1

0 � dt ∧ dr ,

= φ −
√

2(D−1)
D−2 log �. (3.5)

For g1 �= 0, we can have all k = 1, 0,−1, and �0 is given
by (2.23). The D-dimensional solutions become

dŝ2 = �
2

D−2
(

− f dt2 + 1

f
dr2 + ϕ2

0d	2
D−2,k

)
,

F =
√

(D − 1)(D − 3)(k + g2
1ϕ2

0) ϕ−1
0 � dt ∧ dr ,

φ = −
√

2(D−1)
D−2 log � . (3.6)

3.2 Time-dependent extremal black holes

The general EMD theory (2.1) admits a class of charged black
hole solutions [58]. For the dilaton coupling choice (2.4) and
vanishing scalar potential, the charged extremal black hole
is given by

ds2 = −H− D−1
D−2 H− D−3

D−2 dt2

+H
D−1

(D−2)(D−3)H 1
D−2

(
dr2 + r2d	2

D−2

)
,

A =
√

D−1
D−3 H−1dt , A = H−1dt ,

φ = 1
2
D−1
D−3a log H + 1

2b logH, (3.7)

where H = 1+q/r D−3 and H = 1+ q̃/r D−3 are harmonic
functions in the transverse Euclidean space. It was observed
in [62] that the harmonic function H can have a linear time-
dependence, namely

H = ht + q̃

r D−3 . (3.8)

Note that here only H, not H can allow such a linear time
dependence. After the conformal transformation (2.8), the
solution becomes

ds2 = − dt2

HH + H
2

D−3

(
dr2 + r2d	2

D−2

)
,

A =
√

D−1
D−3 H−1dt , A = H−1dt , � =

√
H
H

.

(3.9)

To make contact with the solutions in JT gravity, we set
q̃ = 0 and furthermore we take the decoupling limit with 1
in H dropped. The solution becomes

ds2 = − r D−3

hr D−3
0

dt̃2 + r2
0

r2 dr
2 + r2

0d	2
D−2 ,

� = 1
2 t̃

√
hr D−3

r D−3
0

, q = r D−3
0 , (3.10)

where we have redefined the time coordinate by t̃ = 2
√
t .

Comparing with the Kaluza–Klein reduction ansatz (3.6), we
see that ϕ0 = r0. Performing the Kaluza–Klein reduction on
the SD−2 sphere, and redefining the r coordinate and param-
eters by

r̃ = r
D−3

2√
γ (D − 3)r D−4

0

, h = 4γ r0

D − 3
, (3.11)

we arrive, after dropping all the tildes, at the two-dimensional
solution (3.2) of JT gravity with α = 0.
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4 Embeddings in strings and M-theory

In the previous sections, we show that JT gravity can be
obtained from consistent Kaluza–Klein reduction of a class
of EMD theory (2.11) in general D dimensions. In four and
five dimensions, the EMD theories can be embedded in super-
gravities, allowing exact embeddings of JT gravity in strings
and M-theory. This will provide a better understanding of the
time-dependence of the solutions.

4.1 The D = 5 theory

We first consider the D = 5 EMD theory (2.11). It follows
from the discussion in Sect. 2 that in the Einstein frame, the
Lagrangian is given by

L5 = √−g

(
R − 1

2 (∂φ)2 − 1
4e

2√
6
φ
F2 + 8g2

1e
− 1√

6
φ
)

,

(4.1)

For g1 = 0, the theory can be embedded into theU (1)3 super-
gravity with two field strengths set equal whilst the third set
zero. The theory can be obtained from N = (1, 0) super-
gravity in D = 6 via Kaluza–Klein reduction on S1 [63].
The relevant six-dimensional theory is Einstein theory cou-
pled to a self-dual 3-form F(3) = ∗F (3), with

RMN = 1
4 FMPQFN

PQ . (4.2)

The (truncated) reduction ansatz is given by

ds2
6 = e

1√
6
φ
ds2

5 +e
− 3√

6
φ
dz2 , F(3) = 1√

2

(
F∧dz+∗5F

)
.

(4.3)

The D = 5 time-dependent extremal black hole (3.7) with
q̃ = 0 becomes

ds2
6 = H−1

(
− H−1dt2 + Hdz2

)
+ H(dr2 + r2d	2

3) ,

F(3) = − H ′

H2 dt ∧ dz ∧ dr + 2q	(3) ,

H = 1 + q

r2 , H = ht. (4.4)

This is the self-dual string, with the flat worldsheet metric
being the two-dimensional Milne universe, namely

−H−1dt2 + Hdz2 = −h−1dt̃2 + 1
4ht̃

2dz2, (4.5)

where t = 1
4 t̃

2. The solution can be further lifted to become
the intersecting D1/D5 system, or M2/M5-branes. The near
horizon geometry has an AdS3 factor whose boundary is the
two-dimensional Milne universe rather than the Minkowski
spacetime.

We can also lift the full two-dimensional solution (3.2)
back to D = 6 directly, and we find

ds2
6 = −ϕ2

0r
2dt2 + �(r, t)2dz2 + dr2

ϕ2
0r

2
+ ϕ2

0d	2
3 ,

F(3) = 2ϕ−1
0 � dt ∧ dr ∧ dz + 2ϕ2

0 	(3) . (4.6)

In particular, when α = 0, this is precisely the near-horizon
geometry of the Milne self-dual string discussed above.

4.2 The D = 4 theory

The EMD theory (2.11) in four dimensions in the Einstein
frame is given by

L4 = √−g

(
R − 1

2 (∂φ)2 − 1
4e

1√
3
φ
F2 + 3g2

1e
− 1√

3
φ
)

,

(4.7)

For g1 = 0, the theory can be embedded into the STU super-
gravity model, with three equal gauge potentials set equal
and the fourth one set zero. The embedding of JT gravity
in this theory is part of more general Kaluza–Klein reduc-
tions obtained in [53]. The D = 4 theory (g1 = 0) can be
obtained from the S1 reduction of minimal supergravity in
five dimensions, with

ds2
5 = e

− 1√
3
φ
ds2

4 + e
2√
3
φ
dz2. (4.8)

The five-dimensional Maxwell field descends down to four
dimensions directly. The time-dependent black hole solution
becomes

ds2
5 = −H−2dt2 + H

(
ht (dr2 + r2d	2

2) + 1

ht
dz2

)
,

A = √
3H−1dt. (4.9)

Turning off the charge by setting q = 0, and hence H = 1,
the metric describes a Kasner-type cosmological solution.
We can also lift the solution (3.5) to five dimensions and find

ds2
5 = �2

(
− r2

4ϕ2
0

dt2 + 4ϕ2
0

r2 dr2 + ϕ2
0d	2

2

)
+ �−2dz2

F = √
3 ϕ−1

0 �(r, t) dt ∧ dr , (4.10)

where � is given in (3.2). This solution with α = 0 is pre-
cisely the decoupling limit of (4.9) with the 1 in H dropped.

The D = 4 EMD theory with g1 = 0 can also be embed-
ded in M-theory with the reduction ansatz given by

ds2
11 = e

− 1√
3
φ
ds2

4 + e
2√
3
φ
dz2 + d�2

6 ,

A(3) = 1√
3
A dt ∧ I(2), (4.11)

where d�2
6 is Euclidean or Ricci-flat Calabi-Yau space with a

harmonic 2-form I(2). The oxidized solution can be viewed as
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the M2/M2/M2 intersection, or M2-brane wrapping around
the Calabi-Yau 2-cycles.

We have examined the EMD theories (2.11) for D = 4 and
5, with g1 = 0. These theories can be embedded into super-
gravities. This provides many routes of JT gravity to strings
and M-theory, since there are many different ways of embed-
ding of these EMD theories in the fundamental theories (see
e.g. [64]). The higher dimensional solutions are related to
M-branes, D-branes and their intersections, see e.g. [65–67]

4.3 D = 4, 5 theories with g1 �= 0

When g1 �= 0, the theory can also be obtained from taking an
appropriate limit of gauged supergravities, by taking g2 = 0
in the scalar potential (2.7). However, the sphere reduction
ansätze constructed for g1g2 �= 0 [59] do not appear to allow
the g2 = 0 limit. It turns out that although the D = 4, 5
theories with g2 = 0 and g1 �= 0 cannot be obtained M-
theory or strings directly from sphere reductions, they can
be obtained from S1 reduction of gauged supergravities that
can be reduced from higher dimensions on spheres.

For example, the Lagrangian for the bosonic sector of
minimal gauged supergravity in five dimensions is

L5 = √−g(R − 1
4 F

2 + 12g2) + 1
12

√
3
εμνρσλFμνFρσ Aλ .

(4.12)

For the pure electric ansatz we consider in this paper, the last
FFA term can be dropped. The reduction ansatz (4.8) with
the F descending directly gives rise to precisely the D = 4
EMD theory (4.7), with g1 = 2g. The lifting of the (3.2)
leads to

ds2
5 = −1

4
(kϕ2

0 + 3g2
1)r2dt2

+ 4

(kϕ2
0 + 3g2

1)r2
dr2 + ϕ2

0d	2
2,k + �2dz2

F =
√

3(k + g2
1ϕ2

0)ϕ0 	(2),k (4.13)

The five-dimensional gauged supergravity (4.12) can itself
be obtained from type IIB supergravity on S5, and the reduc-
tion ansatz can be found in [59]. Its (singular) embedding in
M-theory was also obtained [68]. The effective cosmologi-
cal constant �0 (2.23) in JT gravity now has contributions
from D3-brane charges as well as the gauged supergravity
R-charges associated with rotations of D3-branes.

The D = 5 theory can also be obtained from D = 6
Einstein gravity coupled to cosmological constant and a self-
dual 3-form

RMN = 1
4 FMPQFN

PQ − 5g2 gMN , F(3) = ∗F (3).

(4.14)

The reduction ansatz (4.3) gives precisely (4.1) with g2
1 =

5g2/2. The resulting solution is given by

ds2
6 = −(kϕ−2

0 + 2g2
1)r2dt2 + 1

(kϕ−2
0 + 2g2

1)r2
dr2

+ϕ2
0d	2

3,k + �2dz2

F = 2
√
k + g2

1ϕ2
0 (ϕ−1

0 �dt ∧ dr ∧ dz + ϕ2
0	(3),k)

(4.15)

The (4.14) theory is a consistent truncation of the bosonic
sector of D = 6, N = (1, 1) gauged supergravity that can
be embedded in massive type IIA theory [69]. The effec-
tive cosmological constant in JT gravity in this embedding
is related to the D4/D8-brane charges.

Finally, it is worth noting that for F = 0, the theory (2.11)
in general D dimensions can all be obtained from the circle
reduction of Einstein gravity with a cosmological constant
in D + 1 dimensions [60].

5 Conclusions

In this paper, we demonstrated that JT gravity in two dimen-
sions could be obtained from the consistent Kaluza-Klein
reduction on a class of EMD theories (2.11) in general D
dimensions. For D = 4 and 5, the EMD theories are trun-
cations of the bosonic sector of supergravities. This allows
one to embed JT gravities in strings or M-theory, providing
stringy interpretations of the SYK model.

The exact embeddings of this paper also allow one to
understand the solutions of JT gravity in the light of higher
dimensional theories. For g1 = 0, we find that a class of JT
gravity solutions are related to the time-dependent extremal
charged black holes in the EMD theories. The solutions can
be further lifted to become, for example, intersecting D1/D5-
brane, where the worldsheet is the 2d-Milne universe instead
of the more traditional 2d-Minkowski spacetime. They can
also be lifted to the time-dependent M2/M2/M2 intersec-
tions. For g1 �= 0, we find that the cosmological constant
in JT gravity is related to D3-brane or D4/D8-brane charges
depending on the specific route of the embeddings.

The exact embeddings of this paper imply that we can
obtain the Schwarzian action directly in higher dimensions.
The subtlety is that the worldsheet or worldvolume of branes
should be described by the Milner metric rather than the
usual Minkowski metric. The fact that the Milne universe
appears in the worldsheet or worldvolume is tantalizing. Non-
dilatonic extremal p-branes such as the M-branes or the D3-
brane have in general AdSd × SD−d as their near-horizon
geometry. When the boundary (the brane worldvolume) of
the AdSd is the Milne universe, we have
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ds2
d = dr2

r2 + r2
(
−dt2 + t2d	2

d−2,−1

)

=
(

− r2dt2 + dr2

r2

)
+ �2d	2

d−2,−1 , (5.1)

where d	2
d−2,−1 is taken to be some compact metrics with

negative cosmological constant. The Kaluza-Klein reduction
on d	2

d−2,−1 yields naturally a two-dimensional gravity with
nearly AdS2 vacuum geometry. It would be of great interest
to investigate the corresponding holographic NCFT1.
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A From JT gravity to SYK

In this appendix, we give a detail review of how the SYK
model can arise from JT gravity. This review is based on
the work of [34]. JT gravity admits the nearly AdS2 solution
(3.2). In the Euclidean signature, the solution reads

ds2 = dt2 + dz2

z2 , � = αz + β + γ t + �2
0αt

2

z
(A.1)

where z = 1/r and we have chosen �0 = −1 without loss
of generality.

For the theory to be well-defined, we need to include the
Gibbons-Hawking surface term and the appropriate coun-
terterm to the action (1.2). The total action is given by (after
setting �0 = −1):

S = 1

16π

∫
M
d2x

√
g�(R + 2) + 1

8π

∫
∂M

√
h�(K − 1) ,

(A.2)

where h is the induced metric on the relevant boundary. Note
that we also included the holographic counterterm above, as
was done in [70].

Following [34,37], we slice the original asymptotic
boundary in terms of a new parameter u. In other words,
the new boundary deviates from the AdS fixed point and
is parameterized by (t (u), z(u)). The variables (t (u), z(u))

are then interpreted as the dynamical fields of the bound-
ary, where u naturally serves as the Euclidean time of the
boundary CFT. It is clear that the new boundary is fixed by

guu = 1

ε2 = t ′2 + z′2

z2 , (A.3)

where a prime denotes a derivative with respect to u, and
ε is an infinitesimal constant representing the UV cutoff.
Equation (A.3) implies that t (u) and z(u) are not independent
dynamic fields asymptotically, they are related by

z(u) = εt ′ + 1

2
ε3 t ′′2

t ′
+ · · · , � → �inf

ε
, (A.4)

where �inf is given by

�inf = β + γ t + αt2

t ′
. (A.5)

The rigid AdS geometry causes the bulk action to vanish
identically, and the total action will be given by the boundary
action, namely

S = 1

8π

∫
du

�inf

ε2 (K − 1) , K = hμν∇μnν . (A.6)

To evaluate the vector n = nμ∂μ normal to the boundary, we
note that the tangent vector is given by

T = ∂

∂u
= t ′ ∂

∂t
+ εt ′′

(
1 + ε2

(
t ′′′

t ′
− 1

2

(
t ′′

t ′

)2
) ) ∂

∂z

≡ Tμ∂μ , (A.7)

where we have used (A.4). Since the normal vector is defined
by

Tμnμ = 0 , nμnνg
μν = 1 , (A.8)

We find, up to the ε2 order, that

n0 = t ′′
t ′2

(
1 + ε2Sch(t (u), u)

)
, n1 = − 1

εt

(
1 − ε2

(
t ′′
t ′

)2
)

,

(A.9)

where Sch(t (u), u) is the Schwarzian derivative

Sch(t (u), u) = 2t (3)t ′ − 3t ′′2

2t ′2
. (A.10)

The normal vector nμ, the tangent vector Tμ and the metric
gμν satisfy the identity

gμν − nμnν = TμTν

T 2 . (A.11)

It follows that the extrinsic curvature can be rewritten as

K = Tμ

T 2

(
n′

μ − nρ�ρ
μνT

ν
)

(A.12)
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Substituting (A.7) and (A.9) into (A.12), we find

K = 1 + Sch(t (u), u)ε2 + · · · , (A.13)

where the dots represent those with higher powers of ε.
Therefore, it is straightforward to see that (A.6) is given by

S = 1

8π

∫
du �inf Sch(t (u), u). (A.14)

From (A.17), varying t (u), we can obtain solution for
�inf(u), i.e. (A.5). It should be emphasized that �inf here
should be viewed as a background rather than a dynamical
field; it does not involve in the variation principle. The Eq.
(A.5) is thus an equation of motion for t (u) at a given back-
ground �inf(u). Making a coordinate transformation

�inf
∂ ũ

∂u
= �c, (A.15)

where �c is a constant, we find

S = �c

8π

∫
dũ

(
Sch(t (ũ), ũ) − Sch(u(ũ), ũ)

)
. (A.16)

The second term in the bracket is a quantity that has
no dynamical field and can be dropped, leading to the
Schwarzian action

S = �c

8π

∫
du Sch(t (u), u). (A.17)

It is the effective action describing the IR behavior of the SYK
model [5], and is invariant under the SL(2,R) transformation

t (u) → a t (u) + b

c t (u) + d
, ad − bc = 1. (A.18)

It is of interest to note that had one considered �inf as a
dynamical field, then Eq. (A.16) would imply that the system
had a ghost excitation.
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