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Abstract The inclusive production at the LHC of a charged
light hadron and of a jet, featuring a wide separation in rapid-
ity, is suggested as a new probe process for the investigation
of the BFKL mechanism of resummation of energy loga-
rithms in the QCD perturbative series. We present some pre-
dictions, tailored on the CMS and CASTOR acceptances, for
the cross section averaged over the azimuthal angle between
the identified jet and hadron and for azimuthal correlations.

1 Introduction

The LHC record energy, as well as the good resolution in
azimuthal angles of the particle detectors, offer a unique
opportunity to test a wide class of predictions of perturba-
tive QCD. These include the so called Mueller–Navelet jet
production [1], i.e. the inclusive production of two jets fea-
turing a large rapidity separation between them, for which
a wealth of theoretical analyses were produced in the last
years [2–16], and the somewhat related process where two
identified, charged light hadrons well separated in rapidity
are inclusively produced [17,18], instead of jets.

A common feature to these two processes is that their high-
energy behavior is dominated by those final-state configura-
tions where the produced particles are strongly ordered in
rapidity, the tagged objects (jets or identified hadrons) being
the two extrema in the rapidity tower, thus yielding a number
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of energy logarithms growing with the number of produced
particles. Such energy logarithms are so large to compensate
the smallness of the coupling αs , so the perturbative series
must be properly resummed.

The theoretical framework for the resummation of energy
logs for these two processes, as well as for any semi-hard
process in perturbative QCD, is provided by the Balitsky–
Fadin–Kuraev–Lipatov (BFKL) approach [19–22], whereby
the resummation of all terms proportional to (αs ln(s))n , the
so called leading logarithmic approximation or LLA, and
that of all terms proportional to αs(αs ln(s))n , the next-to-
leading approximation or NLA, can be systematically car-
ried out. The bottom line of the BFKL formalism is that
azimuthal coefficients of the Fourier expansion of the cross
section differential in the variables of the tagged objects over
the relative azimuthal angle take the very simple form of
a convolution between two impact factors, describing the
transition from each colliding proton to the respective final
state tagged object, and a process-independent Green’s func-
tion. The BFKL Green’s function obeys an integral equation,
whose kernel is known at the next-to-leading order (NLO)
both for forward scattering (i.e. for t = 0 and color singlet
in the t-channel) [23,24] and for any fixed (not growing with
energy) momentum transfer t and any possible two-gluon
color state in the t-channel [25–31].

The impact factors for the proton to forward jet transi-
tion (the so called “jet vertices”) are known up to the NLO
for several jet selection algorithms [32–36]. The jet vertex,
in its turn, can be expressed, within leading-twist collinear
factorization, as the convolution of the parton distribution
function (PDF) of the colliding proton, obeying the standard
DGLAP evolution [37–39], with the hard process describ-
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ing the transition from the parton emitted by the proton to
the forward jet in the final state. Two such jet vertices must
be convoluted with the BFKL Green’s function to theoreti-
cally describe the Mueller–Navelet jet production. The main
aim is to calculate cross sections and azimuthal angle corre-
lations [40,41] between the two measured jets, i.e. average
values of cos (nφ), where n is an integer and φ is the angle
in the azimuthal plane between the direction of one jet and
the direction opposite to the other jet, and ratios of two such
cosines [42,43].

Also the impact factors for the proton to identified hadron
transition are known up to the NLO [44] and can be
expressed, within leading-twist collinear factorization, as
the convolution of the parton distribution function (PDF)
of the colliding proton with the hard process describing the
transition from the parton emitted by the proton to a final-
state parton and with the fragmentation function (FF) for
that parton to the desired hadron. Two such hadron vertices
must be convoluted with the BFKL Green’s function to the-
oretically describe the above-mentioned inclusive hadron-
hadron production and finally get predictions for cross sec-
tions and azimuthal angle correlations, similarly to the case
of jets.

Within the same formalism, other interesting processes
have been proposed as a testfield for BFKL dynamics at the
LHC, namely the inclusive production of three or four jets,
well separated in rapidity from each other [45–49], the inclu-
sive detection of two heavy quark–antiquark pairs, separated
in rapidity, in the collision of two real (or quasi-real) pho-
tons [50], and the inclusive tag of a forward J/�-meson and
a very backward jet at the LHC [51].

On the experimental side the situation is as follows: the
CMS Collaboration [52] has presented the first measure-
ments of the azimuthal correlation of the Mueller–Navelet
jets at

√
s = 7 TeV, but further experimental studies of

the Mueller–Navelet jets are expected at higher LHC ener-
gies and larger rapidity intervals, including also the effects
of using asymmetrical cuts for the jet transverse momenta.
No experimental analyses have yet appeared on azimuthal
correlation between two rapidity-separated identified light
hadrons. The reason for that could be that events with iden-
tified hadrons in the final state, carrying transverse momenta
of the order of, say, 5 GeV or larger, fall into the class of
what experimentalists call “minimum bias events”, which
represent the main background in high-luminosity runs at
a collider. They would be better studied in low-luminosity,
dedicated, runs.

In this paper we want to introduce a new process which
could serve as a probe of BFKL dynamics: the inclusive
hadron-jet production in proton-proton collisions,

proton(p1) + proton(p2) → hadron(kH , yH ) + X

+ jet(kJ , yJ ), (1)

when a charged light hadron: π±, K±, p ( p̄) and a jet with
high transverse momenta, separated by a large interval of
rapidity, are produced together with an undetected hadronic
system X (see Fig. 1 for a schematic view). The pro-
cess (1) has many common features with the inclusive J/�-
meson plus backward jet production, considered recently in
Ref. [51]. From the experimental side, the detection of the
J/�-meson looks rather appealing. But, from the theory
side, there are more uncertainties in this case in comparison
to our proposal. The J/�-meson production impact factor
was considered in LO; moreover, several production mech-
anisms in the frame of NRQCD were discussed. Instead, the
light hadron impact factor is well defined in collinear fac-
torization and it is known in NLO. Previous experience in
BFKL calculations for various processes at LHC shows that
the account of NLO corrections to the impact factors leads
both to a considerable change of predictions and to a big
reduction of the theoretical uncertainties.

The theoretical task to build predictions for cross section
and azimuthal correlations for our process is embarrassingly
simple: one should simply replace one of the two jet impact
factor entering the Mueller–Navelet formulas with the ver-
tex for the proton-to-hadron transition. From the theoretical
point of view, this process is definitely an easy target, since
all the needed building blocks are available, with NLO accu-
racy.

Yet, we believe that there are some good reasons for
building numerical predictions for this process and submit-
ting them to the attention of both experimentalists and theo-
rists:

• the BFKL resummation implies certain factorization
structure for the predicted observables: the latter are cal-
culated as a convolution of the universal BFKL Green’s
function with the process dependent impact factors,
which resembles the factorization in Regge theory. It is
important to test this picture experimentally, consider-
ing all possible processes for which the full NLO BFKL
description is available.

• In Refs. [9,10,13,53] it was discussed, in the context of
Mueller–Navelet jet production, that using asymmetric
cuts for the transverse momenta of the tagged jets sup-
presses the Born term, present only for back-to-back jets,
thus enhancing the effects of the additional undetected
hard gluon radiation and making therefore more visible
the impact of the BFKL resummation, with respect to the
fixed-order (DGLAP) contribution. For the process we
are considering here this kind asymmetry would be nat-
urally imposed by the completely different nature of the
two tagged objects: the identified jet should have trans-
verse momentum not smaller than 20 GeV or so, whereas
the minimum hadron transverse momentum can be as
small as 5 GeV.
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Fig. 1 Inclusive hadroproduction of a charged light hadron and of a
jet

• For the process under consideration only one hadron in
the final state should be identified, instead of two as in the
hadron-hadron inclusive production, the other identified
object being a jet with a typically much larger transverse
momentum. This should facilitate the mining of these
events out of the minimum-bias ones.

• From the theoretical point of view one can use this pro-
cess to compare models for FFs or for jet algorithms, han-
dling expressions which are linear in the corresponding
functions and not quadratic as it would be, respectively,
in the hadron-hadron and in the Mueller–Navelet jet case.

The summary of the paper is as follows: in Sect. 1 we
present the theoretical framework and sketch the derivation
of our predictions; in Sect. 2 we show and discuss the results
of our numerical analysis; finally, in Sect. 3, we draw our
conclusions and give some outlook.

2 Theoretical framework

The final state configuration of the inclusive process under
consideration is schematically represented in Fig. 1, where a
charged light hadron (kH , yH ) and a jet (kJ , yJ ) are detected,
featuring a large rapidity separation, together with an unde-
tected system of hadrons. For the sake of definiteness, we
will consider the case where the hadron rapidity yH is larger
than the jet one yJ , so that Y ≡ yH − yJ is always positive.
This implies that, for most of the considered values of Y , the
hadron is forward and the jet is backward.

The hadron and the jet are also required to possess large
transverse momenta, �k2

H ∼ �k2
J � �2

QCD. The protons’
momenta p1 and p2 are taken as Sudakov vectors satisfy-
ing p2

1 = p2
2 = 0 and 2(p1 p2) = s, so that the momenta of

the final-state objects can be decomposed as

kH = xH p1 +
�k2
H

xHs
p2 + kH⊥, k2

H⊥ = −�k2
H ,

kJ = xJ p2 +
�k2
J

xJ s
p1 + kJ⊥, k2

J⊥ = −�k2
J . (2)

In the center-of-mass system, the hadron/jet longitudinal
momentum fractions xH,J are connected to the respective

rapidities through the relations yH = 1
2 ln

x2
H s�k2
H

, and yJ =
1
2 ln

�k2
J

x2
J s

, so that dyH = dxH
xH

, dyJ = − dxJ
xJ

, and Y = yH −
yJ = ln xH xJ s

|�kH ||�kJ | , here the space part of the four-vector p1‖
being taken positive.

In QCD collinear factorization the cross section of the
process (1) reads

dσ

dxHdxJ d2kHd2kJ

=
∑

r,s=q,q̄,g

∫ 1

0
dx1

∫ 1

0
dx2 fr (x1, μF ) fs (x2, μF )

× dσ̂r,s
(
ŝ, μF

)

dxHdxJ d2kHd2kJ
, (3)

where the r, s indices specify the parton types (quarks
q = u, d, s, c, b; antiquarks q̄ = ū, d̄, s̄, c̄, b̄; or gluon g),
fr,s (x, μF ) denote the initial proton PDFs; x1,2 are the lon-
gitudinal fractions of the partons involved in the hard sub-
process, while μF is the factorization scale; dσ̂r,s

(
ŝ
)

is the
partonic cross section and ŝ ≡ x1x2s is the squared center-
of-mass energy of the parton-parton collision subprocess.

In the BFKL approach the cross section can be presented
(see Ref. [4] for the details of the derivation) as the Fourier
sum of the azimuthal coefficients Cn , having so

dσ

dyHdyJ d|�kH | d|�kJ |dφHdφJ

= 1

(2π)2

[
C0 +

∞∑

n=1

2 cos(nφ) Cn
]

, (4)

where φ = φH −φJ −π , with φH,J the hadron/jet azimuthal
angles, while yH,J and �kH,J are their rapidities and transverse
momenta, respectively. The φ-averaged cross section C0 and
the other coefficients Cn �=0 are given by1

1 In Ref. [18], on the last line of Eq. (5), which is closely related to

this formula for Cn , it was mistakenly written 2 ln
(�k2

1
�k2

2

)
instead of

ln
(�k2

1
�k2

2

)
, although the numerical results presented there were obtained

using the correct formula.
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Cn ≡
∫ 2π

0
dφH

∫ 2π

0
dφJ cos[n(φH − φJ − π)] × dσ

dyHdyJ d|�kH | d|�kJ |dφHdφJ

= eY

s

∫ +∞

−∞
dν

(
xH xJ s

s0

)ᾱs (μR)

{
χ(n,ν)+ᾱs (μR)

[
χ̄ (n,ν)+ β0

8Nc
χ(n,ν)

[
−χ(n,ν)+ 10

3 +2 ln

(
μ2
R√�k2
H

�k2
J

)]]}

×α2
s (μR)cH (n, ν, |�kH |, xH )[cJ (n, ν, |�kJ |, xJ )]∗ ×

{
1 + αs(μR)

[
c(1)
H (n, ν, |�kH |, xH )

cH (n, ν, |�kH |, xH )
+

[
c(1)
J (n, ν, |�kJ |, xJ )
cJ (n, ν, |�kJ |, xJ )

]∗]

+ ᾱ2
s (μR) ln

(
xH xJ s

s0

)
β0

4Nc
χ(n, ν) f (ν)

}
. (5)

Here ᾱs(μR) ≡ αs(μR)Nc/π , with Nc the number of colors,

β0 = 11

3
Nc − 2

3
n f (6)

is the first coefficient of the QCD β-function, where n f is
the number of active flavors,

χ (n, ν) = 2ψ (1) − ψ

(
n

2
+ 1

2
+ iν

)

−ψ

(
n

2
+ 1

2
− iν

)
(7)

is the leading-order (LO) BFKL characteristic function,
cH (n, ν) is the LO forward hadron impact factor in the ν-
representation, given as an integral in the parton fraction
x , containing the PDFs of the gluon and of the different
quark/antiquark flavors in the proton, and the FFs of the
detected hadron,

cH (n, ν, |�kH |, xH ) = 2

√
CF

CA
(�k2

H )iν−1/2
∫ 1

xH

dx

x

(
x

xH

)2iν−1

×
⎡

⎣CA

CF
fg(x)D

h
g

( xH
x

)
+

∑

r=q,q̄

fr (x)D
h
r

( xH
x

)
⎤

⎦ , (8)

cJ (n, ν) is the LO forward jet vertex in the ν-representation,

cJ (n, ν, |�kJ |, xJ ) = 2

√
CF

CA
(�k 2

J )iν−1/2

×
⎛

⎝CA

CF
fg(xJ ) +

∑

s=q,q̄

fs(xJ )

⎞

⎠ (9)

and the f (ν) function is defined by

i
d

dν
ln

(
cH

[cJ ]∗
)

= 2

[
f (ν) − ln

(√
�k2
H

�k2
J

)]
. (10)

The remaining objects are the hadron/jet NLO impact factor
corrections in the ν-representation, c(1)

H,J (n, ν, |�kH,J |, xH,J ),
their expressions being given in Eqs. (4.58)–(4.65) of
Ref. [44] and in Eq. (36) of Ref. [4], respectively.

3 Results and discussion

3.1 Integration over the final-state phase space

In order to match the actual LHC kinematic cuts, we inte-
grate the coefficients over the phase space for two final-state
objects and keep fixed the rapidity interval, Y , between the
hadron and the jet:

Cn =
∫ ymax

H

ymin
H

dyH

∫ ymax
J

ymin
J

dyJ

∫ kmax
H

kmin
H

dkH

∫ kmax
J

kmin
J

dkJ

× δ (yH − yJ − Y ) Cn (yH , yJ , kH , kJ ) . (11)

We consider two distinct ranges for the final-state objects:

• both the hadron and the jet tagged by the CMS detector
in their typical kinematic configurations, i.e.: kmin

H = 5
GeV, kmin

J = 35 GeV, ymax
H = −ymin

H = 2.4, ymax
J =

−ymin
J = 4.7 [52]. For the sake of brevity, we will refer

to this choice as the CMS-jet configuration;
• a hadron always detected inside CMS in the range given

above, together with a very backward jet tagged by CAS-
TOR. In this peculiar, CASTOR-jet configuration, the jet
lies in the typical range of the CASTOR experimental
analyses, i.e. kmin

J = 5 GeV, ymax
J = −5.2, ymin

J = −6.6
[54],

The value of kmax
H is constrained by the lower cutoff of

the adopted FF parametrizations (see below) and is always
fixed at 21.5 GeV. The value of kmax

J is instead constrained
by the requirement that xJ ≤ 1 which implies kmax

J � 60
GeV for

√
s = 7 TeV and |yJ | < 4.7 (CMS-jet) and kmax

J �
17.68 GeV for

√
s = 13 TeV (CASTOR-jet).

The rapidity interval, Y , is taken to be positive: 0 < Y ≤
ymax
H − ymin

J . Two center-of-mass energies,
√
s = 7 and 13

TeV, are taken into account in the CMS-jet configuration,
while we give predictions for

√
s = 13 TeV in the CASTOR-

jet case.
In our calculations we use the MMHT 2014 NLO PDF

set [55] with two different NLO parametrizations for hadron
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Fig. 2 Y -dependence of C0 for μR = μN =
√

|�kH ||�kJ |, (μF )1,2 = |�kH,J |, for
√
s = 7 TeV (left) and

√
s = 13 TeV (right), and Y ≤ 7.1 (CMS-jet

configuration)

FFs: AKK 2008 [56] and HKNS 2007 [57] (see Sect. 3.3
for a related discussion). In the results presented below, we
sum over the production of forward charged light hadrons:
π±, K±, p, p̄.

3.2 Scale optimization

To fix the renormalization scale μR , which can be arbitrar-
ily chosen within the NLA, we adopt the BLM [58–61]
approach, which has become a quite common choice for
semihard processes. We first perform a finite renormalization
from the MS to the physical MOM scheme, whose definition
is related to the 3-gluon vertex being a key ingredient of the
BFKL approach and get

αMS
s = αMOM

s

(
1 + αMOM

s

π
T

)
, (12)

with T = T β + T conf ,

T β = −β0

2

(
1 + 2

3
I

)
, (13)

T conf = 3

8

[
17

2
I + 3

2
(I − 1) ξ +

(
1 − 1

3
I

)
ξ2 − 1

6
ξ3

]
,

where I = −2
∫ 1

0 dx ln(x)
x2−x+1

� 2.3439 and ξ is the gauge
parameter of the MOM scheme, fixed at zero in the following.
Then, the “optimal” BLM scale μBLM

R is the value of μR

that makes the β0-dependent part in the expression for the
observable of interest vanish. In Ref. [12] some of us showed
that terms proportional to the QCD β0-function are present
not only in the NLA BFKL kernel, but also in the expressions
for the NLA impact factor. This leads to a non-universality
of the BLM scale and to its dependence on the energy of the
process.

Finally, the condition for the BLM scale setting was found
to be

Cβ
n ∝

∫ ymax
H

ymin
H

dyH

∫ ymax
J

ymin
J

dyJ

∫ kmax
H

kmin
H

dkH

∫ kmax
J

kmin
J

dkJ

∞∫

−∞
dν

× eY ᾱMOM
s (μBLM

R )χ(n,ν)cH (n, ν)[cJ (n, ν)]∗

×
[

5

3
+ ln

(μBLM
R )2

|�kH ||�kJ |
+ f (ν) − 2

(
1 + 2

3
I

)

+ ᾱMOM
s (μBLM

R )Y
χ(n, ν)

2

(
−χ(n, ν)

2

+ 5

3
+ ln

(μBLM
R )2

|�kH ||�kJ |
+ f (ν) − 2

(
1 + 2

3
I

))]
= 0.

(14)

The term in the r.h.s. of Eq. (14) (proportional to αMOM
s ) orig-

inates from the NLA part of the kernel, while the remaining
ones come from the NLA corrections to the hadron/jet ver-
tices.

In order to find the values of the BLM scales, we intro-
duce the ratios of the BLM to the “natural” scale suggested

by the kinematic of the process, μN =
√

|�kH ||�kJ |, so that

mR = μBLM
R /μN , and look for the values of mR which solve

Eq. (14).
We finally plug these scales into our expression for the

integrated coefficients in the BLM scheme (for the derivation
see Ref. [12]):

Cn =
∫ ymax

H

ymin
H

dyH

∫ ymax
J

ymin
J

dyJ

∫ kmax
H

kmin
H

dkH

∫ kmax
J

kmin
J

dkJ

∞∫

−∞
dν

× eY

s
e
Y ᾱMOM

s (μBLM
R )

[
χ(n,ν)+ᾱMOM

s (μBLM
R )

(
χ̄(n,ν)+ T conf

3 χ(n,ν)
)]
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× (
αMOM
s (μBLM

R )
)2

× cH (n, ν)[cJ (n, ν)]∗
{

1 + ᾱMOM
s (μBLM

R )

[
c̄(1)
H (n, ν)

cH (n, ν)

+
[
c̄(1)
J (n, ν)

cJ (n, ν)

]∗
+ 2T conf

3

]}
. (15)

The coefficient C0 gives the φ-averaged cross section, while
the ratios Rn0 ≡ Cn/C0 = 〈cos(nφ)〉determine the values of
the mean cosines, or azimuthal correlations, of the produced
hadron and jet. In Eq. (15), χ̄ (n, ν) is the eigenvalue of NLA
BFKL kernel [62] and its expression is given, e.g. in Eq. (23)
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Fig. 4 Y -dependence of C0 and of several ratios Cm/Cn for μF = μBLM
R ,

√
s = 13 TeV, and Y ≤ 7.1 (CMS-jet configuration)

of Ref. [4], whereas c̄(1)
H,J are the NLA parts of the hadron/jet

vertices (see Ref. [12]).
We set the factorization scale μF equal to the renormal-

ization scale μR , as assumed by the MMHT 2014 PDF.
All calculations are done in the MOM scheme. For com-

parison, we present results for the φ-averaged cross sec-
tion C0 in the MS scheme, as implemented in Eq. (11).

In the latter case, we choose natural values for μR , i.e.

μR = μN ≡
√

|�kH ||�kJ |, and two different values of the

factorization scale, (μF )1,2 = |�kH,J |, depending on which
of the two vertices is considered. We checked that the effect
of using natural values also for μF , i.e. μF = μN , is negli-
gible with respect to our two-value choice.
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Fig. 5 Y -dependence of C0 and of several ratios Cm/Cn for μF = μBLM
R ,

√
s = 13 TeV, and Y ≤ 9 (CASTOR-jet configuration)

3.3 Used tools and uncertainty estimation

All numerical calculations were done usingJETHAD, a For-
tran code we recently developed, suited for the compu-
tation of cross sections and related observables for two-

body final-state processes, and offering also support in the
study of multi-body final-state reactions. In order to perform
numerical integrations, we interfaced JETHAD with specific
CERN program libraries [63] and with Cuba library inte-
grators [64,65]. We made extensive use of the CERNLIB
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Fig. 6 Comparison of the φ-averaged cross sectionC0 in different NLA BFKL processes: Mueller–Navelet jet, hadron-jet and dihadron production,
for μF = μBLM

R ,
√
s = 7 and 13 TeV, and Y ≤ 7.1 (CMS-jet configuration)

routines Dadmul and WGauss, while the Cuba ones were
mainly used for crosschecks. A two-loop running coupling
setup with αs (MZ ) = 0.11707 and five quark flavors was
chosen. It is known that potential sources of uncertainty
could be due to the particular PDF and FF parametriza-
tions used. For this reason, we did preliminary tests by using
three different NLO PDF sets, expressly: MMHT 2014 [55],
CT 2014 [66] and NNPDF3.0 [67], and convolving them
with the four following NLO FF routines: AKK 2008 [56],
DSS 2007 [68,69], HKNS 2007 [57] and NNFF1.0 [70].
All PDF sets and the NNFF1.0 FF parametrization were
used via the Les Houches Accord PDF Interface (LHAPDF)
6.2.1 [71]. Our tests have shown no significant discrepancy
when different PDF sets are used in our kinematic range. In
view of this result, in the final calculations we selected the
MMHT 2014 PDF set, together with the FF interfaces men-
tioned above. We do not show the results with DSS 2007
and NNFF1.0 FF routines, since they would be hardly distin-
guishable from those with the HKNS 2007 parametrization.

The most relevant uncertainty comes from the numerical
4-dimensional integration over the two transverse momenta
|�kH,J |, the hadron rapidity yH , and over ν. Its effect was
directly estimated by Dadmul integration routine [63]. The
other three sources of uncertainty, which are respectively:
the one-dimensional integration over the parton fraction x
needed to perform the convolution between PDFs and FFs
in the LO/NLO hadron impact factors, the one-dimensional
integration over the longitudinal momentum fraction ζ in
the NLO hadron/jet impact factor corrections, and the upper
cutoff in the numerical integrations over |�kH,J | and ν, are
negligible with respect to the first one. For this reason the
error bands of all predictions presented in this work are just
those given by the Dadmul routine.

3.4 Discussion

In Fig. 2 we present our results at natural scales for the φ-
averaged cross sectionC0 at

√
s = 7 and 13 TeV in theCMS-

jet kinematic configuration. We can see that the NLO correc-
tions become larger and larger at increasing Y , an expected
phenomenon in the BFKL approach.

In Figs. 3 and 4, predictions with the BLM scale opti-
mization for C0 and several Rnm ≡ Cn/Cm ratios with the
jet tagged inside the CMS detector are shown for

√
s = 7 and

13 TeV, respectively. Here the benefit of the use of BLM opti-
mization appears, since the LLA and NLA predictions forC0

are now comparable, a sign of stabilization of the perturbative
series. The trend of ratios of the form Rn0 is the standard one
and indicates increasing azimuthal decorrelation between the
jet and the hadron as Y goes up, with the NLA predictions
systematically above the LLA ones, as it was also observed
in Mueller–Navelet jets and in the hadron-hadron case. The
ratios R21 and R32 seem to be almost insensitive to the NLO
corrections.

Panels in Fig. 5 show results with BLM scale optimiza-
tion for C0 and several Rnm ratios in the CASTOR-jet con-
figuration at

√
s = 13 TeV. They exhibit some new and, to

some extent, unexpected features: (i) the two parametriza-
tions for the FFs lead to clearly distinct predictions, (ii)
〈cos φ〉 exceeds one at the smaller values for Y , a clearly
unphysical effect. The reason for these phenomena could
reside in the fact that, the lower values for Y in the CASTOR-
jet case are obtained for negative values of the hadron rapid-
ity, i.e. in final-state configurations where both jet and hadron
are backward.

Finally, in Fig. 6 we compare the φ-averaged cross section
C0 in different NLA BFKL processes: Mueller–Navelet jet,
hadron-jet and hadron-hadron production, for μF = μBLM

R ,
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at
√
s = 7 and 13 TeV, and Y ≤ 7.1 in the CMS-jet case.

The hadron-hadron cross section, with the kinematical cuts
adopted, dominates over the jet-jet one by an order of magni-
tude, with the hadron-jet cross section lying, not surprisingly,
in-between.

4 Summary

In this paper we have proposed a new candidate probe of
BFKL dynamics at the LHC in the process for the inclusive
production of an identified charged light hadron and a jet,
separated by a large rapidity gap.

We have given some arguments that this process, though
being a naive hybridization of two already well studied ones,
presents some own characteristics which can make it worthy
of consideration in future analyses at the LHC.

In view of that, we have provided some theoretical pre-
dictions, with next-to-leading accuracy, for the cross section
averaged over the azimuthal angle between the identified jet
and hadron and for ratios of the azimuthal coefficients.

The trends observed in the distributions over the rapidity
interval between the jet and the hadron are not different from
the cases of Mueller–Navelet jets and hadron-hadron, when
the jet is detected by CMS, whereas some new features have
appeared when the jet is seen by CASTOR, which deserve
further investigation.
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