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Abstract We propose a covariant holographic conjecture
for the entanglement negativity of bipartite mixed states in
(1 + 1)-dimensional conformal field theories dual to bulk
non static AdS3 configurations. Application of our conjec-
ture to (1 + 1)-dimensional conformal field theories dual to
bulk non extremal and extremal rotating BTZ black holes
exactly reproduce the corresponding entanglement negativ-
ity obtained through the replica technique, in the large central
charge limit. We briefly discuss the issue of the generalization
of our conjecture to higher dimensions.

1 Introduction

Quantum entanglement has emerged as one of the central
issues in the subject of quantum information theory in recent
times. This has inspired significant attention towards the
characterization of entanglement in extended quantum many
body systems. In this context the entanglement entropy has
been established as one of the crucial entanglement measures
for bipartite quantum systems. To describe this it is neces-
sary to consider the bipartition of a quantum system into the
subsystem-A and its complement Ac describing the the rest
of the system. In such a scenario the entanglement entropy
of the subsystem A is given by von Neumann entropy of the
reduced density matrix as follows

SA = −Tr(ρA log ρA), (1)

where ρA is the reduced density matrix obtained by trac-
ing out the degrees of freedom of Ac i.e ρA = TrAc (ρ).
The issue of characterizing the entanglement entropy for an
extended quantum many body system is extremely non triv-
ial as it involves the determination of the eigenvalues of an
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infinite dimensional density matrix-ρA. However this issue
is tractable in a (1 + 1)-dimensional conformal field the-
ory (CFT1+1) through the replica technique as was demon-
strated by Calabrese and Cardy in [1,2]. This involves the
description of the quantity Tr(ρn

A) in terms of the parti-
tion function on a n-sheeted Riemann surface (Zn(A)) with
branch points at the boundaries between the subsystems A
and Ac [1]. Then the entanglement entropy of the subsystem
A in the CFT1+1 is given as follows

SA = − ∂

∂n
log

[
Tr

(
ρn
A

)]∣∣∣
n=1

= logZ− ∂

∂n
logZn(A)

∣∣∣
n=1

.

(2)

Here, Z corresponds to the partition function of CFT1+1

on a single sheet of the n-sheeted Riemann surface. The
quantity Zn(A) in the above equation is related to the two
point function of certain branch-point twist fields in the
corresponding CFT1+1 which may then be computed in a
straight forward fashion to obtain the entanglement entropy.
For time dependent states in a CFT1+1 the reduced density
matrix ρA in Eq. (2) has to be replaced by the time depen-
dent ρA(t) = TrAc(ρ(t)) where the full density matrix ρ(t)
evolves according to the well known von-Neumann equation

i
∂ρ(t)

∂t
= [

H(t), ρ(t)]. (3)

Naturally this leads to a time dependent correlation function
of the twist and the anti/twist fields which describes the evo-
lution of the entanglement entropy in the CFT1+1 [3]. This
remarkable progress in studying the time evolution of entan-
glement entropy in a CFT1+1 has inspired focused attention
in diverse areas such as quantum quenches, thermalization
and quantum phase transitions [4–6].

It is important to emphasize here that the entanglement
entropy described above ceases to be a viable entanglement
measure for mixed quantum states as it receives contributions
from correlations that are not relevant to the entanglement of
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the particular bipartite system.1 This relates to an important
issue in quantum information theory termed as purification
which involves the embedding of the bipartite system in a
mixed state within a larger system in a pure state. Through
this procedure Vidal and Werner in a seminal work [7] pro-
posed a novel computable measure termed entanglement neg-
ativitywhich characterized the upper bound on the distillable
entanglement for a mixed state. Consider a tripartite system
described by the subsystems A1, A2 such that A = A1 ∪ A2

and the rest of the system denoted by Ac, then the entan-
glement negativity of the subsystem A1 may be defined as
follows

E ≡ ln
[
Tr | ρ

T2
A | ]

. (4)

Where ρA1∪A2 = TrAc(ρ) is the reduced density matrix of
the subsystem A = A1 ∪ A2 and the super-script T2 cor-
responds to the operation of the partial transpose over the
subsystem A2. In this regard, if |q1

i

〉
and |q2

i

〉
represent the

bases of Hilbert space corresponding to the subsystems A1

and A2 respectively, then the partial transpose with respect
to A2 degrees of freedom is expressed as

〈
q1
i q

2
j |ρT2

A1∪A2
|q1

k q
2
l

〉 = 〈
q1
i q

2
l |ρA1∪A2 |q1

k q
2
j

〉
, (5)

Furthermore, the entanglement negativity was shown to obey
certain important properties such as monotonicity and non
convexity in [8]. Note that similar to the case of entanglement
entropy, obtaining the entanglement negativity for extended
quantum systems is extremely complex as this also involves
the evaluation of the eigenvalues of an infinite dimensional
density matrix. However as in the case of the entanglement
entropy, the entanglement negativity for CFT1+1 may be
obtained through a variant of the replica technique [9–11].
As earlier this involves the computation of the correlation
functions of branch point twist fields. Remarkably this leads
to the upper bound on the distillable entanglement for the
CFT1+1 as anticipated from quantum information theory.

Note that for time dependent states the reduced density
matrix is once again given by ρA(t) = TrAc(ρ(t)) with ρ(t)
obeying the von Neumann equation described by Eq. (3). The
above mentioned replica technique was utilized to study the
time evolution of entanglement negativity for various mixed
state scenarios including the adjacent and the disjoint inter-
vals following a global quench in a CFT1+1 in [12]. The
temporal evolution of negativity following a local quench has

1 Note that the system may be in a mixed state in a variety of physical
situations. A state may be mixed as a result of the interaction between
the system and its environment or in the finite temperature case due to
the interaction between the system and the heat reservoir. It may also
occur if the system is in a degenerate ground state as in the case of a
CFT which is dual to an extremal AdS black hole. We will elaborate
more about this case in one of the forthcoming sections.

been investigated for two independently thermalized semi-
infinite halves in a CFT1+1 [13] and for harmonic chain out
of equilibrium in [14]. Furthermore the replica technique was
also employed to study the time evolution of entanglement
negativity following a local quench for the mixed states of
symmetric and asymmetric adjacent and disjoint intervals in a
CFT1+1 in [15]. Remarkably, in [12,15] it was demonstrated
that for both local and global quenched scenarios, the univer-
sal parts of entanglement negativity and mutual information
for the adjacent interval case exhibit identical behavior under
time evolution.

In an interesting communication Ryu and Takayanagi pro-
posed a conjecture for the entanglement entropy of a subsys-
tem in d-dimensional holographic CFTs in the context of the
AdS/CFT correspondence [16,17]. Their conjecture relates
the entanglement entropy SA for a region A (enclosed by the
boundary ∂A) in (d)-dimensional holographic CFTs to the
area of co-dimension two bulk AdSd+1 static minimal sur-
faces (denoted by γA) anchored on the subsystem as follows

SA = Area(γA)

(4G(d+1)
N )

. (6)

Here, G(d+1)
N is the gravitational constant of the bulk

space time. This conjecture has led to significant insights
in exploring various aspects of quantum entanglement in
higher dimensional CFTs described in [18,19] and refer-
ences therein. It is important to note however that the Ryu–
Takayanagi conjecture is applicable only to holographic
CFTds dual to bulk static AdSd+1 configurations. The rea-
son for this is intricately related to the ambiguity in defining
static minimal surfaces in non static configurations with a
Lorentzian signature on which we will elaborate in a later sec-
tion. Naturally this leads to the critical issue of the character-
ization of the holographic entanglement entropy for CFTds
dual to non static AdSd+1 configurations. In this context
the authors Hubeny et al. in [20] have advanced a covariant
holographic conjecture for the entanglement entropy of holo-
graphic CFTds dual to such non static AdSd+1 configura-
tions. This HRT-conjecture involves the light-sheet construc-
tion for the covariant entropy bound due to Bousso [21–23].
The light sheet construction provides an elegant method for
the characterization of a co-dimension two spacelike surface
whose area provides a natural bound on the entropy flux. The
explicit realization of this covariant holographic conjecture
for the entanglement entropy has led to intense investigations
for time dependent scenarios in holographic CFTs and has
led to significant insights into issues of quantum quenches
and thermalization [24–29].

The above discussion naturally led to the crucial issue of
establishing a precise and elegant holographic prescription
for the entanglement negativity for bipartite pure and mixed
states in the AdS/CFT framework. A recent conjecture for
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such a holographic prescription for the entanglement negativ-
ity was proposed by us (CMS) in [30,31]. In the AdS3/CFT2

scenario, our holographic entanglement negativity (E) con-
jecture involves a particular algebraic sum of the lengths of
the geodesics in the dual bulk AdS3 space time given as fol-
lows

E = lim
B→Ac

3

16G(3)
N

[(2LA + LB1+LB2 − LA∪B1−LA∪B2)].

(7)

Here Lγ is the length of the geodesic anchored on the cor-
responding subsystem γ = {A, B1, B2, A ∪ B1, A ∪ B2}
and the limit B → Ac in the above expression corresponds
to extending the two large finite subsystems B1 and B2 on
either side of (A) to infinity such that in this limit B1 ∪ B2

denoted as B is the rest of the system Ac. We employed our
conjecture to compute the entanglement negativity for the
finite temperature mixed state of an extended bipartite sys-
tem described byCFT1+1 through the bulk geometry involv-
ing an Euclidean BTZ black hole. We demonstrated that the
holographic entanglement negativity obtained from our con-
jecture matches exactly with the CFT1+1 result in the large
central charge limit. Remarkably it could be demonstrated
that in both the cases the holographic entanglement negativ-
ity precisely captured the distillable quantum entanglement
at all temperatures through the elimination of the thermal
contribution. This naturally constituted a strong indication
for the universality of our conjecture. Furthermore, in an
another communication [31] we proposed a possible higher
dimensional generalization of our holographic entanglement
negativity conjecture in the AdSd+1/CFTd scenario.

Notice however that our holographic conjecture proposed
in [30,31] is only applicable to conformal field theories
which are dual to static bulk AdS configurations due to
the ambiguity in the definition of minimal surfaces in non
static space time geometries. In this article we propose such
a holographic conjecture for the covariant entanglement neg-
ativity of mixed states for bipartite systems described by a
CFT1+1 dual to bulk non static AdS3 configurations in the
AdS3/CFT2 scenario. Subsequently using our conjecture,
we obtain the covariant entanglement negativity of a single
interval in a finite temperatureCFT1+1 dual to a bulk station-
ary AdS3 configuration involving a rotating BTZ black hole.
Furthermore we also apply our conjecture to obtain the same
for a CFT1+1 dual to an extremal rotating bulk BTZ black
hole. In both of these case we also compute the entangle-
ment negativity of the corresponding CFT1+1 by employing
the replica technique and demonstrate that it matches exactly
with the bulk results obtained through our conjecture in the
large central charge c limit. Furthermore as earlier for static
bulk configurations, it is observed that the holographic entan-
glement negativity precisely leads to the distillable entan-

glement through the elimination of the thermal contribution
from the entanglement entropy.

This article is organized as follows. In Sect. 2 we review
the HRT prescription for covariant holographic entanglement
entropy in the AdSd+1/CFTd scenario. In Sect. 3 we pro-
pose our covariant holographic conjecture for the entangle-
ment negativity of bipartite mixed states in a CFT1+1 dual
to bulk non static AdS3 configurations in the AdS3/CFT2

scenario. In Sect. 4 we use our prescription to compute the
entanglement negativity of a CFT1+1 dual to a bulk rotat-
ing non-extremal BTZ black hole. Following this in Sect. 5
we obtain the entanglement negativity of a finite temperature
bipartite mixed state in CFT1+1 with angular momentum
and provide a large central charge analysis to show that this
exactly matches the bulk result obtained from our conjecture
in the large central charge limit. In Sect. 6 we compute the
covariant holographic entanglement negativity of a zero tem-
perature mixed state in aCFT1+1 dual to an extremal rotating
BTZ black hole and show that the entanglement negativity
captures the distillable entanglement. Subsequently, in Sect.
7 we compute the corresponding entanglement negativity in
the dual CFT directly from a replica trick and show that the
result once again matches exactly with the bulk computation
in the large central charge (c) limit. In Sect. 8 we provide a
summary of our results and our conclusions.

2 Review of the covariant holographic entanglement
entropy

As mentioned earlier by Calabrese et al. developed a sys-
tematic method to obtain the entanglement entropy of a sub-
system in a CFT1+1 utilizing the replica procedure. As it
is extremely diffcult to evaluate the entanglement entropy
employing the replica technique in the higher dimensional
CFTs one must make use of the holographic conjecture by
Ryu and Takayanagi which we briefly described in the intro-
duction. Using their holographic prescription , it was pos-
sible to obtain the entanglement entropy of various higher
dimensional holographic CFTs (see [32–38] and references
therein). However unlike the replica procedure which is
applicable to both time dependent and time independent sce-
narios in CFT1+1, the Ryu and Takayanagi conjecture is
valid only for holographic CFTs dual to bulk static AdS
configurations . The reason for this is as follows. The Ryu
and Takayanagi conjecture relates the entanglement entropy
of a subsystem in CFTd to a minimal surface in the corre-
sponding bulk AdSd+1 space time configuration. These static
minimal surfaces are well defined in time independent sce-
narios as it is always possible to perform a Wick rotation
leading to an Euclidean AdS geometry in the bulk. However
for describing time dependent states in a boundary CFT, the
corresponding dual bulk involves a non-static AdS space-
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time with a Lorentzian geometry in which case one may
always contract the spacelike surface along the time direc-
tion to reduce the area of the minimal surface to arbitrarily
small values. Therefore, the Ryu–Takayanagi conjecture is
unsuitable for describing the time evolution of the entangle-
ment entropy in CFTs. This issue was resolved by Hubeny,
Rangamani and Takayanagi (HRT) in [20] where the authors
provided a covariant prescription for the holographic entan-
glement entropy of a d-dimensional CFT. We briefly review
their proposal here.

The HRT conjecture for the covariant holographic entan-
glement entropy of a subsystem in a CFTd dual to a non-
static AdSd+1 space time [20], was inspired by the light sheet
construction for the covariant Bousso bound [21,23,39].
Consider a co-dimension two spacelike surface S, a light
sheet LS for this S is defined by null geodesic congruences
whose expansion is non-positive definite. According to the
Bousso bound, the thermodynamic entropy SLS through a
light sheet LS is bounded by the area of S in Planck units

SLS ≤ Area(S)

4GN
. (8)

If L− and L+ represent the past and the future light
sheets respectively, then the corresponding null expansions
denoted by θ± obey the inequality θ± ≤ 0. The authors in
[20] argue that the holographic entanglement entropy satu-
rates the above mentioned Bousso bound. They consider a
d-dimensional strongly coupled conformal field theory liv-
ing on the boundary of (d +1)-dimensional AdS space time.
The asymptotic boundary of the AdSd+1 space time where
the conformal field theory is situated is divided into two time
dependent regions At and Ac

t . The boundary of the region At

is denoted as ∂At . Following this, the past and future light
sheets of a for spacelike surface ∂At , denoted as ∂L+ and
∂L− are constructed. One is then required to extend ∂L+
and ∂L− into the bulk in such a way that their extensions
denoted by L+ and L− respectively, are also light sheets
corresponding to a (d − 1)-dimensional spacelike surface
Yt = L+ ∩ L− which is anchored to ∂At . According to the
HRT proposal, out of all such surfaces Yt the holographic
entanglement entropy of the region At is given by the sur-
face which has the minimum area (Ymin

t ). The authors also
showed that this surface (Ymin

t ) is also the extremal surface
(Yext ) anchored to ∂At and the null expansions for this space-
like surface vanish ( i.e θ± = 0).

SAt = Area(Ymin
t )

4G(d+1)
N

= Area(Yext )

4G(d+1)
N

. (9)

The authors (HRT) verified their prescription in the
AdS3/CFT2 scenario as follows. They employed the above
mentioned holographic prescription to obtain the entangle-

ment entropy of the CFT dual to the rotating BTZ black hole
background. They then computed the entanglement entropy
of a subsystem-A in the corresponding dualCFT1+1 through
the standard replica technique and demonstrated that the
result matches exactly with that obtained using their con-
jecture which is as follows

SA = c

6
log

[
β+β−
π2a2 sinh

(
π�

β+

)
sinh

(
π�

β−

)]
. (10)

Where, β+ = β(1 + Ω) and β− = β(1 − Ω) are the
left and the right moving temperatures the CFT1+1, Ω is the
angular velocity, � is the length of the subsystem-A and a is
the UV cut-off for the field theory.

3 Covariant holographic entanglement negativity
conjecture

In this section we propose a covariant prescription for the
holographic entanglement negativity in the AdS3/CFT2 sce-
nario. In order to do this we first briefly review our recently
conjectured prescription for the holographic entanglement
negativity of CFT1+1s dual to static AdS3 space time con-
figurations [31]. In this case the (1 + 1)-dimensional confor-
mal field theory on the asymptotic boundary of a static AdS3

space time is partitioned into two intervals A and it’s comple-
ment Ac. The region B within the complement Ac consists
of two large but finite intervals B1 and B2 on either side of
A adjacent to it, such that B = B1 ∪ B2. The holographic
entanglement negativity which quantifies the entanglement
between a subsystem-A and the rest of the system Ac, is
then given by a specific algebraic sum of the bulk space like
geodesics anchored on the intervals as follows

E = lim
B→Ac

3

16G3
N

[
2LA+LB1+LB2−LA∪B1−LA∪B2

]
. (11)

Where Lγ represents the bulk space like geodesic anchored
on the corresponding interval γ and the limit B → Ac has
to be interpreted as extending the intervals B1 and B2 to
infinity such that in this limit B is Ac. Note that the above
equation may be re-expressed in terms of the holographic
mutual information denoted by I(A, B1) and I(A, B2) as
given by Eqs. (13), (14) and (15). However the above expres-
sion for the holographic entanglement negativity is valid only
for CFT1+1 dual to static bulk AdS3 gravitational configu-
rations such as the BTZ black holes. For a CFT1+1 dual to a
non static bulk AdS3 gravitational configuration it is possible
to reduce the length of the minimal curve anchored on the
corresponding interval to zero which leads to a degenerate
situation. As reviewed in the previous section a similar issue
also occurs for the case of the entanglement entropy and is
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Fig. 1 Schematic of extremal surfaces anchored on the subsystems A,
B1 and B2 which live on the (1 + 1)-dimensional boundary

resolved through the replacement of the length of the mini-
mal geodesics with that of the extremal curve [20]. It is now
clear that to obtain the covariant holographic entanglement
negativity for a CFT1+1 dual to a non static AdS3 gravita-
tional configuration, it is required to consider the lengths of
the extremal curves (Lext ) instead of the lengths of the static
minimal geodesics (L) in Eq. (11) as depicted in Fig. 1. The
above discussion therefore leads to the following expression
for the covariant holographic entanglement negativity for the
AdS3/CFT2 scenario

E = lim
B→Ac

3

16G(3)
N

[
2Lext

A +Lext
B1

+Lext
B2

−Lext
A∪B1

−Lext
A∪B2

]
.

(12)

where Lext
γ is the length of the extremal curve anchored on

the corresponding interval γ . The above equation may once
again be re-expressed as the holographic mutual information
between the pairs of intervals (A, B1) and (A, B2)

2 as

E = lim
B→Ac

[
3

4

(
I(A, B1) + I(A, B2)

)]
, (13)

I(A, B1) = SA + SB1 − SA∪B1

= 1

4G(3)
N

(Lext
A + Lext

B1
− Lext

A∪B1
), (14)

I(A, B2) = SA + SB2 − SA∪B2

= 1

4G(3)
N

(Lext
A + Lext

B2
− Lext

A∪B2
), (15)

In the following sections we apply our covariant holo-
graphic negativity conjecture to specific examples in the
AdS3/CFT2 framework. In this context we compute the
covariant holographic entanglement negativity for a bipar-
tite mixed state in a CFT1+1 dual to a bulk rotating non-
extremal BTZ black hole which corresponds to a a stationary

2 As mentioned in the introduction this relationship between the uni-
versal parts of the entanglement negativity and the mutual information
for mixed states of adjacent intervals has been also reported earlier in
the literature for both local and global quenched systems described by
a CFT1+1 [12,15].

configuration in the next section. In the subsequent section,
we obtain the same for the finite temperature mixed state of
a CFT1+1 with angular momentum through the replica tech-
nique and demonstrate that reproduces the bulk result in the
large central charge limit.

4 Covariant holographic entanglement negativity of a
CFT1+1 dual to a rotating non-extremal BTZ

In this section we compute the covariant holographic entan-
glement negativity of a mixed state for an extended bipartite
quantum system described by a CFT1+1 dual to a rotating
non-extremal BTZ black hole in the AdS3/CFT2 scenario
(we will consider the extremal black hole case in a latter sec-
tion as it is special). Note that this corresponds to a finite
temperature CFT1+1 with a conserved angular momentum.
The metric for a rotating BTZ black hole is given by

ds2 = − (r2 − r2+)(r2 − r2−)

r2 dt2

+ r2dr2

(r2 − r2+)(r2 − r2−)
+ r2

(
dφ − r+r−

r2 dt
)2

. (16)

Here, we have set the the AdS length scale to unity (R = 1)
and r− and r+ in the above equation correspond to the inner
and outer horizon radius of the black hole. The mass M , the
angular momentum J , the Hawking temperature TH and the
angular velocity Ω of the black hole may be expressed in
terms of r− and r+ as follows

8G(3)M = r2+ + r2−, J = r+r−
4G(3)

,

β = 1

TH
= 2πr+

r2+ − r2−
, Ω = r−

r+
,

β± = β(1 ± Ω). (17)

Notice that for a BTZ black hole φ is periodic i.e φ ∼
φ + 2π where as for a BTZ black string φ ∈ R. For the case
of a spatially non compact CFT1+1 which we are interested
in, it is required to consider the bulk dual as BTZ black string.
Note that the metric in Eq. (16) is a stationary gravitational
configuration and hence as discussed in the Sect. 3 the covari-
ant proposal of HRT must be employed to compute the holo-
graphic entanglement entropy. We briefly review their covari-
ant proposal [20] which involves the following co-ordinate
transformation as a first step,

w± =
√
r2 − r2+
r2 − r2−

e
2π
β± (φ±t) ≡ X ± T, (18)

Z =
√
r2+ − r2−
r2 − r2−

e(r+φi − tr−). (19)

Where w± = X ± T are the light cone coordinates and
(X, T, Z) are the the Poincaré coordinates. The above trans-
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formation maps the metric of the BTZ black hole given in
Eq. (16) to the Poincaré metric of the pure AdS3 given by

ds2 = dw+dw− + dZ2

Z2 ≡ −dT 2 + dX2 + dZ2

Z2 . (20)

The length of the required spacelike geodesics anchored
on the boundary subsystems is well known for the pure AdS3

space time and leads to the following expression3

Lγ = log

[
(Δφ)2

εiε j

]
, (21)

εi =
√
r2+ − r2−

r2∞
e(r+φi − t0r−). (22)

where Lγ represents the length of spacelike geodesic
anchored to the boundary of the subsystem-γ which is a
spacelike interval [φi , φ j ] and r∞ is the infrared cut-off for
the bulk BTZ black hole background where as εi is the same
for the pure AdS3 space time. Notice that the constant time
slice is taken along t = t0. Upon re-expressing Eq. (21) in
terms of BTZ coordinates then using the Ryu–Takaynagi for-
mula and the Brown–Hennaux formula (c = 3R

2G(3) ) the fol-
lowing expression for the entanglement entropy was obtained
[20]

Sγ = c

6
log

[
β+β−
π2a2 sinh

(
π | φi − φ j |

β+

)

sinh

(
π | φi − φ j |

β−

)]
, (23)

where Sγ represents the entanglement entropy of a sub-
system-γ , a is the UV cut-off for the boundary CFT related
to the bulk infrared cut-off (a ∼ 1

r∞ ).
Having briefly reviewed the method to obtain the expres-

sion for the holographic entanglement entropy, we now
employ our holographic conjecture to determine the covari-
ant holographic entanglement negativity for a CFT1+1 dual
to a rotating non-extremal BTZ black hole. As discussed ear-
lier the extremal surfaces in Eq. (58) for the covariant holo-
graphic entanglement negativity are the space-like geodesics
for the present case and hence, the entanglement negativity
is given as follows

E = lim
B→Ac

3

16G(d+1)
N

[
2LA

+LB1 + LB2 − LA∪B1 − LA∪B2

]
. (24)

3 Note that for the present case of the rotating BTZ black hole which
is stationary spacetime the the required extremal surface turns out to be
a spacelike geodesic. However for a general non-static non-stationary
bulk configuration the entanglement entropy is given by the extremal
surface which is to be determined by setting the null expansions to
zero(θ± = 0) as described earlier.

In order to compute the entanglement negativity of the sub-
system A we make the following identification for the points
(φ1, φ2, φ3, φ4) ≡ (−L , u, v, L) which implies that the
required subsystems A, B1, B2 correspond to the intervals
given by [u, v], [−L , u] and [v, L] respectively. We use the
expression given by Eq. (21) to obtain the required lengths of
the geodesics which are anchored to each of these intervals
i.e LA, LBi and LA∪Bi (i = 1, 2). These are then substituted
in Eq. (24) and the limit B → Ac (which corresponds to the
limit L → ∞) is taken to obtain the entanglement negativity
as

E = c

4
log

[
β+β−
π2a2 sinh

(
π�

β+

)
sinh

(
π�

β−

)]
− πc�

2β(1 − Ω2)
.

(25)

Re-expressing the above equation in terms of the entangle-
ment entropy and the thermodynamic entropy of subsystem-
A, we get

E = 3

2

[
SA − SthA

]
. (26)

Remarkably the above result clearly demonstrates that the
covariant holographic entanglement negativity leads to the
distillable quantum entanglement by eliminating the con-
tribution from the thermal correlations. In the next section
we compute the entanglement negativity of a mixed state
for a bipartite system described by the corresponding dual
CFT1+1 using the replica procedure and demonstrate that
it matches exactly with the above result in the large central
charge limit.

5 Entanglement negativity in a CFT1+1 with angular
momentum and at a finite temperature

In this section, we compute the entanglement negativity of a
bipartite quantum system in a (1+1)-dimensional CFT with
a conserved angular momentum and at a finite non-zero tem-
perature. We will demonstrate that the entanglement negativ-
ity precisely captures the distillable entanglement and also
show that in the large-c limit it matches exactly with the
result obtained in the previous section using our covariant
holographic conjecture. As described in the introduction a
variant of the replica technique was developed by Calabrese,
Cardy and Tonni in [11] to evaluate the entanglement negativ-
ity of a mixed state for a bipartite quantum system described
by a (1 + 1)-dimensional finite temperature conformal field
theory, which is expressed as

E = lim
ne→1

log(Tr [(ρTA)ne ]). (27)
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The full system is partitioned into subsystem-A which is
an interval [u, v] and the rest of the system denoted as Ac.
The quantity ρTA is the density matrix of the full bipartite
system-A∪ Ac partial transposed over the subsystem A (For
the details of how to obtain the above expression for the
entanglement negativity of a bipartite quantum system from
its definition for the tripartite configuration given by Eq. (4),
see [11] or the appendix of [31]). Notice that this definition is
valid only when the parity of n is even (n = ne) i.e the above
definition has to be interpreted as an analytic continuation
of an even sequence in ne to ne → 1. The authors in [11]
demonstrated that for a CFT1+1 at a finite temperature the
quantity (Tr [(ρT

A )ne ]) is related to a particular four point
function of the twist and the anti-twist fields, resulting in the
following expression for the entanglement negativity

E = lim
L→∞ lim

ne→1
log

[〈
Tne(−L)T 2

ne(u)T 2
ne (v)T ne(L)

〉
β

]
,

(28)

where 〈...〉β in the above equation indicates that this four
point function has to be evaluated in the finite temperature
CFT1+1 on an infinite cylinder of circumferenceβ (β = 1/T
where T is the temperature). In the above equation Tne and
T ne are the twist and the anti-twist fields which are primary
operators with the scaling dimension Δne , whereas T 2

ne and

T 2
ne are the twist fields which are primary operators that con-

nect j th sheet of the Riemann surface with ( j + 2)th sheet
and their scaling dimension Δ

(2)
ne are given as follows

Δne = c

12

(
ne − 1

ne

)
, (29)

Δ(2)
ne = 2Δ ne

2
= c

6

(
ne
2

− 2

ne

)
, (30)

The authors in [11] computed the entanglement negativity
using the above Eq. (28) to illustrate that this quantity is
a precise measures of the distillable quantum entanglement
through the removal of the thermal contributions.

In present case we consider a CFT1+1 at a finite temper-
ature, having a conserved angular momentum. The partition
function of this CFT is given by

Z(β) = Tr(e−β(H−iΩE J )) = Tr(e−β+L0−β− L̄0). (31)

Where, β is the inverse temperature, J is the angular
momentum, ΩE is the Euclidean angular velocity (related
to the Minkowskian angular velocity by ΩE = −iΩ). In the
above equation we have identified the left and right moving
temperatures as β± = β(1±iΩE ). Notice that the conserved
Virasoro charges are the Hamiltonian H = L0 + L̄0 and the
angular momentum J = L0 − L̄0 with L0 and L̄0 being
the holomorphic and anti-holomorphic zeroth mode Vira-
soro generators. Note that this CFT1+1 lives on a twisted

cylinder and may be obtained by the Euclidean CFT on a
complex plane by the following conformal transformation

w = β(1 − iΩE )

2π
log[z], (32)

where z denotes the coordinates on the complex plane and w

corresponds to the coordinates on the twisted cylinder men-
tioned above. This leads to the following expression for the
entanglement negativity of an extended bipartite quantum
system (A ∪ Ac) in a CFT1+1 at finite temperature and with
a conserved angular momentum.

E = lim
L→∞ lim

ne→1
log

[〈
Tne(−L)T̄ 2

ne (u)T 2
ne(v)T̄ne(L)

〉
β,ΩE

]
.

(33)

In the above expression the subscript β,ΩE indicates that
the four point function has to be evaluated in a CFT1+1 on a
twisted cylinder. The four point function on a twisted cylinder
may be obtained from the four point function on the complex
plane, by using the following transformation
〈
Tne(w1)T

2
ne(w2)T 2

ne(w3)T ne(w4)
〉
β,ΩE

=
4∏

i=1

| dzi
dwi

|Δi
ne

〈
Tne(z1)T

2
ne(z2)T 2

ne(z3)T ne(z4)
〉
C
.

(34)

Δi
ne in the above equation represents the scaling dimension

of the operator at zi . The four point function in a CFT1+1 on
the complex plane may be shown to have the following form
[11]
〈
Tne(z1)T

2
ne(z2)T 2

ne (z3)T ne (z4)
〉
C

= cnec
(2)
ne

z
2Δne
14 z

2Δ
(2)
ne

23

Fne(x)

xΔ
(2)
ne

, x ≡ z12z34

z13z24
. (35)

Notice from above that the four point function is deter-
mined only up to a function of the cross-ratio (x = z12z34

z13z24
)

and this function denoted here as Fne(x) can not be fixed
by the conformal symmetry alone as it depends on the full
operator content of the theory. We compute the required
four point function on the twisted cylinder by substituting
the four point function on a plane given by Eq. (35) in the
transformation given by Eq. (34). We also identify the points
(w1, w2, w3, w4) ≡ (−L , u, v, L). After obtaining the four
point function function, it may then be substituted in Eq. (33)
to obtain the entanglement negativity as follows

E = c

4
log

[
β+β−
π2a2 sinh

(
π�

β+

)
sinh

(
π�

β−

)]

− πc�

2β(1 + Ω2
E )

+ g
(
e
− 2π�

β(1+Ω2
E
) + ln[c2

1/2c1

]
, (36)

123



776 Page 8 of 12 Eur. Phys. J. C (2018) 78 :776

where � =| u − v | is length of the subsystem-A and a is
UV cut-off for the field theory, c1 and c 1

2
are normalization

constants of the two point function of the twist and the anti-
twist fields appropriately. The function g(x) in the above
equation is defined in the replica limit as follows

g(x) = lim
ne→1

ln[Fne(x)], lim
L→∞ x = e

− 2π�

β(1+Ω2
E ) . (37)

It is to be noted that this function f (x) is undetermined
except at the limiting cases x = 0 and x = 1. The value for
this function at these two limits is given by

g(1) = 0, g(0) = lim
ne→1

ln

[
CTne T̄ 2

ne T̄ne
c(2)
n

]

. (38)

These expressions for the limiting cases of the function f (x)
follow from the argument provided in [11] for the finite
temperature scenario. The constants CTne T̄ 2

ne T̄ne
and c(2)

n in

the equation above are the coefficients of the leading term
in the operator product expansion (OPE) of Tne(z1)T̄ 2

ne(z2)

and T 2
ne(z1)T̄ 2

ne(z2) respectively. Following this we make a
Wick rotation Ω = iΩE and re-write the right hand side
of Eq. (36) in terms of entanglement entropy(SA) given in
Eq. (10) and the thermodynamic entropy of subsystem A
(SthA = πc�

3β(1−Ω2)
) which leads us to

E = 3

2
[SA − SthA ] + g

(
e
− 2π�

β(1−Ω2)

)
+ + ln[c2

1/2c1]. (39)

We see from the expression above that the entanglement
negativity serves as a precise measure of the quantum distil-
lable entanglement at finite temperatures through the elimi-
nation of the classical/thermal contributions. Notice that for
the angular velocity Ω = 0, the above equation reduces
to the expected result for the entanglement negativity of a
finite temperature CFT1+1 without angular momentum as
obtained in [11]. In the large central charge limit of the
CFT1+1 as argued in our earlier work [31] the first two uni-
versal terms are O[c] and dominate over the non-universal
term involving the function g(x) and the constant in Eq. (39)
are expected to be subleading and of order O( 1

c ). The detailed
argument for this issue involves results from the large-c limit
of the conformal block expansions for the correlations func-
tions computed through the monodromy technique described
in [40–42]. It is important emphasize here that this is a non-
trivial exercise the detailed computations of which we have
a presented in a recent article [43].4 The above arguments

4 In [43], we have utilized the monodromy technique to examine the
large central charge limit of the four point twist correlator in Eq. (35)
and a six point twist correlator which reduces to this four point func-
tion in a specific limit. Through the results obtained we have clearly

clearly indicate that the subleading terms in Eq. (39) involv-
ing the non-universal function g(x) may be neglected in the
large central charge limit. This leads us to the following
expression for the large-c limit of the entanglement nega-
tivity for the finite temperature bipartite mixed state of a
CFT1+1 with a conserved charge

E = 3

2
[SA − SthA ]. (40)

This result matches exactly with Eq. (26) obtained through
our covariant holographic entanglement negativity conjec-
ture from the bulk. Naturally this constitutes extremely strong
evidence in favor of our conjecture for the AdS3/CFT2 sce-
nario and indicates towards its universality.

6 Covariant holographic entanglement negativity of a
CFT1+1 dual to a rotating extremal BTZ

In this section we proceed to compute the holographic entan-
glement negativity of a mixed state for an extended bipar-
tite quantum system described by a CFT1+1 that is dual to
extremal rotating BTZ black hole using our covariant pre-
scription and demonstrate that for this case also the entan-
glement negativity captures the distillable quantum entangle-
ment. The CFTs that are dual to the extremal black holes are
very subtle and have many interesting properties. In [44], the
authors propose the Kerr-CFT correspondence according to
which (d + 1)-dimensional extremal Kerr-AdS black holes
are dual to a chiral half of a CFT in d dimensions. In the
AdS3/CFT2 context, it was shown in [45] that the entangle-
ment entropy of a chiral half of a CFT1+1 matches exactly
with the covariant holographic entanglement entropy com-
puted from the bulk BTZ black hole employing the HRT pro-
posal. This was found to be true irrespective of whether one
considers the near horizon metric or the full metric. The met-
ric of the extremal BTZ black hole may be obtained by equat-
ing the inner and the outer radius of horizon i.e r+ = r− = r0

in Eq. (16) as

ds2 = − (r2 − r2
0 )2

r2 dt2 + r2dr2

(r2 − r2
0 )2

+ r2

(

dφ − r2
0

r2 dt

)2

,

(41)

where J = M = r2
0

4G(3)
N

from Eq. (17). Note that the

holographic entanglement entropy of a single interval in a

(Footnote 4 continued)
demonstrated the assertion that the universal part of the entanglement
negativity provides the dominant contribution in the large central charge
limit.
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CFT1+1 dual to an extremal BTZ black hole was computed
in [45] and we first briefly review their computation. In order
to obtain the required geodesic lengths it is required to make
the following coordinate transformation to map the above
metric in Eq. (41) to that of the pure AdS3 space time in the
Poincare coordinates

w+ = φ + t − r0

r2 − r2
0

, (42)

w− = 1

2r0
e2r0(φ−t), (43)

Z = 1
√
r2 − r2

0

er0(φ−t). (44)

Note that these transformations can not be obtained by
naively putting r+ = r− in Eqs. (18) and (19). Under the
transformations given by Eqs. (42), (43) and (44) the metric
of the extremal BTZ black hole in Eq. (41) becomes

ds2 = dw+dw− + dZ2

Z2 ≡ −dT 2 + dX2 + dZ2

Z2 . (45)

The computation of the length of the spacelike geodesic
is similar to the case involving the non extremal black holes
discussed earlier, leading to the following expression for the
entanglement entropy

Lγ = log

[
(Δφ)2

εiε j

]
(46)

εi = 1

r∞
er0(φi−t0). (47)

Upon re-expressing the above equation in the BTZ coordi-

nates and using the Ryu–Takayanagi formula (Sγ = Lγ

4G(3)
N

),

the entanglement entropy of a subsystem-γ in the dual
CFT1+1 is given by the following expression (see [45] for
details)

Sγ = c

6
log

[ | φi − φ j |
a

]

+ c

6
log

[
1

r0a
sinh

(
r0 | φi − φ j | )]

. (48)

Note that the first term in the above equation resembles
the entanglement entropy of a subsystem γ of a zero temper-
ature CFT1+1 whereas the second term is the entanglement
entropy of the same subsystem in aCFT1+1 with an effective
temperature r0

π
. The authors in [45] noted that this has a clear

explanation that the left movers of the CFT are in ground
state while the right movers have an effective temperature
known as the Frolov–Thorne temperature5 [46] given by

5 The Frolov–Thorne temperature may be understood as follows. The
left and the right moving temperatures of the dual CFT1+1 may be
expressed in terms of the inner and outer horizon radius of the bulk black

TFT = 1

β−
= r0

π
. (49)

Therefore, the entanglement entropy in Eq. (48) may be
re-expressed as

Sγ = c

6
log

[ | φi − φ j |
a

]

+ c

6
log

[
βFT

πa
sinh

(
π | φi − φ j |

βFT

)]
. (50)

Having obtained the required expression for the length of
a geodesic anchored to a given subsystem on the boundary,
we identify the points (φ1, φ2, φ3, φ4) ≡ (−L , u, v, L) and
the subsystems A ≡ [u, v], B1 ≡ [−L , u] and B2 ≡ [v, L]
then we substitute all the quantities in the Eq. (24) to obtain
the covariant holographic entanglement negativity as

E = c

4
log

[
�

a

]
+ c

4
log

[
βFT

πa
sinh

(
π�

βFT

)]
− πc�

4βFT
.

(51)

For brevity the above expression may be re-written as

E = 3

2

[
SA − SFTA

]
. (52)

Remarkably the above equation indicates towards an
extremely interesting result that the covariant holographic
entanglement negativity is the difference between the entan-
glement entropy SA and the thermodynamic entropy of the
subsystem A ( SFTA = s� = πc�

6β− ) suggesting that the latter
does not contribute to the distillable quantum entanglement
and behaves like an effective thermal entropy. Note that this is
because the ground state of the extremal black hole is highly
degenerate giving rise to an emergent thermodynamic behav-
ior. The extremal black hole entropy is the measure of this
degeneracy. The dual CFT1+1 is in a mixed quantum state
having this counting entropy with an effective temperature
equal to the Frolov–Thorne temperature [45]. Therefore the
contributions from the counting entropy have to be elimi-
nated to obtain the distillable quantum entanglement which
is measured by the entanglement negativity. This explains
our result in Eq. (52) through which we have demonstrated
that once again the covariant holographic entanglement neg-
ativity of a bipartite system described by a CFT1+1 dual to
an extremal rotating BTZ black hole, computed employing
our conjecture leads to the distillable quantum entanglement.

(Footnote 5 continued)
string using Eq. (17) i.e. 1

β+ = T+ = r+−r−
2π

and 1
β− = T− = r++r−

2π
.

When black string becomes extremal the thermal temperature vanishes
T+ = 0 but there remains an effective temperature called the Frolov–
Thorne temperature TFT = r0

π
= 1

β− . This results in the entropy of the

extremal black string in the bulk s = r0

4G(3)
N

which in the dual CFT1+1

corresponds to the thermodynamic entropy density s = πc
6β− .
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7 Entanglement negativity in a CFT1+1 with angular
momentum and at zero temperature

In this section we compute the entanglement negativity of a
zero temperature CFT1+1 with a conserved angular momen-
tum and demonstrate that this matches exactly with the bulk
result obtained using our conjecture in the previous section.
The authors in [45] determine the conformal transformation
that maps the points on the complex plane to that on the
cylinder where the dual CFT is situated by observing how
the co-ordinate transformations in Eqs. (42) and (43) behave
as r → ∞. The authors then use the transformation to show
that the entanglement entropy computed from the two point
function of the twist and anti twist fields on such a cylinder
matches exactly with the holographic entanglement entropy
obtained from the bulk extremal BTZ black hole. The behav-
ior of Eqs. (42) and (43) as r → ∞ leads to the following
conformal map

w = z, (53)

w̄ = β−
2π

log

[
2π z̄

β−

]
. (54)

As discussed in Sect. 4, from Eqs. (34) and (35), the four
point function in the CFT1+1 on the cylinder is related that
on the complex plane by

〈
Tne (w1)T

2
ne (w2)T 2

ne(w3)T ne (w4)
〉
β−

=
4∏

i=1

(
dzi
dwi

d z̄i
dw̄i

)Δi
ne
2 cnec

(2)
ne

z
2Δne
14 z

2Δ
(2)
ne

23

Fne(x)

xΔ
(2)
ne

. (55)

We identify the points at which the four point function has
to be evaluated as (w1, w2, w3, w4) ≡ (−L , u, v, L), there-
fore from Eq. (54) we have (z1, z2, z3, z4) ≡ (−L , u, v, L)

and (z̄1, z̄2, z̄3, z̄4) ≡ β−
2π

(e
− 2πL

β− , e
2πu
β− , e

2πv
β− , e

2πL
β− ). After

this identification, we compute the four point function in Eq.
(55) and substitute it in Eq. (28) to obtain the entanglement
negativity as

E = c

4
log

[
�

a

]
+ c

4
log

[
β−
πa

sinh

(
π�

β−

)]

−πc�

4β−
+ g

(
e
− π�

β−
)

+ ln[c2
1/2c1]. (56)

As discussed in Sect. 5, in the large-c limit the entan-
glement negativity receives the leading contribution from
the universal terms which of O[c] (first three terms in the
above equation) and the non universal terms which include
the function g(x) and the constant are subleading. Further-
more, identifying β− = βFT we obtain the large-c limit of
the entanglement negativity of a zero temperature CFT1+1

with a conserved angular momentum as

E = 3

2

[
SA − SFTA

]
. (57)

The above expression for the entanglement negativity exactly
matches with Eq. (51) obtained from the dual bulk extremal
rotating BTZ black hole using our covariant holographic
entanglement negativity conjecture. Thus, we have verified
our conjecture by demonstrating that in the large central
charge limit it exactly reproduces the entanglement negativity
of a mixed state for an extended bipartite system described by
a CFT1+1 dual to a stationary AdS3 configuration involving
a bulk extremal rotating BTZ black hole.

8 Summary and conclusion

To summarize we have proposed a covariant holographic
conjecture for the entanglement negativity of bipartite mixed
states in CFT1+1 dual to bulk non-static AdS3 configura-
tions. Employing our conjecture we have evaluated the entan-
glement negativity of a finite temperature mixed state in a
CFT1+1 dual to a bulk rotating non extremal BTZ black hole
which constitutes a stationary configuration. Remarkably this
exactly matches our computation for the entanglement neg-
ativity in the dual holographic CFT1+1 through the replica
technique in the large central charge limit. Interestingly we
observe that the entanglement negativity involves the elim-
ination of the thermal contributions and hence leads to an
upper bound on the distillable entanglement as expected from
quantum information theory. We also employ our covari-
ant holographic negativity conjecture for a zero tempera-
ture bipartite mixed state of a holographic CFT1+1 with
angular momentum dual to an extremal rotating BTZ black
hole. Remarkably we observe that the entanglement negativ-
ity arises from the chiral half of theCFT1+1 and involves the
elimination of the corresponding Frolov–Thorne entropy. As
earlier this exactly matches our computation for the entangle-
ment negativity in the dual holographic CFT1+1 through the
replica technique in the large central charge limit. Our con-
clusions described above has been supported by an explicit
analysis of the large central charge limit for the entanglement
negativity in CFT1+1.

Our results for the holographic entanglement negativity in
the AdS3/CFT2 scenario described above strongly suggests
a higher dimensional generalization in the AdSd+1/CFTd
framework in the spirit of [31]. Following [20] Our results for
the holographic entanglement negativity in the AdS3/CFT2

scenario described above strongly suggests a higher dimen-
sional generalization in the AdSd+1/CFTd framework in the
spirit of [31]. Following [20] this would require the consid-
eration of the areas of the extremal surfaces (Yext ) instead of
the areas of the static minimal surfaces (A) in Eq. (11) given
in the Introduction. This would lead to the following expres-
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sion for the covariant holographic entanglement negativity
in the AdSd+1/CFTd scenario as

E = lim
B→Ac

3

16G(d+1)
N

[
2Yext

A + Yext
B1

+ Yext
B2

− Yext
A∪B1

− Yext
A∪B2

]
.

(58)

whereYext
γ is the area of the extremal surface anchored on the

corresponding subsystem γ and B → Ac denotes the bipar-
tite limit in which the subsystem B1 and B2 are extended to
infinity and B = B1 ∪ B2 becomes the rest of the system
denoted byAc. However such a higher dimensional gener-
alization would necessitate appropriate consistency checks
through explicit examples and should be supported by a pos-
sible proof. This remains an extremely crucial open issue for
future investigation.

The covariant holographic entanglement negativity con-
jecture in the AdS3/CFT2 scenario proposed by us in this
article provides an elegant scheme for exploring entangle-
ment issues for mixed states involving time dependent pro-
cesses in two dimensional conformal field theories. Nat-
urally this should find interesting applications in diverse
areas such as quantum quenches and thermalization, quantum
phase transitions which involve entanglement evolution in
condensed matter systems. Furthermore our covariant holo-
graphic entanglement negativity conjecture is expected to
find application to the study of the long standing issue of
black hole formation and the information loss paradox in the
context of the AdS3/CFT2 correspondence. These would be
extremely interesting open issues for future investigations.
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